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Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin
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Phototropin receptor kinases play an important role in optimising plant growth in response to blue
light. Much is known regarding their photochemical reactivity, yet little progress has been made to
identify downstream signalling components. Here, we isolated several interacting proteins for Ara-
bidopsis phototropin 1 (phot1) by yeast two-hybrid screening. These include members of the NPH3/
RPT2 (NRL) protein family, proteins associated with vesicle trafficking, and the 14-3-3 lambda (k)
isoform from Arabidopsis. 14-3-3k and phot1 were found to colocalise and interact in vivo. More-
over, 14-3-3 binding to phot1 was limited to non-epsilon 14-3-3 isoforms and was dependent on
key sites of receptor autophosphorylation. No 14-3-3 binding was detected for Arabidopsis phot2,
suggesting that 14-3-3 proteins are specific to phot1 signalling.

Structured summary:
MINT-7146953: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF7 (uniprotkb:Q9LFJ7)
by two hybrid (MI:0018)
MINT-7147335: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 phi (uni-
protkb:P46077) by far Western blotting (MI:0047)
MINT-7146854: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with RPT2 (uniprotkb:Q682S0)
by two hybrid (MI:0018)
MINT-7147215: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uni-
protkb:P48349) by anti tag coimmunoprecipitation (MI:0007)
MINT-7147044, MINT-7147185, MINT-7147200, MINT-7147413: PHOT1 (uniprotkb:O48963) physically
interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by far Western blotting (MI:0047)
MINT-7146983: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with 14-3-3 lambda (uni-
protkb:P48349) by two hybrid (MI:0018)
MINT-7146871: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with NPH3-like (uni-
protkb:Q9S9Q9) by two hybrid (MI:0018)
MINT-7146905: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF2 (uni-
protkb:Q9M1P5) by two hybrid (MI:0018)
MINT-7147364: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 upsilon (uni-
protkb:P42645) by far Western blotting (MI:0047)
MINT-7147234: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 kappa (uni-
protkb:P48348) by far Western blotting (MI:0047)

� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Phototropins (phot1 and phot2) are plasma membrane-associ-
ated receptor kinases that respond specifically to UV/blue wave-
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lengths and regulate processes that serve to optimise
photosynthetic efficiency and promote plant growth [1]. These in-
clude phototropism, stomatal opening [2], chloroplast relocation
movement [3], as well as leaf expansion [4] and positioning [5].

Phototropins comprise an N-terminal photosensory region cou-
pled to a C-terminal serine/threonine kinase domain that belongs
to the AGC family of protein kinases [1]. UV/blue light is detected
by a repeated motif within the N-terminal region known as LOV1
and LOV2 [6]. The LOV domains associated with plant phototropins
function as blue light sensors by binding the chromophore flavin
lsevier B.V. All rights reserved.
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mononucleotide (FMN) [7]. Phototropin activity is regulated pre-
dominantly by LOV2 [8,9], whereas LOV1 appears to mediate
receptor dimerisation [10] and modulate receptor activity [11].
Consequently, kinase activation by LOV2 results in receptor auto-
phosphorylation [12,13], a prerequisite for phototropin signalling
[12].

While much effort has focussed on elucidating the primary
mechanisms underlying phototropin receptor activation by light,
the downstream signalling processes remain largely elusive. Sev-
eral phototropin-interacting proteins have been identified. Phot1
from Vicia faba and Arabidopsis thaliana exhibit 14-3-3 binding
[12,14]. However, the functional significance of this interaction is
still unknown. Recent proteomic analysis has shown that interact-
ing targets for 14-3-3 family members in barley [15] include NPH3,
a phot1-interacting protein that is essential for phototropism [16],
as well as PIN1, an auxin efflux carrier reported to play a role in the
development of phototropic curvatures [17]. RPT2 and PKS1 repre-
sent additional signalling components that interact directly with
phot1. RPT2 is closely related to NPH3 and mediates both photot-
ropism and stomatal opening [18], whereas PKS1 has been shown
to influence phototropic curvature [19].

Here, we adopted a yeast two-hybrid approach to identify sig-
nalling components that interact with phot1 from Arabidopsis.
Among the candidates isolated was 14-3-3 lambda (k). Detailed
biochemical analysis revealed that 14-3-3 binding is specific to
members of the non-epsilon group of Arabidopsis 14-3-3 proteins
and is limited to phot1, suggesting that 14-3-3 binding is unique
to phot1 signalling.
2. Materials and methods

2.1. Plant material

Wild-type (gl-1, ecotype Columbia) and the phot1-5 phot2-1
mutant have been described previously [3]. Arabidopsis expressing
phot1-GFP [20], phot2-GFP [21] and GFP-Lti6b [22] are as de-
scribed. The 14-3-3k mutant was obtained from the SALK T-DNA
mutant collection (SALK_075219). For the detection of transcripts
total RNA was extracted from leaf tissue by the RNeasy plant mini
kit (Qiagen) according to the manufacture’s instructions. cDNA
synthesis and RT-PCR were performed as described [23]. Primers
used to amplify 14-3-3k transcripts were 50-AGGCGCTACTCCAGCG-
GA-30 and 50-CAAAGGTTATGGGGATTTTGAGA-30. Seeds were sur-
face sterilised and planted on filter paper on half-strength
Murashige and Skoog medium with 0.8% agar (w/v). Red and blue
light was provided as described [24]. Plants were grown on soil in a
controlled environment room (Fitotron, Weiss-Gallenkamp,
Loughborough, UK) under 16/8 h 22/18 �C light-dark cycle
(70 lmol m�2 s�1).

2.2. Yeast two-hybrid screening

The CLONTECH Matchmaker GAL4 Two-Hybrid System 3 was
used for yeast two-hybrid analysis. Arabidopsis PHOT1 was cloned
into the pGBK-T7 bait vector and used to screen a cDNA library de-
rived from 3-day-old etiolated Arabidopsis seedlings (Arabidopsis
Biological Resource Centre, #CD4-22). Yeast strain AH109 was
cotransformed with bait and prey plasmids and selected on syn-
thetic dropout medium (SD) lacking leucine (Leu) and tryptophan
(Trp). Contransformants were assayed for interaction on SD med-
ium lacking adenine, histidine, leucine, tryptophan, and containing
5-bromo-4-chloro-3-indolyl-a-D-galactopyranoside (X-a-gal).
Yeast transformation, a-galactosidase assays and plasmid rescue
were carried out in accordance with the manufacturer’s instruc-
tions. Interaction tests with 14-3-3k cDNA in the pACT2 prey vector
were performed with pGBK-T7 constructs encoding regions of
phot1 (amino acids 1-202, 1-307, 1-423 and 1-627).

2.3. Heterologous protein expression

Coding sequences of Arabidopsis 14-3-3 isoforms 14-3-3k
(At5g10450), 14-3-3j (At5g65430), 14-3-3/ (At1g35160), 14-3-
3t (At5g16050), 14-3-3o (At1g34760) and 14-3-3e (At1g223300)
were PCR-cloned into the pGEX-4T1 vector (Amersham Biosci-
ences) as a translational fusion with glutathione-S-transferase
(GST). Recombinant 14-3-3 proteins were expressed and purified
from the Escherichia coli host strain BL21(DE3) (Novagen). Protein
expression of GST-fusion proteins and GST was induced with
1 mM isopropyl b-D-thiogalactopyranoside (IPTG). Cells were lysed
with a French press and purified with GST-Bind Resin (Novagen).
Proteins were eluted with 50 mM reduced glutathione in 50 mM
Tris–HCl, pH 8.0. The purity and integrity of purified proteins
was confirmed by 12.5% SDS–PAGE and staining with coomassie
brilliant blue R250 (Bio-Rad). The LOV1+2 regions of phot1 (amino
acids 180–628) and phot2 (amino acids 116–542) were expressed
and purified as calmodulin binding peptide fusions and [7]. Expres-
sion of phot1 and phot2 in insect cells was performed as described
previously [25].

2.4. In vitro phosphorylation

Autophosphorylation assays were performed as described pre-
viously [8]. For far-Western blotting experiments, radiolabelled
ATP was omitted from the reaction. Phosphorylation of the bacte-
rially expressed LOV1+2 proteins was performed by incubation of
10 lg of purified protein with 1000 units of bovine protein kinase
A catalytic subunit (Calbiochem) in accordance with the supplier’s
instructions.

2.5. Protein extraction and immunoprecipitation from Arabidopsis

Total protein and microsomal membrane protein was extracted
as described previously [13]. For separation of soluble and mem-
brane proteins, total protein extract was centrifuged at 100 000g
at 4 �C for 75 min. The supernatant was used as the soluble fraction
and the pellet resuspended in extraction buffer as the membrane
fraction. Protein concentrations were determined by the Bradford
colorimetric method (Bio-Rad). GFP immunoprecipitations were
performed using the lMACS GFP isolation kit (Miltenyi Biotech)
as described [13].

2.6. Western blot analysis

Proteins were detected with anti-phot1 and anti-phot2 poly-
clonal antibodies [9], anti-14-3-3k purified polyclonal antibody
raised against the peptide sequence VKDYRSKVESELSSVC (Euro-
gentec), anti-GFP monoclonal antibody (BD Biosciences), anti-
GST monoclonal antibody (Novagen), anti-His antibody (Santa
Cruz Biotechnology) and anti-UGPase antibody (AgriSera). Wes-
tern blots were developed with either horseradish peroxidase
(HRP)-linked secondary antibodies and Immobilon Western
chemiluminescence HRP substrate (Millipore) or alkaline phos-
phatase-linked secondary antibodies and 5-bromo-4-chloro-3-
indolyl phosphate (BCIP)/nitro blue tetrazolium (NBT) solution
(Sigma). Far-Western blotting was carried out according to
Kinoshita and Shimazaki [26]. Nitrocellulose membranes were
incubated with purified GST-14-3-3 proteins or GST alone at a
final concentration of 0.1 mM unless otherwise stated. Protein–
protein interactions were detected using monoclonal anti-GST
antibody (Novagen) at 1/10 000 dilution.
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Fig. 1. Yeast two-hybrid analysis of phot1-interacting proteins. (A) Yeast two-
hybrid analysis of phot1 and 14-3-3k. Yeast growth on minimal selection (MS)
medium selects for cotransformants while growth on full selection (FS) medium
selects for interacting proteins. No interaction was observed with empty vector
transformations. Vectors encoding murine p53 and the SV40 large T-antigen were
included as a positive control. Interactions were quantified using the a-galactosi-
dase assay. Error bars indicate standard error (n = 3). (B) Effect of white-light
irradiation on phot1 interactions. Yeast growth on FS medium grown in darkness
(D) or continuous white light (L) at 20 lmol m�2 s�1. (C) Effect of blue-light
irradiation on phot1 interaction with ARF2. Yeast growth on FS medium grown in
white (20 lmol m�2 s�1), red or blue light (10 lmol m�2 s�1, respectively). (D) Far-
Western blotting of immunoprecipitated phot1-GFP with 14-3-3k. Three-day-old
etiolated seedlings expressing phot1-GFP were treated with the indicated fluence of
blue light. Phot1-GFP was immunoprecipitated from microsomal membrane
fractions and analysed by far-Western blotting with GST-14-3-3k. As a control for
protein loading blots were probed with anti-GFP antibody. Dashed line indicates
lowest mobility edge of phot1-GFP.
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2.7. Sequence alignment and phylogenetic analysis

Alignment of the 14-3-3 amino acid sequences and phyloge-
netic trees were produced using ClustalX [27]. Trees were viewed
using TreeView [28].

3. Results

3.1. Identification of phot1-interacting proteins

Arabidopsis phot1 was used as bait in a yeast two-hybrid screen
using a random cDNA library from Arabidopsis [29]. A total of
8 � 104 colonies were screened, from which 57 grew on full selec-
tion medium. Further characterisation led to the isolation of five
cDNA clones encoding proteins of interest that are summarised
in Table 1. Proteins known to interact with phot1, such as RPT2
[18] were identified demonstrating the veracity of the approach.
Specifically, the N-terminal region of RPT2 (amino acid residues
1–187) was isolated (Supplementary Fig. S1) including the BTB/
POZ domain (amino acid residues 32–128) which is known to be
important for mediating the interaction between RPT2 and phot1
[18]. A novel member of the NPH3/RPT2-like (NRL) family was also
identified. This protein, designated NPH3-like (NPH3-L), comprised
a truncated region of the protein (amino acid residues 243–433)
downstream of the BTB/POZ domain which resides within the
NPH3 signature region spanning amino acids 213 to 484 in
NPH3-L (Supplementary Fig. S1). In addition, we identified two
ADP-ribosylation factors (ARF2 and ARF7), members of the Ras
superfamily of GTP-binding proteins that play important roles in
the assembly and disassembly of coat proteins associated with
driving vesicle budding and fusion [30]. In each case, full-length
cDNAs were isolated encoding the entire region of the protein
(Supplementary Fig. S1). Similarly, a full-length cDNA was ob-
tained encoding 14-3-3k (Supplementary Fig. S1), that interacts
specifically with phot1 in yeast, although weaker in comparison
to the interaction between positive controls expressing murine
p53 and the SV40 large T-antigen (Fig. 1A). Similarly, NPH3-L,
ARF2 and ARF7 were not found to autoactivate the yeast two-hy-
brid system in the absence of phot1 (data not shown), and thus
represent bona fide interacting proteins.

3.2. Effect of blue light on phot1 interactions

Yeast growth was screened in the absence of continuous illumi-
nation to identify the afore-mentioned proteins. To establish
whether light had any effect, yeast were grown in darkness or in
continuous white light (20 lmol m�2 s�1). The interaction between
ARF2 and phot1 was severely attenuated in the presence of light
(Fig. 1B) and was specific to blue light (Fig. 1C). A similar light sen-
sitivity was observed for the interaction between ARF7 and phot1
(data not shown) suggesting that photoactivation of phot1 by blue
light disrupts its binding to ARF proteins. By contrast, light had no
effect on phot1 interactions with RPT2, NPH3-L and 14-3-3k
(Fig. 1B).

14-3-3 proteins are key regulators of protein function in
eukaryotes and preferentially bind to phospho-serine/threonine-
Table 1
Identification of phot1-interacting proteins. Proteins of interest identified from yeast two-

Interacting protein Accession number

RPT2 At2g30520
NPH3-like At1g30440
ARF2 At3g62290
ARF7 At5g17060
14-3-3k At5g10450
containing motifs [31]. Since phot1 undergoes blue light-depen-
dent autophosphorylation [25], yeast growth in darkness
(Fig. 1B) would indicate that 14-3-3k binding to phot1 is not
dependent on the phosphorylation status of the receptor. However,
previous reports have shown by far-Western blotting that a differ-
ent member of the Arabidopsis 14-3-3 family, 14-3-3 phi (/), binds
hybrid screening of an Arabidopsis cDNA library with full-length phot1.

Protein function % Frequency

Phototropism, stomatal opening 2
Unknown 4
GTP binding, vesicle trafficking 7
GTP binding, vesicle trafficking 2
Phosphoprotein binding 2
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to the phosphorylated form of phot1 immunoprecipitated from
V. faba [14] and Arabidopsis [12]. A transgenic Arabidopsis line
expressing full-length phot1 fused to green fluorescent protein
(phot1-GFP) under the control of the native PHOT1 promoter has
been shown to complement the null phot1-5 allele [20]. This line
was therefore used to immunoprecipitate phot1-GFP from 3-day-
old dark-grown seedlings to assess 14-3-3k binding to phot1 by
far-Western blotting. As shown in Fig. 1D, binding of recombinant
14-3-3k fused to glutathione-S-transferase (GST) was not detected
for phot1-GFP immunoprecipitated from dark-grown seedlings.
However, a reduced electrophoretic mobility of phot1-GFP, indica-
tive of receptor autophosphorylation, and concomitant 14-3-3k
binding was observed when seedlings were exposed to blue light.
14-3-3k binding was also fluence-dependent, saturating at
600 lmol m�2. These findings concur with studies using 14-3-3/
[12,14] demonstrating that, at least for plant-derived phot1, 14-
3-3 binding is dependent on receptor autophosphorylation.

3.3. Ser410 in addition to Ser350 and Ser376 is required for binding of 14-
3-3k to phot1

Phospho-serine residues required for the 14-3-3/ binding to
Arabidopsis phot1 have been mapped to the intervening linker re-
gion between LOV1 and LOV2 [12] and conform to protein kinase
A (PKA)-like consensus sequences [13]. To determine whether this
was also the case for 14-3-3k, truncation analysis from the C-ter-
minus of phot1 was performed to assess regions important for
14-3-3 binding in yeast. Interactions between phot1 and 14-3-3k
were only evident when the LOV-linker region was present
(Fig. 2A), indicating the importance of this peptide sequence. Ara-
bidopsis phot1 is phosphorylated on three serine residues within
this region, namely Ser350, Ser376 and Ser410 [12,13]. Phosphoryla-
tion of both Ser350 and Ser376 is required for binding of 14-3-3/
A
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Fig. 2. 14-3-3k binding to phot1 is dependent on its phosphorylation status. (A)
Yeast two-hybrid analysis of a phot1 deletion series and 14-3-3k. Interactions were
quantified using the a-galactosidase assay. Error bars indicate standard error
(n = 3). Positive control vectors are as described in Fig. 1A. (B) Far-Western blotting
of wild-type (WT) and S350A/S376A mutant LOV1+2 protein fragments of phot1
with GST-14-3-3k. LOV1+2 was subjected to in vitro phosphorylation in the
presence or absence of PKA (+ or �). Ponceau S staining of the nitrocellulose
membrane was used as a control for protein loading. (C) Far-Western blotting of
wild-type (WT), S350A/S376A mutant and S350A/S376A/S410A mutant LOV1+2
protein fragments of phot1 with GST-14-3-3k. LOV1+2 proteins were treated as in
(B).
to Arabidopsis phot1 [12]. We therefore investigated whether these
residues were also required for 14-3-3k binding to phot1. Frag-
ments of Arabidopsis phot1 containing both LOV domains, desig-
nated LOV1+2 were generated for this purpose. In vitro
phosphorylation of LOV1+2 by the catalytic subunit of PKA resulted
in strong 14-3-3k binding as measured by far-Western blotting
(Fig. 2B). Although mutation of Ser350 and Ser376 to alanine sub-
stantially reduced the interaction, residual 14-3-3k binding to
phot1 in response to PKA treatment could still be detected
(Fig. 2B). Mutation of Ser410 to alanine (Fig. 2C) abolished this
interaction demonstrating an accessory role for this residue in
mediating 14-3-3k binding to phot1.

3.4. 14-3-3k-binding is limited to phot1

While an interaction between 14-3-3k and phot1 was readily
detectable by far-Western blotting, no interaction was observed
for Arabidopsis phot2. In vitro phosphorylation of the LOV1+2 re-
gion of phot2 by PKA was unable to mediate binding of 14-3-3k
(Fig. 3A). For independent verification, we investigated 14-3-3k
binding to phot1 and phot2 expressed in insect cells as both pro-
teins exhibit light-induced kinase activity in this system (Fig. 3B).
14-3-3k binding was specific to phot1, but did not appear to be
light dependent. This finding may coincide with the basal level of
kinase activity detected for phot1 in vitro [25]. Indeed, treatment
with k-phosphatase abolished radiolabelled phosphate incorpora-
tion in addition to 14-3-3k binding to phot1 under dark and light
conditions (Supplementary Fig. S2). Despite showing light-depen-
dent phosphorylation activity in insect cells, phot2 did not bind
14-3-3k either in darkness or in response to irradiation (Fig. 3B).
As further confirmation, we examined whether phot2 from
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of blue light (BL) for 30 min. Blots were probed with anti-GFP antibody. Dashed line
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phot1-GFP and phot2-GFP with GST-14-3-3k. Five-day-old seedlings expressing
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Phot1-GFP and phot2-GFP were immunoprecipitated from microsomal membrane
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Arabidopsis could bind 14-3-3k. Light-grown seedlings were used
for our analysis since phot2 is poorly expressed in dark-grown Ara-
bidopsis [8]. Seedlings were incubated in darkness overnight to re-
store receptor activity to its ground state. Subsequent irradiation of
seedlings with blue light resulted in an electrophoretic mobility
shift for phot1 and phot2 indicative of receptor autophosphoryla-
tion (Fig. 3C). Hence, identical illumination conditions were used
to immunoprecipitate functional phot1-GFP and phot2-GFP from
transgenic Arabidopsis (Fig. 3D). Consistent with our efforts to
monitor 14-3-3k binding to phot2 in vitro and insect cells, 14-3-
3k binding was only detected for phot1-GFP. Taken together, these
data imply that 14-3-3k binding is specific to phot1.

3.5. 14-3-3k and phot1 colocalise and associate in vivo

The 14-3-3-protein family comprises 13 members in Arabidopsis
[31]. Phylogenetic analysis shows that its members can be sepa-
rated into two evolutionary branches: the epsilon and non-epsilon
groups. 14-3-3k is closely related to 14-3-3 kappa (j) and in a sub-
branch of the non-epsilon group (Fig. 5A). Thus, a peptide region
unique to 14-3-3k was used to generate antibodies specific to
14-3-3k (see Section 2). A T-DNA insertion mutant lacking 14-3-
3k transcripts was used to test the antibody generated (Fig. 4A).
No 14-3-3k protein was detected in the T-DNA insertion mutant
verifying the specificity of the 14-3-3k antibody, as well as con-
firming that this allele is a null mutant (Fig. 4B). Western analysis
revealed that 14-3-3k is ubiquitously expressed in wild-type
plants and particularly prevalent in roots, flowers, cauline and ro-
sette leaves (Fig. 4C). Biochemical fractionation demonstrated that
the majority of 14-3-3k is soluble, however a portion of 14-3-3k
was found to associate with the membrane fraction purified from
Arabidopsis (Fig. 4D) indicating that 14-3-3k, at least in part, colo-
calises to the same subcellular compartment as phot1 [20]. Mem-
brane localisation of 14-3-3k was still observed in the phot1 phot2
double mutant indicating that its association with the membrane
is not dependent on phototropins (Fig. 4D). However, 14-3-3k
was found to co-purify with phot1-GFP immunoprecipitated from
Arabidopsis and not with the plasma membrane marker GFP-Lti6b
(Fig. 4E) suggesting that 14-3-3k and phot1 interact in vivo.

3.6. 14-3-3 binding to phot1 is specific for non-epsilon 14-3-3 family
members

We also tested the ability of phot1 to interact with other mem-
bers of the Arabidopsis 14-3-3 family. Epsilon (e) and omicron (o)
were chosen as representative candidates from the epsilon sub-
branches, whereas kappa (j), upsilon (t) and phi (/) were chosen
as further representatives of the non-epsilon group (Fig. 5A). Each
of these proteins were expressed as GST fusions (Fig. 5B) and used
for far-Western analysis with phot1-GFP immunoprecipitated from
Arabidopsis alongside 14-3-3k. Initially, binding of only 14-3-3k
and 14-3-3j were observed (Fig. 5C). Upon longer exposure, bind-
ing of 14-3-3/ and, to a much lesser extent, 14-3-3t was also vis-
ible. No binding of the 14-3-3e and 14-3-3o was detected under
these conditions implying that 14-3-3 binding to phot1 is re-
stricted to non-epsilon family members. While binding of 14-3-
3/ to phot1 agrees with previous reports [12,14], our findings
show that phot1 has a stronger affinity for 14-3-3k followed by
14-3-3j (Fig. 5C) consistent with their placement in the phyloge-
netic tree (Fig. 5A). The difference in binding affinity between
14-3-3k and 14-3-3j was also evident upon diluting phot1-GFP
proteins levels (Fig. 6A). A similar specificity for 14-3-3 binding
was observed when using phot1 expressed in insect cells (data
not shown). Like 14-3-3k, 14-3-3j binding was abolished upon
mutation of Ser350, Ser376 and Ser410 to alanine in phot1 expressed
in insect cells (Fig. 6B). No binding of 14-3-3j could be detected for
phot2 expressed in insect cells (Fig. 6C), as was the case for the
other 14-3-3 candidates examined (data not shown) again indicat-
ing that 14-3-3 binding is a property unique to phot1.

4. Discussion

The most prominent paradigms involving 14-3-3 proteins in
plant regulatory events include regulation of plasma membrane
H+ATPase activity, nitrate reductase and sucrose phosphate syn-
thase [31]. More recently, a role for 14-3-3 proteins in brassinos-
teroid signalling has been indentified [32]. In addition, phot1
from both V. faba and Arabidopsis has been shown to interact with
14-3-3/ [12,14], a member of the non-epsilon group. Previous
studies have shown isoform-specific binding preferences between
different 14-3-3-isoforms and their target proteins [33–35]. Yet,
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the specificity of phot1 for specific members of the Arabidopsis 14-
3-3 family has not been investigated. Likewise, the ability of phot2
to interact with 14-3-3 proteins has not been examined. 14-3-3k
was identified as a phot1-interacting protein from our yeast two-
hybrid screen indicating that phot1 also binds family members
other than 14-3-3/. In contrast to phot1 derived from Arabidopsis,
binding of 14-3-3k to phot1 in yeast was not light dependent
(Fig. 1D). Phosphorylation of phot1 by a protein kinase endogenous
to yeast may account for this discrepancy as has been reported for
the Arabidopsis plasma membrane H+ATPase AHA2 [36].

As well as interacting with 14-3-3k, our findings demonstrate
that phot1 exhibits different binding affinities for non-epsilon
group members (Fig. 5). From the 14-3-3 representatives exam-
ined, 14-3-3k appears to show the strongest affinity for phot1, fol-
lowed by 14-3-3j, 14-3-3/ and 14-3-3t. The different binding
affinities observed for non-epsilon isoforms matches well with
their placement in the phylogenetic tree. The apparent difference
in binding affinities between 14-3-3k and 14-3-3j is intriguing
given these proteins are almost identical in protein sequence
(93%). However, interactions between members of the epsilon
group could not be detected implying that genetic analysis should
now be restricted to non-epsilon members to evaluate the biolog-
ical consequences of 14-3-3 binding to phot1. Our characterisation
of Arabidopsis mutants lacking both 14-3-3k and 14-3-3j has been
unsuccessful in identifying a physiological role for 14-3-3 binding
to phot1 (data not shown) and maybe due to functional redun-
dancy between other non-epsilon members such as 14-3-3/. Over-
expression of Arabidopsis 14-3-3k in cotton results in an enhanced
tolerance to drought stress [37] indicating that 14-3-3k may, in
conjunction with the phot1, regulate stomatal function. However,
mutation of Ser350 and Ser376 does not impair phot1-induced sto-
matal opening in Arabidopsis [12]. Whether this is because Ser410

alone can promote residual 14-3-3 binding (Fig. 2D) is not known.
Alternatively, 14-3-3 proteins may play a role in photoresponses
that are specific to phot1 since we were unable to detect 14-3-3
binding to phot2 using a variety of approaches (Fig. 3). Indeed,
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phospho-motifs present in the LOV linker region of phot1 are less
well conserved in phot2 [13].

Phosphorylation status has been shown to be important for
NPH3 function [38] and PIN-mediated auxin transport [39], both
of which are influenced by phototropin activity. 14-3-3 binding
may influence their interaction with phot1 given that these pro-
teins also exhibit 14-3-3 binding [15]. Besides 14-3-3k, we identi-
fied additional members of the NRL family in addition to ARFs as
novel phot1-interacting proteins. The ARF Guanine Exchange Fac-
tor (GEF), GNOM is at least partially responsible for the polar local-
isation at the plasma membrane of the auxin efflux carrier PIN1
[40]. Since phot1 internalises from the plasma membrane in re-
sponse to blue light [20], it will now be interesting to establish
whether the ARFs identified here are involved in this process.
Alternative but complementary proteomic-based strategies will
also prove useful in validating these interactions as well as identi-
fying additional phototropin signalling components.
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