Transport Sim ulation and Di ractive Event R econstruction at the LH C
R. Staszew ski ${ }^{\text {a }}$ and J. C hw astow ski ${ }^{\text {b a }}$
${ }^{\text {a }}$ Institute of N uclear Physics PA N , ul. R adzikow skiego 152, 31-342 K rakow, Poland.
${ }^{\mathrm{b}}$ C hair of Teleinform atics,
Faculty of Physics, M athem atics and A pplied C om puter Science, C racow U niversity of Technology, ul. W arszaw ska 24,31-115 K rakow, Poland.

The m easurem ent of di ractively scattered protons in the AT LAS Forw ard Physics detector system placed 220 m away from the ATLAS interaction point is studied. A param eterisation of the scattered proton transport through the LHC magnet lattice is presented. The proton energy unfolding and its im pact on the centrally produced scalar particle m ass resolution are discussed.

1. Introduction

D i ractive dissociation is one of the processes that can be studied at the LH C. .D i ractive physics is strong interaction physics involving no exchange ofquantum num bers other than those of the vacuum. In experim ent this leads to an obvious triggering schem e relying on the rapidity gap m ethod. H ow ever, one has to keep in m ind that the gap has a certain survival probability that depends on the interaction type and the centre of m ass energy. In addition, also the di ractively scattered protons can be tagged. U sually, the protons scatter at sm all angles and in the collider environm ent they stay in the beam pipe and travel through the m agnet lattice of the m achine. A possible way to m easure param eters of the di ractively scattered proton trajectory is to use detectors placed inside the beam pipe, for exam ple by m eans of a rom an pot station or a m ovable beam pipe technique. The ATLAS C ollaboration plans to have proton tagging stations placed sym m etrically w ith respect to the Interaction Point (\mathbb{P}) at the distances of 220 m and 420 m (A FP 220 and AFP 420) and 240 m (A LFA). The A LFA (A bsolute Lum inosity For A t las) [1] stations at 240 m w ill be devoted to the absolute lum inosity m easurem ent of the LH C at the ATLAS \mathbb{P}. This m easurem ent w ill rely on the detection of the elastically scattered protons. T he AFP (A t las Forw ard Physics) [[2] stations w ill be used for di ractive and physics.

[^0]
2. Experim ental E nvironm ent

Below, only the aspects conceming the A FP 220 detectors are discussed. In the m easurem ent, the m achine m agnets play the role of m agnetic spectrom eter. Therefore, tw o detector stations are to be placed around 220 m , nam ely one at 216 and one at 224 m . Each station will be equipped with position sensitive and triggering detectors, horizontally inserted into the LH C beam pipe. The position sensitive detectors will consist of 10 layers of the silicon 3D detectors [3] to m easure the scattered proton tra jectory. The position m easurem ent resolutions are assum ed to be $x=10 \mathrm{~m}$ and $\mathrm{y}=40 \mathrm{~m}$ in the horizontal and vertical direction, respectively. This w ill allow the m easurem ent of the particle tra jectory position and direction. A dditionally, the stations w ill contain very fast tim ing detectors w ith picosecond resolution. They willm easure the scattered proton tim e of ight and indicate the interaction vertex longitudinal coordinate, z, with resolution of the order of several m illim eters. In the follow ing calculations, a reference fram $\mathrm{e} w$ ith the $\mathrm{x}\{$ axis pointing tow ards the accelerator centre, the y \{axis pointing upw ards and the z \{axis along one of the beam s was used.

The scattered proton can be described at the interaction point in several equivalent ways, each useful in a di erent case: $\left(p_{x} ; p_{y} ; p_{z}\right),\left(E ; x_{0}^{0} ; y_{0}^{0}\right)$, or $\left(E ; p_{T}\right)$,

$$
E=p \overline{m^{2}+p^{2}} \quad x_{0}^{0}=\frac{p_{x}}{p_{z}} \quad y_{0}^{0}=\frac{p_{y}}{p_{z}}
$$

where E and m are the proton energy and m ass, $p=\left(p_{x} ; p_{y} ; p_{z}\right)$ is the proton m om entum and $p_{T}=\left(p_{x} ; p_{y}\right)$ denotes the proton transverse m om entum. Useful variables are the proton energy loss $E=E \quad E$ (E_{0} is the incident beam energy), the reduced proton energy loss, $=\mathrm{E}=\mathrm{E} 0$, and the fourm om entum transfer between the incident and scattered proton,t.

There are several program s on the m arket calculating proton tra jectories through the m agnets. In the follow ing the FPTrack program [4] was used. This program com putes the positions of particles using the LHC optics les which describe the m agnetic elds, positions and apertures of the LHC lattice. These les were produced with help of a principal beam transport program M ad-X [5] by the LH C optics group [6].

Table 1
The LHC beam and the crossing region param eters at the ATLAS \mathbb{P}.

P aram eter	B eam	C rossing region
x_{0}	$16: 6 \mathrm{~m}$	$11: 7 \mathrm{~m}$
y_{0}	$16: 6 \mathrm{~m}$	$11: 7 \mathrm{~m}$
z_{0}	75 m m	53 m m
x_{0}^{0}	$30: 2 \mathrm{rad}$	
y_{0}^{0}	$30: 2 \mathrm{rad}$	
E_{0}	$0: 77 \mathrm{G} \mathrm{eV}$	

T he interaction vertex is described by its coordinates ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$). These coordinates have Gaussian distributions with zero average values and dispersions: x_{0}, y_{0}, z_{0}, respectively. In the simulation, the beam particle energy and its m om entum direction were generated according to G aussian distributions w ith appropriate m eans and the dispersions: E_{0} for the energy and x_{0}^{0}; y_{0}^{0} for the m om entum in $(x ; z)$ and ($y ; z$) planes, correspondingly. Values of these param eters for the nom inal 7 TeV beam energy and standard LHC optics are listed in Table 1]. The calculations were perform ed for both beam s : beam 1 that perform s the clockw ise m otion and beam 2 which does the counter clnckw is mation

Figure 1. The LHC beam pro les at 216 m eters from ATLAS \mathbb{P} forbeam 1 (a) and beam 2 (b), for the 7 TeV LHC optics.

Figure 1 shows the LHC beam pro les in the (x, y) plane at 216 m aw ay from the ATLAS \mathbb{P} obtained w th the FTPtrack program for both beam s and the 7 TeV LHC optics. A s can be observed, the beam s are m uch wider in the vertical direction than in the horizontal one.
T able 2 sum m arizes the beam s spreads follow ing from a two dim ensionalG aussian t to the beam pro les shown in Fig. 1 . The (10 \{ 15) beam envelope gives a natural lim it for the distance betw een the detector fram e and the beam centre. In the horizontaldirection this corresponds to about 1 \{ 2 m illim eters. O bviously, this distance plays a crucial role for the di ractively scattered proton detection and hence, for the experim ental apparatus acceptance.

It is im portant to see in which range of the energy, E , and the transverse m om entum, $p_{T}=\dot{p}_{T} j$, the detector can m easure protons. The geom etric acceptance for xed E and p_{T} values was de ned as the ratio of the num ber of protons that crossed the detector to the totalnum ber of scattered protonsw ith a given E and p_{T}. Only thee ects of the beam pipe aperture and the distance betw een the detector and the beam centre w ere taken into account.
F igure 2 depicts the geom etric acceptance as a function of E and p_{T} for beam 1 for the

Table 2
The LHC beam spreads from a Gaussian t to the beam pro les at 216 m .

P aram eter	B eam 1	B eam 2
x_{216}	88 m	121 m
y_{216}	569 m	421 m

Figure 2. The geom etrical acceptance of the detector placed in the LH C beam 1 at 216 m aw ay from the \mathbb{P} as a function of the proton energy loss (E) and its transverse m om entum p_{T} for a 3 mm distance betw een the beam centre and the detector active edge.
standard 7 TeV LHC optics. The acceptance is above 80\% in the region lim ited by:

$$
200<\mathrm{E}<1000[\mathrm{G} \mathrm{eV}] ; 0<\mathrm{p}_{\mathrm{T}}<2: 5[\mathrm{GeV}=\mathrm{C}]
$$

which corresponds to

$$
0: 03 \ll 0: 14 ; \quad 6: 5<t<0\left[G \mathrm{eV}^{2}=c^{2}\right]:
$$

W hen the geom etrical acceptance requirem ent is low ered to 60\%, this results in a w ider range of the accepted proton energies and transverse m om enta. T he range enlargem ent is seen (c.f. Fig. (2) for $200<\mathrm{E}<600 \mathrm{GeV}$ and $\mathrm{p}_{\mathrm{T}}<3 \mathrm{GeV} / \mathrm{c}$. This gives the lim its:

$$
0: 03<\quad<0: 14 ; \quad 10<t<0\left[\mathrm{GeV}^{2}=\mathrm{c}^{2}\right]:
$$

The presence of two detector stations on each side of the AT LAS detector allows the m easurem ent of the proton tra jectory elevation angles, x^{0} and y^{0}, in the (x, z) and (y, z)
planes, respectively. From the FP T rack calculations, it follow s that the position and slope of the tra jectory at the detector in one transverse direction is independent of those in the other direction, i.e. x and x^{0} values do not depend on y_{0} and y_{0}^{0} and vice versa. T his is a re ection of a negligible role of the sextupole and higher order magnetic elds in the standard LHC optics between the ATLAS \mathbb{P} and the AFP 220 stations.

Figure 3. The x-direction chrom aticity plots for the LH C beam 1 (a) and beam 2 (b) for the standard 7 TeV LHC optics. The lines of constant energy correspond to $7000,6825,6650$, $6475,6300 \mathrm{GeV}$ from left to right, respectively. The angles were changes from -400 rad to 400 rad (from top to bottom).

To illustrate how the proton tra jectory positions and slopes m easured by the detectors depend on the proton energy and its trajectory slopes at the \mathbb{P} the chrom aticity plots were prepared. T he plots show n in F igure 3 w ere devised by plotting in the (x, x^{0}) plane the lines corresponding to the constant E and x_{0}^{0} at the \mathbb{P}.

The chrom aticity plots indicate few things. Firstly, there is a non-negligible di erence betw een both beam s. Therefore, properties ofboth have to be studied. Secondly, the grids created by the energy and angle iso-lines do not fold. H ence, it is possible to obtain the energy and the transverse m om entum of a proton from the m easurem ents of the proton trajectory in both stations. In particular, assum ing a xed interaction vertex position (no $s m$ earing) the energy of a proton at the \mathbb{P} can be deducted solely from the m easured x and x^{0} values.

3. T ransport P aram eterisation

In order to unfold the proton energy from the detectorm easurem ents a param eterisation of the FP T rack transport calculations w as prepared. The aim was to describe the FP T rack results analytically. It was requested that:
the param eterisation has a sim ple functional form ,
the param eterisation precision has an accuracy which is better than the assum ed detector spatial resolutions.

To nd the param eterisation form, events uniform ly distributed over the ($\mathrm{E} ; \mathrm{x}_{0}^{0} ; \mathrm{y}_{0}^{0}$; $x_{0} ; y_{0} ; z_{0}$) space were generated. Subsequently, these events were used in the FPTrack transport calculations. The transport results were the input data to the param eterisation search procedure. It was found that the follow ing param eterisation ful $l l$ the requirem ents outlined above well:

$$
\begin{align*}
& =A+{ }_{0}^{0} B+{ }_{0} C+{ }_{0}^{0} z_{0} D+z_{0} F ; \tag{1}\\
& { }^{0}=A_{s}+{ }_{0}^{0} B_{s}+{ }_{0} C_{s}+{ }_{0}^{0} z_{0} D{ }_{s}+z_{0} F_{s} ; \tag{2}
\end{align*}
$$

where $=$ fx;yg,s denotes the slope either in x or y direction and all the capitalised sym bols are polynom ials of energy, i.e.:
$A=a^{(0)}+a^{(1)} E+a^{(2)} E^{2}+a^{(3)} E^{3}+a^{(4)} E^{4} ;$
$C_{s}=C_{s}^{(0)}+C_{s}^{(1)} E+C_{s}^{(2)} E^{2}+C_{s}^{(3)} E^{3}:$
The values of all the coe cients were found by tting the form ulae to the FTPtrack calculations for sim ulated events.

The accuracy of the m ethod was estim ated by plotting the di erence between the value given by the param eterisation and that given by the FPTrack calculation. The accuracy of the position param eterisation was found to be of the order of a m icrom eter which is 10 tim es less than the assum ed detector resolution in the horizontal plane. The di erence betw een FP Track and the param eterisations for the tra jectory angles was found to be lim ited to about 50 nanoradians. O ne has to rem ember that the average multiple C oulom b scattering angle was estim ated to be about 500 nrad. An exam ple of the param eterisation accuracy is presented in Fig. 4]. In this gure the distributions of $\mathrm{Y}=\mathrm{Y}_{\text {param }} \quad \mathrm{Y}_{\mathrm{FP} \text { T rack }}$ and $\mathrm{y}^{0}=\mathrm{y}_{\text {param }}^{0} \quad \mathrm{Y}_{\mathrm{FPT} \text { rack }}^{0}$ are shown for single di ractive events generated w ith PY T H IA [8]. The accuracy estim ations for these quantities are displayed since they represent the worst precision cases. N evertheless, the results are well con ned w ithin the ranges given by the detector resolutions. This con ms the param eterisation quality.

O ne should note that the procedure outlined above can be easily repeated. In particular, it can be applied to the les describing the actual LHC collision optics used for experín ental runs.

4. Event R econstruction

Since there is a correlation betw een the proton m om entum and the m easured position of the proton at the AFP 220 , the reconstruction of the proton properties at the interaction vertex from the m easured coordinates of the proton trajectory at the A FP 220 is possible.

A proton at the interaction vertex is described by six independent variables: $\mathrm{E}, \mathrm{x}_{0}^{0}$, y_{0}^{0}, x_{0}, y_{0} and z_{0}. The detectors deliver two pairs of transverse coordinates separated in longitudinal direction by a xed distance of about 8 m eters. In general, the unfolding problem is an ill-stated one. In the present case it requests the inversion of the 6 to 4 m apping and its solution is only possible w ith help of additional assum ptions. The

Figure 4. The param eterisation accuracy estim ation exam ples (see text). P ictures show the uncertainty on the y (a) and y^{0} (b) param eterisations of the beam 1 transport.
sim plest one is the assum ption of xed position of the interaction vertex. In the follow ing the positions $\mathrm{x}_{0}=\mathrm{y}_{0}=0$ and $\mathrm{z}_{0}=0$ or $\mathrm{z}_{0}=216$ c were chosen, where is the proton time of ight.

To m ake the m easurem ent sim ulation as close to reality as possible the detector effects were taken into account. Protons traversing the detector station undergo multiple C oulom b scattering in the fram e and the detectorm aterials. The sim ulation of the proton tra jectory position m easurem ent also takes into account the assum ed detector resolutions. T hese e ectsm ay lead to a considerable change of the proton tra jectory param eters (slopes and positions). H adron interactions in the detector or its fram e were neglected as they are not im portant for the present study.

A sim ple and fast m ethod of the proton energy unfolding from the detector m easurem ent is proposed. This m ethod uses the assum ption that the values actually m easured are equal to those delivered by the param eterisation. This allow s to calculate x_{0}^{0} from eqs. (1) and (2). Since both equations are considered for the sam e particle, they should give equal values. H ence, after sim ple algebra one gets:

$$
\begin{align*}
& \left(\begin{array}{lllll}
\mathrm{x} & \mathrm{~A}_{\mathrm{x}} & \mathrm{~F}_{\mathrm{x}} \mathrm{z}_{0} & \left.\mathrm{x}_{0} \mathrm{C}_{\mathrm{x}}\right)
\end{array} \quad\left(\mathrm{B}_{\mathrm{z}}+\mathrm{z}_{0} \mathrm{D}_{\mathrm{sx}}\right)=\right. \\
& =\left(\begin{array}{llll}
x^{0} & A_{s x} & F_{s x} z_{0} & x_{0} C_{s x}
\end{array}\right) \quad\left(\begin{array}{l}
B+z_{0} D_{x}
\end{array}\right) \tag{5}
\end{align*}
$$

where all capitalised sym bols are described by eqs. 3 and 4.
T he solution of the above equation is equivalent to nding the zero of the function $f(E)$ given below :

$$
\begin{align*}
& \mathrm{f}(\mathrm{E})=\left(\begin{array}{llll}
\mathrm{x} & \mathrm{~A}_{\mathrm{x}} & \mathrm{~F}_{\mathrm{x}} \mathrm{z}_{0} & \mathrm{x}_{0} \mathrm{C}_{\mathrm{x}}
\end{array}\right) \quad\left(\mathrm{B}_{\mathrm{s}}+\mathrm{z}_{0} \mathrm{D}_{\mathrm{sx}}\right) \\
& \left(\begin{array}{llll}
x^{0} & A_{s x} & F_{s x} z_{0} & x_{0} C_{s x}
\end{array}\right) \quad\left(B_{x}+z_{0} D_{x}\right): \tag{6}
\end{align*}
$$

It was observed that for obtained param eterisation and sim ulated events the function $f(E)$ has only one zero. Therefore, the equation

$$
f(E)=0
$$

can be easily solved num erically using for exam ple the bisection m ethod [7].
The energy unfolding procedure was tested using the sam E PYTHIA generated data sam ple. The proton energy was reconstructed w ith the help of the di erent additional assum ptions listed below :
the \m easured" tra jectory coordinates were sm eared according to the detector resolution,
the interaction vertex transverse position was exactly known,
the interaction vertex longitudinal position was exactly known.
The results are presented in F igure 5. The energy reconstruction resolution (the thick solid line) decreases from 9 GeV for 6000 GeV protons to about 3 GeV for 7000 GeV protons. It is dom inated by the detector spatial resolution which in uence, m arked w ith the thick dashed line, decreases w ith proton energy from about 7 GeV to about 1 GeV w ithin considered energy range. A lso, the im pact of the multiple C oulom b scattering (dotted line) gets sm aller w ith increasing proton energy. Its contribution to the resolution is about 2.5 GeV at the maxim um. For proton energies greater than 6800 GeV the uncertainty on the interaction vertex position in the transverse plane (the thick dash-dotted line)

Figure 5. The proton energy reconstruction resolution for beam 1 as a function of its energy. T he overall resolution is m arked w ith the thick solid line, the in uence of: the detector spatial resolution \{ the thick dashed line, the vertex position in the transverse plane \{ the thick dash-dotted line, the m ultiple C oulom b scattering \{ the dotted line, the vertex position along the beam axis \{ the dash-dotted line, the magnetic eld variation \{ the solid line.
dom inates the energy reconstruction resolution. The in uence of the interaction vertex position along the longitudinal axis (the dash-dotted line) is sm all in the whole energy range discussed.

Since the scattered protons can traverse the whole beam pipe volume the in uence of the possible im perfections of the m agnetic elds was studied. The magnetic elds of the lattice were varied by 1% of their nom inal values. It should be pointed out that assum ed variation is about a factor of 10 larger that the m achine accepted and about 50 tim es larger than the m easured values [9] of the higher m ultipoles at the reference radius of 17 mm aw ay from the beam pipe centre. Variation of the m agnetic eld values gives a sm all contribution to the energy reconstruction resolution and for 6000 GeV protons it is about 0.3 GeV and increases to 0.7 GeV at 7000 GeV . This contribution is marked w ith the solid line in Fig.5. The other e ect of the variation ofm agnetic elds is the o set of the scattered proton reconstructed energy. This o set, on the absolute value, decreases linearly from about 1.3 G eV to approxim ately 0.1 GeV for proton energies betw een 6000 and 7000 G eV .

A nother im portant experim ental factor is the detector alignm ent. It is required that the detector stations $w i l l$ be able to m easure the scattered proton trajectory elevation angles w ith precision of about 1 rad . This im plies a 10 m precise alignm ent. It tumed out that the 10 mm isalignm ent of the stations results an o set of the reconstructed proton energy. This o set has the largest value of about 5 GeV for protons of 6000 GeV energy and decreases to zero w ith proton energy increasing to 7000 GeV .

5. C entral Exclusive Production (C E P)

The AFP detectors can be used to m easure the exchusive central production of scalar $\mathrm{J}^{\mathrm{PC}}=0^{++}$particles (for exam ple the H iggs boson or som e supersym m etrical particles). The central production can be viewed as a two stage process. In a rst step each of the incident protons em its a color singlet ob ject. Subsequently, these ob jects interact w ith each other gixing a centrally produced system. T he incom ing protons rem ain intact, traverse the m agnetic lattice of the m achine inside the beam pipe and can be detected in the A FP detectors. The centrally produced system decays into the AT LA S m ain detector. H ence, this gives a unique possibility to m easure all the particles belonging to the nal state (a com pletely exchusive event m easurem ent).

Such events were sim ulated in a sim pli ed way. In the generation the four mom entum transfer, t, and the reduced proton energy loss, , were distributed according to $e^{b t} w$ ith $\mathrm{b}=6 \mathrm{GeV}{ }^{2}$ and ${ }^{1}$, respectively. Later, the proton transport to the A FP 220 detectors was sim ulated using the FPTrack calculations.

In F igure 6 the geom etrical acceptance for di erent m asses of the centrally produced system for various distances betw een the detector edge and the beam centre is shown. A s expected, the geom etrical acceptance strongly depends on this distance and for a realistic distance of 3 mm (m arked w ith the dashed line in F igure 6) it varies betw een 0 and 30\% for m asses changing from 300 to 800 GeV .

Next, the m ass of the centrally produced system was estim ated using the detector m easurem ents and the proton energy reconstruction described in section 4. For the C entral Exclusive Production process the produced system m ass determ ination from the reduced

Figure 6. The geom etrical acceptance of detectors at 216 m aw ay from the ATLAS Interaction Point for C entral Exclusive P roduction process as a function of the produced particle m ass. The solid lines depicts the acceptance for active detector region at the 2 mm distance from the beam centre. The dashed, dotted and dash-dotted lines m ark the acceptance curves for the 3,4 and 5 mm distance, respectively.
energy losses of both protons, 1 and 2 , is possible via [10]:

$$
M_{x}=P \overline{S_{1} \quad 2} ;
$$

where s is the centre of m ass energy squared.
Them ass reconstruction resolution as a function of the centrally produced system between 300 and 800 GeV is show n in F igure 7 for the 3 mm distance betw een the detector and the beam centre. The im pact of several experim ental factors is also depicted in this gure. The mass reconstruction resolution, after an initial jum p at the acceptance edge, very slow ly increases from 5 to 8 GeV w ith increasing value of the produced system m ass. The in uence of the m ultiple scattering, the beam energy variation and the proton direction angular spread is sm all and below 2 GeV . In fact, the resolution value is dom inated by two factors. First one is the detector spatial resolution which gives the contribution ranging between 2 and 6 GeV and which dom inates for m asses above 500 GeV . The second one is the uncertainty on the x_{0} coordinate of the interaction vertex, whose in uence practically does not depend on the produced system m ass and which is the m ost im portant factor for m asses below 500 GeV . The eld im perfections, estim ated as described previously, have a sm all in uence on the reconstructed m ass resolution which is about 0.7 GeV at 300 GeV and saturates at the value of approxim ately 1 GeV at 500 $\mathrm{GeV} . \mathrm{A}$ lso, in this case the eld variation resulted the m ass o set which is about 1 GeV

Figure 7. The centrally produced particle m ass resolution determ ined with outgoing protons as a function of the particle m ass. The overall m ass reconstruction resolution is m arked w ith the thick solid line, the in uence of: the detector spatial resolution \{ the thick dashed line, the vertex position in the transverse plane $\{$ the thick dash-dotted line, the m ultiple C oulom b scattering \{ the dotted line, the magnetic eld variation \{ the solid line, the beam energy and the proton direction angular spreads \{ the dashed line.
in the considered m ass range. The im pacts of the interaction vertex position and that of the detector m isalignm ent, not show n in F igure 7 , are $s m$ all and below 0.5% of the produced m ass value. The detector m isalignm ent introduces the reconstructed m ass shift which alm ost linearly increases w ith the produced m ass value from about 2.5 G eV at 300 GeV to 6.5 GeV at 800 GeV .

6. Sum m ary and Conclusions

A param eterisation of the proton transport through the m agnet lattioe of the LH C was devised. This param eterisation has a sim ple functional form and enables fast and easy calculations.

A proton energy unfolding procedure from the proton tra jectory position m easurem ents was prepared. This procedure allows the reconstruction of the scattered proton energy. The procedure was used to reconstruct the m issing m ass of the centrally produced scalar system. The m issing m ass reconstruction resolution weakly depends on the produced m ass and reaches about 8 GeV at the m ass value of 800 GeV .

The proton energy unfolding procedure can be used for the rst level triggering of the apparatus at the LHC environm ent.

A cknow ledgm ents
W e are grateful to P. Bussey, A. K upco, C. R oyon, A. Siem ko and J. Tumau for m any discussions, useful rem arks and help.

REFERENCES

1. ATLAS C ollab., AT LAS Forw ard D etectors for Lum inosity M easurem ent and M onitoring, Letter of Intent, C ER N /LH C C -2004-010.
2. RP220 C ollaboration, C. R oyon for the collaboration, Proc. 15th Int. W orkshop on D ep-Inelastic Scattering and R elated Sub jects (D IS2007), M unich, G erm any, p. 759, M.G.A brow et al., CERN ŁHCC-2005-025,

AT LA S C ollab., A FP Letter of Intent, unpublished.
3. C . J. K enney et al., N ucl. Instr. M eth. A 565 (2006) 272,

M . M athes et al, IEEE NS 55 (2008) 3731,
C . D a V ia and S.W atts, N ucl. Instr. M eth. A 603 (2009) 318.
4. P. Bussey, FP Track P rogram m e, http://ppewww .physics.gla ac.uk/ bussey/FPTRACK.
5. F. Schm idt, M ad-X U ser's G uide, C ER N 2005, http://m ad.w eb .cem .ch $/ \mathrm{m}$ ad.
6. LH C Optics W eb H om e, http://cem.ch/ hcoptics.
7. W . H . P ress, N um erical R ecipes, 3rd edition, C am bridge U niv. P ress, 2007.
8. T. S jostrand, P. Eden, C . Friberg, L. Lonnblad, G.M iu, S.M renna and E . N ornbin, C om puter Phys. C om m un. 135 (2001) 238.
9. N. O huchiet al, Proc. of EPAC 2002, Paris, France, 2002, p. 2418,
E. Todesca, Proc. of LH C Pro ject W orkshop \{ Cham onix X III, C ham onix, France, 2004, p. 138,
O. Bruning et al, Proc. of LHC Project W orkshop \{ C ham onix X III, C ham onix, France, 2004, p. 178,
N. Sam m ut et al, Proc. of EPAC 2008, G enoa, Italy, 2008, p. 2479,
N. Sam m ut et al, Proc. of EPAC 2008, G enoa, Italy, 2008, p. 2482.
10. M . G . A lbrow and A . R ostovtsev, FERM LIAB PUB-00-173 and hep-ph/0009336.

[^0]: This work was supported in part by the ECO NET Program me: \To Study the Forw ard Physics at the LH C and the Search for the H iggs B oson in Di raction" and Polish grants PBS-C ERN /85/2006 and 319/N - C ERN / 2008/09/0

