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Equation of State at Finite Density from Imaginary Chemiafential Tetsuya Takaishi

1. Introduction

Although lattice QCD has been used successfully for siranatat zero and finite temper-
atures and at zero density, Monte Carlo simulations at moa-densities suffer from a technical
problem: the lattice QCD action becomes complex, which gmey its customary probabilistic
interpretation. In principle one could perform simulatoat zero density, and use the reweight-
ing technique to obtain information at finite densities. Aarlg attempt known as the Glasgow
method [lL] did not work due to the overlap problem: the configions at zero density were too
“far” from the target configurations at non-zero densiti€ansiderable progress has been accom-
plished by generalizing the Glasgow method to two-paranretgeighting [2]. Nevertheless, the
range of reliability of this technique is difficult to asseand its failure can go undetected.

Therefore, another, more conservative way to deal withdihéryon densities may be useful.
It consists of calculating Taylor coefficients of obseresblvith respect to the chemical potential
u abouty = 0. Those Taylor coefficients can be expressed as expectatloas of complicated
observables, which can be measured at zero density. Thars, ithno difficulty to perform Monte
Carlo simulations in this method. A first, pioneering atténgpobtain quark susceptibilitie$] [3]
has been followed by numerous works, obtaining in particiila response of screening masses to
chemical potential[J4]9,]6]. The Taylor expansion methos &iso been used for studies of the
equation of state, of the phase transition and of higherrandsceptibilities[[[7[]8}] 9, 10]. However,
the complexity of the observable representing the Tayl@&ffaient, and the computer effort to
measure it, increase rapidly with the order of the Tayloraggion. This motivates us to follow a
different strategy.

Since no difficulty appears for simulations at imaginaryroi@l potentialu = iy, one can
obtain information at finite baryon densities by analytioiiouation of observables measured at
finite u;. Actually, this imaginary chemical potential strategy hagn applied with success to the
determination of the phase transitidn][11].

In this study, we perform simulations at finitg and measure derivatives of the pressase
a function ofyy. These derivatives contain information about the Tayl@fitccients of theu = 0
expansion, which can be extracted by fitting. Finally, wettryeconstruct the equation of state at
finite baryon and isospin densities. The strategy of our nae#nd preliminary results were pre-
sented rather long ago in J12]. Here we report further pregi@n this project. A related approach,
where the quark density is measured at imaginary quark aalds@spin chemical potentials and
then fitted by a polynomial ansatz, has recently been predént1%].

2. Equation of State at Finite Chemical Potential
The lattice QCD patrtition function withl; flavors of staggered fermions can be written as
Z= [ NN detM(U, m, u) 4 exp(—
- i ) >M) eXp( %[U])duv (21)

whereS;[U] is the gauge action arid (U, my, ;) stands for the staggered Dirac operator with quark
massm; and chemical potentigl®. In this study we conside¥s = 2 degenerate fermion species
and use the standard Wilson gauge action.

Iwe set aside potential problems with “rooting” the deteraniny particularly at non-zero chemical potential.
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The pressure or the equation of state with chemical polemtiand iy is given by

F T
p(IJUaIJd) = _\7 = \_/ InZ(Uu»Ud)> (22)

and can be expanded in a Taylor series ahgut ug = 0 as

T

%Ep(uu,ud%;p(oﬁ): 5 Tin!fnm<&>”<“d>m, (2.3)

nm=1 T
where f,, are the Taylor expansion coefficients. They vanish whes m) is odd due to CP
symmetry. Furthermore, for equal quark masses there ihansymmetryf,m = fmn. The fan's
are related to derivativeg;j of the pressure measuredrain-zerochemical potential by

i-ay 9 (P(Hy, Ha) /T ! Hu\" (g™
=4y — w A - - = = . .
T = a0 o 2 e (7) (F) 24
While at zero densityi; = fijT‘H*j, at non-zero densitie;; includes higher ordef,m terms,

and does not vanish for odd+ j). This suggests to use all availaig’s at non-zero densities,
in order to estimate thé,n's. Here, we try to estimaté,, by fitting all xj; simultaneously to the
polynomial expansions efy.(R.4). Of courgg,at non-zero baryon density is not directly obtainable
from simulations on the lattice because of the sign probldowever,x;; can be obtained through
simulations at imaginary quark chemical potential or at is@spin density. Here, we calculatg

at imaginary chemical potentials.

Therefore, we sett = iyy. Eachy;; depends on higher order Taylor coefficients following
eq.(2.4). Therefore, with sufficiently accurate dataygnone can also obtain higher order Taylor
coefficientsf,m, N > i,m> j. The measurements of the derivatives involve computinceraf
inverse Dirac matrix products. These traces were estimasath the noise method with 4x)
random vectors. In this study we measyreup toi + j = 4. Thus we have 8 differeng;;’s. We
fit all the data to the corresponding 8 polynomial expansieqg2.}t) truncated to a given order
(n+m), and try to obtain the Taylor coefficienfgm.

As we will see, in the confined phase a Taylor expansion ishtrtost compact description
of the pressure. Instead, for< T, we use the Hadron Resonance Gas (HRG) model. In the HRG
model the pressure is givenas

M — GlcosH 2#'3) 1+ R[cosﬁ%) cosr($) _1 (2.5)
+ W[cosk(%) (cosl’(#) +cost{3§l_'s)> -2,

whereG,R andW are constants related to the hadron spectrum, and quarksasgin chemical
potentialspy and s are defined aglq = (Uy+ Hd)/2 andps = (Hy — Hd)/2 respectively.

The derivatives of the pressure with respeciutoand Ly, instead of having the polynomial
form eq.[2.4), are now obtained by differentiating Eq]2.Bhe coefficients5,R andW are then

2This expression is taken from (4.3) ﬂ [8]
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Figure1: x?/dof of various polynomial anséatze as a functiorofT,. The fitting range ofyy is 0.0-0.24.

extracted by fitting imaginary data. In terms o€,R andW, the first Taylor coefficients are given
by

foo = <G+2R+ 7\N> , 2.6)
fi1=—(G+2(R+W)), (2.7)
f2o= G+ 4(R+W), 2.8)
fay = G+;R+ A9W, 2.9)
f20= —G+5(R+W). (2.10)

Table 1: x2/dof for polynomial ansatz of degree 4, 6 and 8 (maximum valugaf m) in eq.(2.4)).

T/T. 099 100 103 104 1065 108 11 12 13 14 15 20
4th  85.1 1349 3.15 314 350 7.24 320 109 113 6.67 9.955 9.1
6th 191 421 160 219 082 550 553 152 0.89 246 1.09 210
8th 453 529 164 177 081 101 215 172 091 216 122 128

Table 2: x?/dof for HRG ansatz.
T/T. 0.83 0.9 095 098 0.99 1.00
HRG 129 1.00 210 158 105 294

3. Simulations at Imaginary Chemical Potential

We have performed simulations oA 8 4 lattices at a quark masg, = 0.05 and imaginary
chemical potentialay, = 0.0,...,0.24. We have chosen 16 valuesf®fanging from 4.90 to 6.85,
which correspond td@ /T, = 0.83 ~ 2.0. Most of the simulations were performed using the R-
algorithm with a step sizét = 0.02. We also used the Rational HMC algorithin][13] to check
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Figure 2: Taylor coefficients: (afy1, (b)f20, (C)f22, (d)f40 and (e¥a1.
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Figure 3: Equation of state (Pressure) as a functiorapd andaps at (a) 8 = 5.53(T/Tc ~ 1.1) and at
(b)B =4.90(T /T, ~ 0.83).

the systematic stepsize errors caused by the R-algoriththfaund no significant difference for

this lattice size and quark mass. At each simulation poinhese accumulated 12000 to 20000
measurements. The measurements were taken every 5 tregedim balance the computational
effort of the R-algorithm simultion and measurements.

3.1 Fitting to Xi;

We determinef,n, by fitting all the derivatives simultaneously to the corr@sging ansatz of
Xij- We used the polynomial ansatz ¢q)2.4) for the datd /& > 0.99, and the HRG ansatz
eq.(2.p) aff /T, < 1.0. Tables 1 and 2 show the¢’/dof for the polynomial and HRG fits, respec-
tively. The fitting range ofay, is 0.0 — 0.24, which covers most of the range up to the Roberge-
Weiss transition agy = 7T /3.

Fig[l compares thg?/dof among various polynomial and HRG fits. One can see that the 4th
order polynomial (n+m) < 4 in the expansion e{.(2.4)) is not good over the whole teatpe
range, and that the 6th order one becomes poor in the viai. Similarly, one can also see
that the quality of the fit based on the HRG ansatz becomes fpodr/T; > 0.95. While the
failure of the HRG ansatz ne@ has been noticed beforg J14] 15], it is remarkable that wesean
clear indications of 6th order, and even 8th order Taylofffizients with our modest study. The
measurement of 8th order Taylor coefficients representsuhent state of the ark [ILO].

Fig2 shows the Taylor coefficienti, 2o, f22, fa0 and fs; as a function of temperature.
Those results are obtained by fitting a 6th order polynorma range ofayy = 0.0— 0.24. For
T/T. > 1.0, they agree well with those obtained from the direct messent of derivatives at
p =0, i.e. Xij|lu—o, but are more accurate. We do not show the 6th order Tayldificeats
fs0, f51, 42 and fa3: even though their collective effect is statistically sigrant, they cannot be
individually determined with any statistical accuracy. Wy observe thatgg is dominant at this
order.

Similary, the Taylor coefficients obtained from the HRG dndar T /T; < 0.95 also agree well
with direct measurements af;|—o, with higher accuracy. However, fdr/T; > 0.95 the results
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Figure 5: Number density aB = 4.90(T /T; ~ 0.83) as a function ofapq andaps: (a)Ng/T3 and (b)
N|S/T3.

from the HRG ansatz fits deviate frofm |y—o. This observation is consistent with the measured
x?2/dof, which increase considerably far/T, > 0.95.

3.2 Equation of State at Finite Densities

Once we obtain the Taylor coefficients of the pressure or #rameters of the HRG model,
we can reconstruct the equation of state. Here, we presentases aff = 5.53(T /Tc ~ 1.1)
andf = 4.90(T /T, ~ 0.83) which are reconstructed with the Taylor series and the HR&&t&n
respectively. Fig[]3(a) shows the equation of statg at 5.53(T /T. ~ 1.1) as a function ofauig
andays. Similarly Fig.[3(b) shows the equation of stateBat 4.90(T /T, ~ 0.83).

One can also reconstruct other interesting quantities. f&hows the quark number density

Ng and the isospin number densNys at 3 = 5.53 as a function oy andaps. Similarly, Fig.[$

showsN,/T3 andN;s/T3 at 3 = 4.90. HereNq andNjs are defined ably = ij andNs = ;up ,
q Is

respectively.
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4. Conclusions

We have performed simulations at imaginary chemical pa@knand measured the derivatives
of the pressure with respect tg at zero and non-zero imaginagy By fitting all the derivatives to
a polynomial ansatz or an HRG ansatz, we obtained the Tagkfficients of theu /T expansion
of the pressure aboyt = 0. The Taylor coefficients obtained by a polynomial fit fofT. > 1.0
agree well with the direct measurement of derivativegtat 0, Xij|,—o, but are more accurate.
Remarkably, we find it impossible to obtain a good fit, at amgderature, without including 6th
order derivatives. Foll, < T < 1.04T, 8th order derivatives are necessary. Thus, our approach
may provide a cheaper alternative to the direct measureafdrigh-order derivatives gt = 0.

Similarly, below T, we observed that the Taylor coefficients obtained by the HR&aia de-
viate from x;j|u—o for T/Tc > 0.95, and the HRG ansatz itself gives a poor description of the
imaginaryu data. The same observation has been made]in [15].

Finally, using the obtained Taylor coefficients we recandtd the equation of state and the
number densities as a function gf and s up to 4th order.
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