C ontem porary m odels of elastic nucleon scattering and their predictions for LH C

Jan K aspara, ${ }^{\text {, }}$, Vo Jtech K undrat , ${ }^{\text {b }, ~ M ~ i l o s ~ L o k a j ~ c e k ~}{ }^{\text {b }}$
${ }^{a}$ CERN, G eneva
${ }^{b}$ Institute of Physics of the A S CR , v.v.i., 18221 P rague 8, C zech Republic

Abstract

The analyses of elastic collisions of charged nucleons have been based standardly on W est and Y ennie form ula. How ever, this approach has been shown recently to be inadequate from experin ental as well as theoretical points of view. The eikonalm odel seem s to be m ore pertinent as it enables to determ ine physical characteristics in im pact param eter space. The contem porary phenom enologicalm odels cannot give, of course, any de nite answ er as the elastic collisions m ay be interpreted di erently, as central or peripheral processes. N evertheless, the predictions for the planned LHC energy have been given on their basis and the possibility of exact determ ination of lum inosity has been considered.

1. Introduction

The m easurem ents of elastic scattering of charged nucleons at present high energies [1] [3] have attained am ple statistics enabling to perform very precise analyses of data m easured in a broad interval of the four m om entum transfer squared t. The region of t 's where the di erential cross section $\frac{d}{d t}$ can be determ ined covers not only the region where nearly the pure hadron (nuclear) scattering is dom inant, i.e., $\mathrm{Jj} \& 10^{2} \mathrm{GeV}^{2}$, but also the region where the C oulom b scattering plays an im portant role, i.e., Jj. $10^{2} \mathrm{GeV}^{2}$ (the latter region being som etim es subdivided into C oulom b and interference parts). The com plete scattering am plitude $\mathrm{F}^{\mathrm{C}+\mathrm{N}}$ ($s ; t$), ful lling (in the nom alization used by us) the relation

$$
\begin{equation*}
\frac{d(s ; t)}{d t}=\frac{}{s p^{2}} F^{c+N}(s ; t) J^{2} \tag{1.1}
\end{equation*}
$$

has been com m only decom posed according to Bethe [4] into the sum of the C oulomb scattering am plitude $F^{C}(s ; t)$ known from QED and the hadronic am plitude $F^{N}(s ; t)$ bound m utually by a relative phase $(\mathrm{s} ; \mathrm{t})$:

$$
\begin{equation*}
F^{C+N}(s ; t)=e^{i} \quad(s ; t) F^{C}(s ; t)+F^{N}(s ; t) ; \tag{1.2}
\end{equation*}
$$

s is the square of the center of m ass energy, p is the m om entum of an incident nucleon in the sam e system and $=1=137: 036$ is the ne structure constant. The in uence of spins of all particles involved in the elastic scattering has been neglected at the highest energies.

The com plete elastic scattering am plitude $\mathrm{F}^{\mathrm{C}+\mathrm{N}}(\mathrm{s} ; \mathrm{t})$ used in the past has been established by W est and Yennie [5] and equals in the rst approxim ation to

$$
\begin{equation*}
F^{C+N}(s ; t)=\frac{s}{t} f_{1}(t) f_{2}(t) e^{i}(s ; t)+\frac{\operatorname{tot}(s)}{4} p^{p} \bar{s}((s)+i) e^{B(s) t=2}: \tag{1.3}
\end{equation*}
$$

[^0]The rst term corresponds to the C oulom b scattering am plitude while the second term represents the elastic hadronic am plitude. T he upper (lower) sign corresponds to the scattering of particles w ith the sam e (opposite) charges. The two form factors $f_{1}(t)$ and $f_{2}(t)$ in Eq. (1.3) describe the electrom agnetic structure of each nucleon (com m only in a dipole form) as

$$
\begin{equation*}
f_{j}(t)=1+\frac{\mathrm{Jj}}{0: 71 \mathrm{GeV}^{2}}{ }^{2}: \tag{1.4}
\end{equation*}
$$

Form ula (1.3) is valid provided the hadronic elastic am plitude (the second term on its right hand side) has a constant di ractive slope B together w ith constant quantity (the ratio of the real to im aginary parts of hadronic am plitude in forward direction). Sim ilarly as the total cross section tot they can depend only on the energy. The relative phase (s; t) in Eq. (1.3) has been show n by W est and Yennie [5] and independently by Locher [6] to be

$$
\begin{equation*}
(s ; t)=\quad(\ln (\quad B(s) t=2)+\quad) \tag{1.5}
\end{equation*}
$$

where $=0: 577215$ is the Euler constant.
Form ulas (1.3) and (1.5) have been used for tting the experim ental data of di erential cross section for sm all tj values (in the Coulom b, interference and also in a sm all adjacent part of hadronic dom ain) and the three m entioned quantities tot, B and have been determ ined. At larger tjvalues (i.e., in the hadronic region) the in uence of C oulom b scattering has been usually fully neglected and elastic scattering has been described w ith the help of phenom enological elastic hadronic am plitude $F^{N}(s ; t)$ which usually has exhibited a m uch m ore com plicated t dependence in this hadronic region than in Eq. (1.3). The di erent regions of di erential cross section have been described by two di erent form ulas (m oreover based on incom patible assum ptions) which has been recognized as im portant de ciency.

In the follow ing section (Sec. 2) we will show in m ore detail which assum ptions the form ulas (1.3)-(1.5) are based on and what are the lim its of their use in analyses of contem porary experim entaldata. In Sec. [3 we will then discuss the approach based on the eikonalm odelwhich not only rem oves the corresponding lim itations but also which describes the com m on in uence of both the C oulom b and hadronic interactions in the whole m easured region ofm om entum transfers uniquely w ith only one form ula for the com plete elastic am plitude. The tdependence of the elastic hadron ic scattering am plitude F^{N} ($\mathrm{s} ; \mathrm{t}$) derived from experim entaldata w ithin the eikonalm odelenables to determ ine som e physical characteristics in the fram ew ork of im pact param eter space.

The aim of the presented paper is then contained mainly in the next three sections. The eikonalm odel approach w ill be used for analysis of four phenom enologicalm odels proposed for a description of the elastic pp scattering at the nom inalLH C energy of 14 TeV ; the m odelpredictions w ill be given and discussed in Sec. 4. The problem s connected w ith the estim ation of lum inosity on the basis of elastic nucleon scattering will be analyzed in Sec. 5. The calculated root-m eansquare (RM S) values of total, elastic and inelastic im pact param eters corresponding to individual analyzed models will be given and discussed in Sec. 6. A nd the results obtained on the basis of our approach w ill be sum m arized and discussed in Sec. 7 .

2. The W est and Yennie form ula

The original function ($s ; t$) entering into Eq. (1.2) has been derived by W est and Yennie [5] with in the fram ew ork of Feynm an diagram technique in the case of charged point-like particles and for $s m^{2}$ (m stands for nucleon m ass) as

$$
\begin{equation*}
\mathrm{wy}(\mathrm{~s} ; \mathrm{t})=\ln \frac{\mathrm{s}}{\mathrm{t}} \mathrm{Z}_{4 \mathrm{p}^{2}} \frac{\mathrm{dt}^{0}}{\mathrm{t}^{0}} \mathrm{tj} 1 \frac{\mathrm{~F}^{\mathrm{N}}\left(\mathrm{~s} ; \mathrm{t}^{0}\right)}{\mathrm{F}^{\mathrm{N}}(\mathrm{~s} ; \mathrm{t})} ; \tag{2.1}
\end{equation*}
$$

which has been further sim pli ed and Eqs. (1.3)-(1.5) have been obtained. H ow ever, sim pli ed form ulas (1.3)-(1.5) could hardly be considered as a fully adequate tool for analyzing elastic nucleon
scattering data already in tim e when they were derived. The issue is that form ula (2.1) has
 only covered a lim ited interval of t. Som e assum ptions de ning and lim iting the t dependence of the hadronic am plitude, i.e., its m odulus and phase de ned in our case as

$$
\begin{equation*}
F^{N}(s ; t)=i \not \mathcal{F}^{N}(s ; t) \dot{e}^{i N}(s ; t) ; \tag{2.2}
\end{equation*}
$$

has had to be accepted to enable the integration. As nothing w as known about the di ractive structure in $\frac{d}{d t}$ at that tim e, the tw o follow ing crucial assum ptions have been accepted:
the t dependence of the m odulus of the elastic hadronic am plitude is purely exponential for all kinem atically allow ed t values,
both the real and im aginary parts of the elastic hadronic amplitude exhibit the sam e t dependence for all adm itted t values.

In addition to these crucial assum ptions, som e high energy approxim ations has been added (see, e.g., R efs. [5][9]]. T hen the com plete scattering am plitude has been written in the sim pli ed form
[5] (for details see R ef. [9]). Even if the standard ts obtained in the C oulom b and interference dom ains m ay seem to be good one cannot be sure about the actualm eaning of tted param eters since the data for higher tjvalues have not been taken into account quite correctly.

In som e papers (see, e.g., Refs. [10, 11]) the complete scattering amplitude $\mathrm{F}^{\mathrm{C}+\mathrm{N}}$ (s;t) has been, therefore, described w ith the help of Eq. 1.3) containing the standard W est and Yennie phase (1.5) and the elastic hadronic amplitude $\mathrm{F}^{\mathrm{N}}(\mathrm{s} ; \mathrm{t})$ (substituting the second term in Eq. (1.3)) constructed on the basis of som e phenom enologicalideas deviating from the tw o assum ptions under which Eqs. (1.3) and (1.5) were derived. Such an approach may be regarded, how ever, as very approxim ate.

It m ight seem that a correct w ay m ay be reverting back to integralform ula 2.1) in com bination w ith form ulas (1.1)- 1.5). H ow ever, that is not possible, either, if the phase w y (s; t) should be real. The relative phase factor w y (s;t) can be real only provided the phase of the hadronic am plitude ${ }^{N}(s ; t)$ is t independent in the whole region of kinem atically allow ed tvalues [12]; i.e., the quantity $(s ; t)$ should be constant in the whole interval of t. T he contem porary experim entaldata as well as the phenom enologicalm odels of high energy elastic nucleon scattering show, how ever, convincingly that the quantity cannot be t independent. Therefore, one should conclude that also the integral form ula 2.1) should be designated as inadequate for the description of elastic hadronic scattering. It is necessary to give decisive preference to a new and m ore suitable approach based on eikonalm odel. In the follow ing we should like to dem onstrate the possibilities and advantages of the eikonalm odelwhich is m ore generaland m ore appropriate than that of W est and Yennie.

3. Eikonalm odel approach and m ean-squares of im pact param eters

T he com plete elastic scattering am plitude $\mathrm{F}^{\mathrm{C}+\mathrm{N}}(\mathrm{s} ; \mathrm{t})$ is related by Fourier-B essel transform $a-$ tion to the complete elastic scattering eikonal ${ }^{c+N}(\mathrm{~s} ; \mathrm{b})$ [13]

$$
\begin{equation*}
F^{C+N}\left(s ; q^{2}=\quad t\right)=\frac{s}{4 i} d^{Z} b e^{i q q^{2}} e^{2 i^{c+N}(s ; b)} 1^{i} ; \tag{3.1}
\end{equation*}
$$

where b is the two-dim ensional Euclidean space of the im pact param eter \tilde{b}.
W hen form ula 3.1) is to be applied at nite energies som e problem s appear as the am plitude $\mathrm{F}^{\mathrm{C}+\mathrm{N}}(\mathrm{S} ; \mathrm{t})$ is de ned in a nite region of t only. M athem atically consistent use of Fourier-B essel transform ation requires, how ever, the existence of the reverse transform ation. A nd it is necessary to take into account the values of elastic am plitude from unphysicalregion w here the elastic hadronic am plitude is not de ned; for details see R efs. [13]). This issue has been resolved in a unique w ay by

Islam [14, 15] by analytically continuing the elastic hadronic am plitude F^{N} (s ; t) from the physical to the unphysical region of t; see also R ef. [16].

The individualeikonals m ay be de ned as integrals of corresponding potentials [17]; and due to their additivity also the com plete elastic eikonal ${ }^{C+N}(s ; b) m$ ay be expressed as the sum of both the C oulom $\mathrm{b}^{\mathrm{C}}(\mathrm{s} ; \mathrm{b})$ and hadronic ${ }^{\mathrm{N}}(\mathrm{s} ; \mathrm{b})$ eikonals at the sam e value of im pact param eter b [18]:

$$
\begin{equation*}
C+N(s ; b)={ }^{C}(s ; b)+{ }^{N}(s ; b): \tag{3.2}
\end{equation*}
$$

T he com plete elastic scattering am plitude can be then written as [18] [20]

$$
F^{C+N}(s ; t)=F^{C}(s ; t)+F^{N}(s ; t)+\frac{i^{Z}}{s} d_{q^{0}}^{Z} q^{0} F^{C}\left(s ; q^{Q}\right) F^{N}\left(s ;\left[\begin{array}{ll}
{[} & q^{0} \tag{3.3}
\end{array}\right]^{2}\right) ;
$$

where q is the two-dim ensional set of kinem atically allowed vectors q.
This equation containing the convolution integral di ers substantially from Eq. (1.2). In the nal form (valid at any s and t) it m ay be written 20] as

$$
\begin{equation*}
F^{C+N}(s ; t)=\frac{s}{t} f_{1}(t) f_{2}(t)+F^{N}(s ; t)[1 \quad i G(s ; t)] ; \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
G(s ; t)=Z_{4 p^{2}}^{Z^{0}} d t^{0} \ln \frac{t^{0}}{t} \frac{d}{d t^{0}}\left[f_{1}\left(t^{0}\right) f_{2}\left(t^{0}\right)\right]+\frac{1}{2} \frac{F^{N}\left(s ; t^{0}\right)}{F^{N}(s ; t)} 1 I\left(t ; t^{0}\right) \quad ; \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
I\left(t ; t^{0}\right)={ }^{\mathbb{Z}} \quad \infty \frac{f_{1}\left(t^{\infty}\right) f_{2}\left(t^{\infty}\right)}{t^{\infty}} ; t^{\infty}=t+t^{0}+2^{p} \overline{t^{0}} \cos { }^{\infty}: \tag{3.6}
\end{equation*}
$$

Instead of the t independent quantities B and, it is now necessary to consider corresponding t dependent quantities de ned as

$$
\begin{equation*}
B(s ; t)=\frac{d}{d t} \ln \frac{d^{N}}{d t}=\frac{2}{F^{N}(s ; t) j} \frac{d}{d t} F^{N}(s ; t) j \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(s ; t)=\frac{<F^{N}(s ; t)}{=F^{N}(s ; t)}: \tag{3.8}
\end{equation*}
$$

The total cross section derived w ith the help of the optical theorem is then

$$
\begin{equation*}
\operatorname{tot}(s)=\frac{4}{p^{p}}=F^{N}(s ; t=0): \tag{3.9}
\end{equation*}
$$

T he form factors $f_{1}(t)$ and $f_{2}(t)$ re ect the electrom agnetic structure of colliding nucleons and form a part of the C oulom b am plitude from the very beginning. But instead of using the dipole form factor (1.4) as it has been done in Eq. (1.3) it has been suggested to use m ore convenient form ula from R ef. 21]:

$$
\begin{equation*}
f_{j}(t)=X_{k=1}^{X^{4}} \frac{g_{k}}{w_{k}} t^{\prime} \quad j=1 ; 2 \tag{3.10}
\end{equation*}
$$

w here the values of the param eters g_{k} and w_{k} are to be taken from the quoted paper.
As the C oulomb part in form ula (3.4) is known the com plete am plitude depends in principle on hadronic am plitude $F^{N}(s ; t)$ only. Thus it can be used in two com plem entary ways:
one can test the predictions ofdi erentm odels of high-energy elastic hadronic scattering that provide hadronic am plitudes F^{N} (s ; t). Then, w ith the help of form ula 3.4) one can calculate com plete am plitudes $F^{C+N}(s ; t)$ that can be com pared to experim ental data by em ploying Eq. (1.1),
one m ay resolve phenom enological t dependence of elastic hadronic am plitude $\mathrm{F}^{N}(\mathrm{~s} ; \mathrm{t})$ at a given s (and for all m easured t values), by tting experim ental elastic di erential cross section data w ith the help of Eq. [1.1) and (3.4). The crucial point here is then a suitable param eterization of the hadronic am plitude $\mathrm{F}^{\mathrm{N}}(\mathrm{s} ; \mathrm{t})$.

The eikonalapproach brings the possibility of determ ining m ean values of im pact param eter for di erent kinds of scattering processes. T hese quantities characterize the ranges of forces responsible for the elastic, inelastic and totalscattering. If the unitarity condition and the optical theorem are applied to the m ean-squared values of im pact param eter for di erent processes m ay be determ ined directly from the t dependence of elastic hadronic am plitude $F^{N}(s ; t)$.

The elastic m ean-square can be determ ined by m eans of the form ula (see Refs. [16], [22] [25])

$$
\begin{align*}
& \left\langle\mathrm{b}^{2}(\mathrm{~s})\right\rangle_{\mathrm{m} \text { od }}+\left\langle\mathrm{b}^{2}(\mathrm{~s})\right\rangle_{\mathrm{ph}} \text {; } \tag{3.11}
\end{align*}
$$

where the m odulus of elastic hadronic am plitude itself determ ines the rst term and the phase (its derivative) in uences the second term only; note that both term s are positive.

The total m ean-square can be determ ined w ith the help of the optical theorem by (see R ef. [24])

$$
\begin{equation*}
\mathrm{hb}^{2}(\mathrm{~s}) i_{\mathrm{tot}}=2 \mathrm{~B}(\mathrm{~s} ; 0) ; \tag{3.12}
\end{equation*}
$$

the di ractive slope $B(s ; t)$ being de ned by Eq. (3.7).
A ccording to the unitarity equation the averaged inelastic m ean-square is related to the total and elastic m ean-squares as [24]

$$
\begin{equation*}
{h b^{2}}^{2}(s) i_{\text {inel }}=\frac{\text { tot }(s)}{\text { inel }(s)} h^{2}(s) i_{\text {tot }} \quad \frac{\text { el }(s)}{\text { inel }(s)} h b^{2}(s) i_{\text {el }}: \tag{3.13}
\end{equation*}
$$

4. M odel predictions for pp elastic scattering at the nom inal LH C energy

In connection with the TOTEM [26, 27] and the ATLAS ALFA [28] experim ents where elastic pp scattering $w i l l$ be studied, the predictions of four m odels proposed by Islam et al. [29], Petrov, P redazzi and P rokhudin [30], B ourrely, So er and W u 31] and B lock, G regores, H alzen and Pancheri [32] w ill be discussed. Two di erent altematives for the model of Petrov et al. 30] w ith two pom erons (2P) and with three pom erons (3P) will be considered. Them entioned m odels contain som e free param eters in the form ulas describing their s and t dependences. Their values can be found in the quoted papers. The predictions for the nom inal energy of 14 TeV are shown in Fig. $]_{1}$ (sm all tj region) and Fig. 2 (large tj range).
T he total cross section tot (s), the di ractive slope B ($s ; t$) and the quantity ($s ; t$) have been determ ined w ith the help of form ulas (3.9), 3.7) and (3.8) for each m odel. The integrated elastic hadronic cross sections have been determ ined by integration ofm odi ed Eq. (1.1) containing only $\mathrm{F}^{\mathrm{N}}(\mathrm{s} ; \mathrm{t})$. The values of all these quantities are given in Table 1 ; the corresponding graphs are show n in F igs. 3-4. It is evident that the predictions of divers m odels di er rather signi cantly;
the totalcross section predictions range from $95 \mathrm{~m} . \mathrm{b}$ to 110 mb . A nother value of $101.5 \mathrm{~m} . \mathrm{b}$ follow ing from the formula

$$
\begin{equation*}
\operatorname{tot}(\mathrm{s})=21: 70 \frac{\mathrm{~s}}{}_{\mathrm{s}_{0}}^{0: 0808}+56: 08 \frac{\mathrm{~s}}{\mathrm{~s}_{0}}{ }^{0: 4525} \mathrm{~m} \mathrm{~b} ; \quad \mathrm{s}_{0}=1 \mathrm{GeV}^{2} \tag{4.1}
\end{equation*}
$$

has been given by D onnachie and Landsho 33] with the help of Regge pole m odel t of pp total cross sections perform ed at lower energies. A higher value of tot has been established by COMPETE collaboration [34] tot $=111: 5 \quad 1: 2^{+}: 1: 1 \mathrm{mb}$ which has been determ ined by extrapolation of the tted low er energy data w ith the help of dispersion relations technique. Let us rem ark that there is no reliable theoreticalprediction for this quantity: e.g., the latest prediction on the basis of QCD for this quantity has been $125 \quad 25 \mathrm{mb}$ B5]. The predictions of $\frac{d}{d t}$ values for higher values of Jjare shown in F ig. 2]; they di er signi cantly for di erent m odels. Let us point out especially the second di ractive dip being predicted by Bourrely, So er and W u m odel [31]. T he predictions for the t dependence of the di ractive slopes $B(t)$ are show n in $F i g$. 3 . They di er signi cantly from the constant dependence required in the sim pli ed W est and Yennie form ula [1.3). Fig. 4 displays the t dependence of the quantity (t) that is not constant, either, as it w ould be required by the second assum ption needed for validity of form ula (1.3). F igs. 3 and 4 represent,

m odel	tot $[\mathrm{m} . \mathrm{b}]$	el $[\mathrm{m} . \mathrm{b}]$	$\mathrm{B}(0)$ $\left[\mathrm{G} \mathrm{eV}^{2}\right]$	(0)
Islam et al.	109.17	21.99	31.43	0.123
Petrov et al. (2P)	94.97	23.94	19.34	0.097
Petrov et al. (3P)	108.22	29.70	20.53	0.111
B ourrely et al.	103.64	28.51	20.19	0.121
B lock et al.	106.74	30.66	19.35	0.114

Table 1: The values ofbasic param eters predicted by di erentm odels for pp elastic scattering at energy of 14 TeV .
therefore, further support for the use of the eikonal form ula for the com plete elastic scattering am plitude (3.4). Fig. 5 shows then the t dependence of the ratio of interference to hadronic contributions of the $\frac{d}{d t}$ for all of the given m odels, i.e., of the quantity

$$
\begin{equation*}
Z(t)=\frac{F^{C+N}(s ; t) \mathcal{J} \quad F^{C}(s ; t) \mathcal{J} \quad F^{N}(s ; t)^{\mathcal{P}}}{F^{N}(s ; t) \mathcal{J}^{\mathcal{R}}}: \tag{4.2}
\end{equation*}
$$

The graphs show clearly that the in uence of the C oulom b scattering m ay hardly be fully neglected also at higher values of $\dot{J j}$. It is interesting that at least for $s m$ all Jj the given characteristics are very sim ilar.

5. Lum inosity estim ation on the basis of pp elastic scattering at the LH C

An accurate determ ination of the elastic am plitude is very im portant in the case when the lum inosity of the collider is to be calibrated on the basis of elastic nucleon scattering. The lum inosity L relates the experim entalelastic di erential counting rate $\frac{d N}{d t}(s ; t)$ to the com plete elastic am plitude $F^{C+N}(s ; t)$ (see Eq. [1.1) and Refs. [36, 37]) by

$$
\begin{equation*}
\frac{1}{\mathrm{~L}} \frac{\mathrm{dN}}{\mathrm{el}} \mathrm{dt}(\mathrm{~s} ; \mathrm{t})=\frac{\mathrm{sp}_{\substack{2}}^{\mathrm{F}^{2}}}{} \mathrm{~F}^{\mathrm{C}+\mathrm{N}}(\mathrm{~s} ; \mathrm{t}) \mathrm{f}^{2}: \tag{5.1}
\end{equation*}
$$

Figure 1: $\frac{d}{d t}$ predictions at low jjj for pp scattering at 14 TeV according to di erent m odels (in very forw ard direction).

Figure 3: The di ractive slope predictions for pp scattering at 14 TeV according to di erent m odels.

F igure 2: $\frac{d}{d t}$ predictions for pp scattering at 14 TeV according to di erent m odels (in a larger interval of t).

Figure 4: The (t) predictions for pp scattering at 14 TeV according to di erent m odels.

Eq. 5.1) is valid for any adm issible value of t. The value $L m$ ight be in principle calibrated by m easuring the counting rate in the region of the sm allest jj where the Coulom bam plitude is dom inant. H ow ever, this region can hardly be reached at the nom inal LH C energy due to technical lim itations. A procedure allow ing to avoid these di culties m ay be based on Eq. (5.1), w hen the elastic counting rate m ay be, in principle, m easured at any t which can be reached, and the com plete elastic scattering am plitude $\mathrm{F}^{\mathrm{C}+\mathrm{N}}(\mathrm{s} ; \mathrm{t}) \mathrm{m}$ ay be determ ined w ith required accuracy at any tj, too. H ow ever, in this case it will be very im portant which form ula for the com plete elastic am plitude $\mathrm{F}^{\mathrm{C}+\mathrm{N}}(\mathrm{s} ; \mathrm{t}) \mathrm{w}$ ill be used.

W e have studied the di erences betw een the W est and Yennie sim pli ed form ula (see Eqs. (1.3) and (1.5)) and the eikonalm odel (Eqs. 3.4)-3.6)). The di erences can be well visualized by the

Figure 5: T he t dependence of the ratio of the interference to the hadron ic contributions to the $\frac{d}{d t}$ for pp elastic scattering at 14 TeV according to di erent m odels.

Figure 6: Ther (t) quantity predictions for pp scattering at 14 TeV according to di erent m odels.
quantity

$$
\begin{equation*}
R(t)=\frac{F_{\text {eik }}^{C+N}(s ; t) \mathcal{f} \quad F_{W}^{C+N}(s ; t) \mathcal{Y}}{\left.F_{\text {eik }}^{C+N}(s ; t)\right\}^{2}} ; \tag{5.2}
\end{equation*}
$$

where $F_{\text {eik }}^{C+N}(s ; t)$ is the com plete elastic scattering eikonalm odel am plitude, while $F_{W}^{C+N}(s ; t)$ is the W est and Yennie one. The quantity $R(t)$ is plotted in F ig. (6) for severalm odels.

The maxim um deviations lie approxim ately at [36]

$$
\begin{equation*}
\text { Jint j } \frac{8}{\text { tot }} \quad 0: 00064 \mathrm{GeV}^{2} ; \tag{5.3}
\end{equation*}
$$

where the C oulom b and the hadronic e ects are expected to be practically equal. Let us em phasize that the di erences betw een the physically consistent eikonal model and the W est and Yennie form ula m ay reach alm ost 5 \%. It m eans that the lum inosity derived on the basis of elastic pp scattering at the energy of 14 TeV m ight be burdened by a non-negligible system atic error, if determ ined only from a sm all t region around tint.

6. R oot-m ean-squared values of im pact param eters

The im pact param eter representation of elastic hadronic am plitude $F^{N}(s ; t)$ allow s to establish di erent root-m ean-squared (RMS) values of im pact param eters that represent in principle the ranges of hadronic interactions. Their values calculated w ith the help of form ulas (3.11)-3.13) for each of the analyzed m odels and expected at LH C nom inal energy are show in Table 2. The values of elastic RM S are in all cases lower than the corresponding values of the inelastic ones. It m eans that the elastic pp collisions would be m uch m ore central then the inelastic ones; sim ilarly as in the case of pp scattering at the ISR energies for all these m odels; this should be recognized as a puzzle, see R ef. [39]. It can be interpreted as a consequence of adm itting only a w eak (standard) t dependence of elastic hadronic phase in allm odels. The given puzzle can be rem oved if the used elastic hadronic phase ${ }^{N}(s ; t)$ is allow ed to have a m ore general shape of t dependence (see Refs. (7, $8,12,16,20,23]$).

m odel	$\mathrm{P} \overline{\left\langle\mathrm{~b}_{\text {tot }}^{2}\right\rangle}$ [fin]	$\mathrm{P} \overline{\left\langle\mathrm{~b}_{\mathrm{el}}^{2}\right\rangle}$ [fin]	$\mathrm{P} \overline{\left\langle\mathrm{~b}_{\text {inel }}^{2}\right\rangle}$ [fin]
Islam et al.	1.552	1.048	1.659
Petrov et al. (2P)	1.227	0.875	1.324
Petrov et al. (3P)	1.263	0.901	1.375
B ourrely et al.	1.249	0.876	1.399
B lock et al.	1.223	0.883	1.336

Table 2: The values of root-m ean-squares predicted by di erent m odels.

W hile the t dependence of m odulus $F^{N}(s ; t) j$ can be determ ined from the m easured elastic hadronic di erential cross section the t dependence of phase rem ains rather anbitrary (as already m entioned). A nd it is possible to choose signi cantly di erent phase dependences [24].

It is, how ever, alm ost generally assum ed that the im aginary part of elastic hadronic am plitude is dom inant in a broad region of Jj around the forw ard direction; it is taken as slow ly decreasing w ith rising Jjand vanishing at the di ractive m inim um. The realpart is assum ed to start at sm all value at $J j=0$ and to decrease, too, having still non-zero value at the di ractive m in im um. It m eans that the t dependence of the phase ${ }^{N}(s ; t)$ is very weak and becom es signi cant only in the region of di ractive m in im um. H ow ever, the existence of di ractive m in $i m$ um does not require zero value for its im aginary part at this point. It m eans only that the sum of both the squares of realand im aginary parts should be m inim al at this point. Them entioned requirem ent of vanishing im aginary part represents m uch stronger and m ore lim iting condition then the physics requires.

Regarding Eq. 3.11) it is evident that very di erent elastic RM S values may be obtained according to the chosen t dependence of the phase ${ }^{N}(s ; t)$. O ne should distinguish betw een the so called central picture (the rst term dom inates) and peripheral picture (decisive contribution com es rom the second term w hen the phase increases quickly w ith rising t and reaches $=2$ at Jj' $0: 1 \mathrm{GeV}^{2}$). The value $\left.<\mathrm{b}^{2}\right\rangle_{\text {el }}$ is lesser than $\left\langle\mathrm{b}^{2}\right\rangle_{\text {inel }}$ in the central case while $\left\langle\mathrm{b}^{2}\right\rangle_{\text {el }}$ is greater than $\left\langle\mathrm{b}^{2}\right\rangle_{\text {inel }}$ in the peripheral case. The proton in the central case has been regarded as relatively transparent ob ject which still represents a puzzling question (see, e.g., R efs. [38] and [39]]. A nd m ore detailed m odels of elastic hadronic scattering giving the peripheral distribution of elastic hadronic scattering should be considered and proposed. Only in such a case one m ay avoid the situation when the elastic hadronic scattering at high energies is more central than the inelastic ones as it follow s im m ediately from the Fourier-B essel transform ation of elastic hadronic am plitude. T hus no a priori lim itations of elastic hadronic am plitude should be introduced in the corresponding analysis of experim entaldata and di erent possibilities should be analyzed.

As to the pro les in the im pact param eter space the peripheral behavior seem s to be slightly preferred on the basis of analysis of pp experim entaldata at 53 GeV and pp at 541 GeV (see [20]). T he peripheral picture is supported also by analysis of elastic scattering of particles on various targets $\left({ }^{1} \mathrm{H} ;{ }^{2} \mathrm{H} ;{ }^{3} \mathrm{He}\right.$; ${ }^{4} \mathrm{He}$) [40] perform ed w ith the help of lauberm odelw here the 'elem entary' nucleon-nucleon elastic hadronic am plitude has exhibited sim ilar tdependence of phase ${ }^{N}(s ; t)$ as in our peripheral case 20].

7. C onclusion

In the past the analyses of high energy elastic nucleon scattering data in the region of very sm all Jj were perform ed w ith the help of the sim pli ed interference form ula proposed by W est
and Yennie and including the in uence of both Coulomb and hadronic interactions. At higher values of m om entum transfers the in uence of C oulom b scattering w as neglected and the elastic scattering of nucleons was described only w ith the help of a hadronic am plitude having dom inant im aginary part in a broad region of t and vanishing only at the di ractive m inim um. A nd it is evident that such a description of elastic nucleon scattering w ith the help of tw o di erent form ulas for the com plete am plitude represents signi cant de ciency.

A m ore generaleikonalm odel has been proposed. It describes elastic charged nucleon collisions at high energies w ith only one form ula for the com plete elastic am plitude in the whole kinem atical region of t. This m odel is adequate for any t dependence of the elastic hadronic am plitude and has been successfully used for the analysis of elastic pp and pp scattering data at low er energies - see, e.g., R ef. [20].

The attention of this paper has been devoted also to the LHC experim ents that w ill m easure proton-proton elastic scattering [27, 28]. Severalphenom enologicalm odelpredictions fordynam ical quantities of interest have been discussed. A certain problem m ay be seen, how ever, in the fact that practically all considered allow central behavior only.

A ttention has been devoted also to the problem of lum inosity determ ination as the values of all other quantities are a ected by its value. The m odel predictions indicate that a system atic di erence up to $5 \% \mathrm{~m}$ ight occur betw een the eikonal and the W est and Yennie form ulas.

It is also necessary to call attention to the fact that the contribution of the C oulom b scattering cannot be fully neglected at rather high jj values, either. How ever, the m ain open question concems the fact that the experim ental data of the di erential cross section give directly the t dependence of the modulus, while the t dependence of the phase is only little constrained and m ay depend on som e other assum ptions or degrees of freedom. A ny analysis of experim entaldata should, therefore, alw ays contain a statistical evaluation of two di erent altematives: central and peripheral; peripheral behavior corresponding better to usual picture of collision processes. A nd the attention should be devoted to a construction of the modelwhich would be able to represent a realistic picture of elastic hadronic scattering of charged nucleons.

A cknow ledgm ent: Valuable discussionsw ith Prof. K arsten E ggert and D rM ario D eile are highly appreciated.

R eferences

[1] M K. C arter, P.D.B.C ollins and M.W halley, C om pilation of nucleon - nucleon and nucleon - antinucleon elastic scattering data, R utheford Lab. preprint, R A L-86-002 (1986)
[2] D . Bernard et al.: Phys. Lett. B 198 (1987) 583; M . Bozzo et al.: Phys. Lett. B 147 (1984) 385; B 155 (1985) 197
[3] C.A ugier et al.: Phys. Lett. B 316 (1993) 498
[4] H. B ethe, A nn. Phys. 3 (1958) 190
[5] G B.W est and D R.Yennie, Phys. R ev. 172 (1968) 1413
[6] M .P. Locher, N ucl. Phys. B 2 (1967) 525
[7] V.K undrat, M . Lokaj cek, Phys. Lett. B 232 (1989) 263
[8] V. K undrat and M. Lokaj cek, M odern. Phys. Lett. A 11, No. 28 (1996) 2241
[9] V. K undrat and M . Lokaj cek,Phys. Lett. B 611 (2005) 102
[10] J. Pum plin, Phys. Lett. B 276 (1992) 517
[11] D. Haim and U.M aor, Phys. Lett. B 278 (1992) 469
[12] V. K undrat, M . Lokaj cek and I. Vrkoc, Phys. Lett. B 656 (2007) 182
[13] T. A dachi and T . K otani, P rogr. Theor. Phys. Suppl., Extra N um ber (1965) 316; 37-38 (1966) 297; Progr. Theor. Phys. 35 (1966) 463; 35 (1966) 485; 39 (1968) 430; 39 (1968) 785
[14] M M . Islam, Lectures in theoreticalPhysics, ed. A. O. B arut and W .E.Brittin, Vol. 10B (G ordon and Breach, 1968), p. 97
[15] M . M . Islam , N ucl. Phys. B 104 (1976) 511
[16] V. K undrat, M . Lokaj cek and J. K aspar, "Im pact param eter pro les of elastic scattering in hadronic collisions" ; to be published
[17] M . M . Islam , N uovo C im ento 48A (1967) 251
[18] V.Franco, Phys. R ev. D 7 (1973) 215
[19] R.Cahn, Z.Phys. C 15 (1982) 253
[20] V. K undrat and M. Lokaj cek, Z. Phys. C 63 (1994) 619; see also CERN-Th.6952/93 preprint
[21] F . B orkow skiet al., N ucl. Phys. B 93 (1975) 461
[22] F.S. H eney and J. Pum plin, N ucl. Phys. B 117 (1976) 235
[23] V . K undrat, M . Lokaj cek Jr. and M . Lokaj cek, C zech. J. Phys. B 31 (1981) 1334
[24] V. K undrat and M . Lokaj cek, Phys. Lett. B 544 (2002) 132
[25] V. K undrat, M . Lokaj cek and D. K rupa, "N ucleon high-energy pro les", in Proceedings of the IX th B lois W orkshop on Elastic and D i ractive Scattering, P ruhonice near P rague, C zech Republic, June 9-15, 2001, Edits. V. K undrat, P. Zavada, ISBN 80-238-8243-0
[26] V. Berardiet al., TOTEM Technical D esign Report, CERN -LH CC -2004-002 (2008)
[27] G . A nelli et al., The TOTEM experim ent at the CERN Large hadron C ollider, 2008 JIN ST 3 S 08007
[28] ATLAS-A LFA : Technical D esign Report, C ERN -LH C C -2004-004 (2008)
[29] M M . Islam , R J. Luddy and A .V . P rokhudin, Phys. Lett. B 605 (2005) 115
[30] V A. Petrov, E . Predazzi and A.V . Prokhudin, Eur. Phys. J. C 28 (2003) 525
[31] C . Bourrely, J. So er and T. T.W u, M od. Phys. Lett. A 6 (1991) 2973; M od. Phys. Lett. A 7 (1992) 457(E); Phys. Lett. B 315 (1993) 195 Eur. Phys. J. 28 (2003) 97
[32] M . M . B lock, E.M . G regores, F . H alzen and G.Pancheri, P hys. R ev. D 60 (1999) 0504024
[33] A . D onnachie and P.V. Landsho , Phys. Lett. B 296 (1992) 227
[34] J R. C udell et al., P hys. R ev. Lett. 89 (2002) 201801
[35] P.V . Landsho , Total cross sections, arX iv:0709.0395 [hep-ph]
[36] M M . B lock and R .N.C ahn, Rev.M od. Phys. 57 (1985) 563
[37] M . M . B lock, Phys. Rept. 436 (2006) 71
[38] H .G. M iettinen, in proceedings of the IX th R encontre de M oriond, M eribel les A lhes, Vol.1 (ed. J. Tran Thanh Van), O rsay (1974)
[39] G . G iacom elli and M . Jacob, P hys. Rep. 55 (1979) 1
[40] V . Franco and Y. Y in, Phys. Rev. Lett. 55 (1985) 1059; Phys. Rev.C 34 (1986) 608

[^0]: C orresponding author
 Em ail addresses: jan.kaspar@cern.ch (Jan K aspar), kundrat@fzu.cz (Vojtech K undrat), lokaj@fzu.cz (M ilos Lokaj cek)
 Preprint subm itted to E lsevier

