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Bose–Einstein correlations of identical charged-pion pairs produced in
hadronic Z decays are analyzed in terms of various parametrizations. The
τ -model with a one-sided Lévy proper-time distribution provides a good
description, enabling the source function to be reconstructed.
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1. Introduction

In particle and nuclear physics intensity interferometry provides a direct
experimental method for the determination of sizes, shapes and lifetimes of
particle-emitting sources (for recent reviews see [1–3]). In particular, boson
interferometry provides a powerful tool for the investigation of the space-
time structure of particle production processes, since Bose–Einstein correla-
tions (BEC) of two identical bosons reflect both geometrical and dynamical
properties of the particle radiating source.

For our analysis we use a sample of about 500 thousand two-jet events,
selected by the Durham algorithm [6] with ycut = 0.006, from e+e−annihi-
lation data collected by L3 at a center-of-mass energy of 91.2 GeV.

2. Parametrizations of BEC

The two-particle correlation function is defined as:

R2(p1, p2) =
ρ2(p1, p2)

ρ1(p1)ρ1(p2)
, (1)
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where ρ2(p1, p2) is the two-particle invariant momentum distribution, ρ1(pi)
the single-particle invariant momentum distributions and pi the four-momen-
tum of particle i. Since we are only interested in BEC, the product of single
particle densities is replaced by the so-called reference sample, ρ0(p1, p2),
the two-particle density that would occur in the absence of Bose–Einstein
interference. Here we use mixed events as a reference sample [7].

After some assumptions [1, 2], this two-particle correlation function is
related to the Fourier transformed source distribution. In this case

R2(p1, p2) = 1 + |f̃(Q)|2 , (2)

where Q is the invariant four-momentum difference, Q =
√

−(p1 − p2)2 and

f̃(Q) is the Fourier transform of the density of the source, f(x).

2.1. Gaussian distributed source

The simplest assumption is that the source has a symmetric Gaussian

distribution, in which case f̃(Q) = exp
(
iµQ − (RQ)2

2

)
and

R2(Q) = γ
[
1 + λ exp

(
−(RQ)2

)]
(1 + δQ) , (3)

where the parameter γ is a constant of normalization, λ is an intercept
or incoherence factor, which measures the strength of the correlation, and
(1 + δQ) is introduced to parametrize possible long-range correlations not
adequately accounted for in the reference sample.

A fit of Eq. (3) to the data results in an unacceptably low confidence
level [7] from which we conclude that the shape of the source deviates from
a Gaussian. The fit is particularly bad at low Q values.

2.2. Lévy distributed source

Adopting Nolan’s S(α, β = 0, γ, δ; 1) convention [8] for the symmetric
Lévy stable distribution with rescaling of the scale parameter γ to R and the
location parameter δ to x0, the Fourier transform (characteristic function)

f̃(Q) has the following general form:

f̃(Q) = exp(iQx0 − |RQ|α) . (4)

The index of stability, α, satisfies the inequality 0 < α ≤ 2. The case α = 2
corresponds to a Gaussian source distribution. For more details see [8].

Then R2 has the following, relatively simple form [9]:

R2(Q) = γ [1 + λ exp (−(RQ)α)] (1 + δQ) . (5)

After fitting Eq. (5) to the data it is clear that the correlation function is far
from Gaussian: α ≈ 1.3. The confidence level, although improved compared
to the fit of Eq. (3), is still unacceptably low [7].
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3. The τ -model

A model of strongly correlated phase-space was developed [12] to ex-
plain the experimentally found invariant relative momentum Q dependence
of Bose–Einstein correlations in e+e− reactions. This model also predicts
a specific transverse mass dependence of R2, that we subject to an experi-
mental test here. In this model, it is assumed that the average production
point xµ of particles with a given momentum kµ is given by

xµ(kµ) = dkµ . (6)

In the case of two-jet events, d = τ/mt, where τ =
√

t2 − k2
z is the lon-

gitudinal proper-time and mt =
√

m2 + p2
t is the transverse mass. The

second assumption is that the distribution of xµ(kµ) about its average,
δ∆(xµ(kµ) − xµ(kµ)), is narrower than the proper-time distribution. Then
the emission function of the τ -model is

S(x, k) =

∞∫

0

dτH(τ)δ∆(x − dk)N1(k) , (7)

where H(τ) is the longitudinal proper-time distribution, the factor δ∆(x−dk)
describes the strength of the correlations between coordinate space and mo-
mentum space variables and N1(k) is the experimentally measurable single-
particle spectrum. In the plane-wave approximation the Yano–Koonin for-
mula [13] gives the following two-pion multiplicity distribution:

ρ2(k1, k2) =

∫
d4x1d

4x2S(x1, k1)S(x2, k2) (1 + cos [(k1 − k2)(x1 − x2)]) .

(8)
Approximating the δ∆ function by a Dirac delta function, the argument of
the cosine becomes

(k1 − k2)(x̄1 − x̄2) = −0.5(d1 + d2)Q
2 . (9)

Then the two-particle Bose–Einstein correlation function is obtained as

R2(k1, k2) = 1 + λReH̃2

(
Q2

2mt

)
, (10)

where H̃(ω) =
∫

dτH(τ) exp(iωτ) is the Fourier transform of H(τ). Thus
an invariant relative momentum dependent BEC appears.

Guided by the result of the previous section, we use a one-sided Lévy
distribution for the longitudinal proper-time density. The corresponding
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BEC function has an analytic form [9–11]:

R2(Q
2,mt)=γ

[
1+λ cos

(
τ0Q

2

mt
+A

(
∆τQ2

mt

)α)
exp

(
−

(
∆τQ2

mt

)α)]
B ,

(11)
where the parameter τ0 is the proper-time of the onset of particle production,
∆τ is a measure of the width of the proper-time distribution, A = tan

(
απ
4

)

and B = (1 + δQ).
Assuming that particle production starts immediately and defining an ef-

fective radius, R, [11] R2 simplifies to

R2(Q) = γ
[
1 + λ cos

[
(RaQ)2α

]
exp

(
−(RQ)2α

)]
(1 + δQ) , (12)

where Ra is related to R by R2α
a = tan(απ/2)R2α.

The fit of Eq. (12) to the data is statistically acceptable [7]. The data
are well described by the fit. For Q between 0.5 GeV and 1.5 GeV the data
points go below the level of the long-range correlations extrapolated to lower
Q values. These data points indicate an anti-correlation in the Q ≈ 1 GeV
region. This property of the data is well reproduced by the fitted curve,
which also goes below unity as a result of the cosine term in Eq. (12), which
comes from the asymmetric Lévy assumption.

After fitting Eq. (11) for various mt intervals we find that the quality of
the fits is statistically acceptable and the fitted values of the model param-
eters are stable and within errors the same in all investigated mt intervals,
confirming the mt-dependence predicted by the τ -model. The τ -model with
a one-sided Levy proper-time distribution describes the data with parame-
ters τ0 = 0 fm, α ≈ 0.43 ± 0.03 and ∆τ ≈ 1.8± 0.4 fm (the difference in mt

of the two pions is required to be less than 0.2 GeV).

4. Reconstruction of the emission function

In order to reconstruct the space-time picture of the emitting process we
assume that the emission function can be factorized in the following way:

S(r, z, t) = I(r)G(η)H(τ) , (13)

where I(r) is the single-particle transverse distribution, G(η) is the space-
time rapidity distribution of particle production, which approximately coin-
cides with the single-particle rapidity distribution, and H(τ) is the observed
proper-time distribution.

With these assumptions one can reconstruct the longitudinal part of the
emission function integrated over the transverse distribution. It is plotted
as a function of t and z in Fig. 1. It exhibits the typical boomerang shape
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Fig. 1. Two views of the longitudinal part of the source function normalized to the

average number of pions per event.
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Fig. 2. The source function normalized to the average number of pions per event

for various proper-times.

with a maximum at low t and z but with tails reaching out to very large t
and z values.

The transverse profile, which follows from Eq. (7), is given by

d4n

dτd3r
=

m3
t

τ3
H(τ)N1

(
k =

mtr

τ

)
. (14)
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This equation describes the particle production in coordinate space as a func-
tion of the proper-time τ . It describes the expansion of the source as the
proper-time increases. The particle production probability is proportional
to the proper-time distribution H(τ). Fig. 2 shows the transverse part of
the emission function for various proper-times. Particle production starts
immediately, increases rapidly and decreases slowly. A ring-like structure,
similar to the expanding, ring-like wave created by a pebble in a pond, is
reconstructed from L3 data. An animated gif file that shows this effect is
available from [16].
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