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ABSTRACT
In regions of very high dark matter density such as the Galactic Centre, the capture and
annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution.
We describe the dark stellar evolution code DARKSTARS, and present a series of detailed grids of
WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar
structure and main-sequence evolution which occur as a function of the rate of energy injection
by WIMPs, for masses of 0.3–2.0 M� and metallicities Z = 0.0003–0.02. We show what rates
of energy injection can be obtained using realistic orbital parameters for stars at the Galactic
Centre, including detailed consideration of the velocity and density profiles of dark matter.
Capture and annihilation rates are strongly boosted when stars follow elliptical rather than
circular orbits. If there is a spike of dark matter induced by the supermassive black hole at
the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and
eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods
about the Galactic Centre could be affected on even less eccentric orbits. The most striking
observational effect of this scenario would be the existence of a binary consisting of a low-mass
protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries
on such orbits would either provide a detection of WIMP dark matter, or place stringent limits
on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo
density and velocity distribution near the Galactic Centre. In some cases, the derived limits on
the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable
sensitivity to current direct-detection experiments.

Key words: elementary particles – stars: evolution – stars: fundamental parameters – stars:
interiors – Galaxy: centre – dark matter.

1 IN T RO D U C T I O N

Observations continue to support the existence of non-baryonic dark
matter (DM; Bergström 2000; Bertone, Hooper & Silk 2005; Clowe
et al. 2006; Komatsu et al. 2008) with a cosmological abundance
around five times that of baryonic matter but of unknown compo-
sition. Weakly interacting massive particles (WIMPs) are a popular
and convenient class of DM candidates because their weak-scale
masses and couplings naturally give rise to an appropriate thermal
relic abundance in the early Universe.

Typical WIMPs, such as the lightest neutralino in supersym-
metry (Jungman, Kamionkowski & Griest 1996), posses non-zero
nuclear-scattering and self-annihilation cross-sections. The nuclear-
scattering cross-section makes it possible for WIMPs to collide elas-
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tically with nuclei in massive bodies such as stars, obtain velocities
less than the local escape velocity and become gravitationally bound
(Press & Spergel 1985; Gould 1987a,b; Griest & Seckel 1987). This
population of WIMPs will continue to scatter off nuclei in the star,
sinking down to the core and eventually annihilating with other
captured WIMPs.

If enough WIMPs are captured, the structure of the host body
may be altered by the energy produced in WIMP annihilations, or
by energy transport caused by the WIMP-nucleus scattering events
themselves. This was first realized over 30 yr ago in the context of
heavy neutrinos (Steigman et al. 1978). The potential for transport
effects to modify the structure of stellar cores was initially devel-
oped by Spergel & Press (1985) and Faulkner & Gilliland (1985).
Implications of annihilation for stellar evolution were first explored
by Salati & Silk (1989) and Bouquet & Salati (1989b). A series of
subsequent studies (Gilliland et al. 1986; Renzini 1987; Faulkner &
Swenson 1988; Spergel & Faulkner 1988; Bouquet & Salati 1989a;
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Bouquet, Kaplan & Martin 1989; Deluca et al. 1989; Dearborn
et al. 1990a,b; Giraud-Heraud et al. 1990; Salati 1990; Christensen-
Dalsgaard 1992; Faulkner & Swenson 1993) focused upon possible
impacts of energy transport by ‘cosmion’ WIMPs designed to solve
the solar neutrino problem. With the advent of neutrino oscillations
this problem has of course disappeared. Furthermore, the existence
of much more stringent limits upon the WIMP-nucleon scattering
cross-sections (e.g. Desai et al. 2004; Angle et al. 2008; Behnke
et al. 2008; CDMS Collaboration 2008) and an improved under-
standing of the distribution of DM on galactic scales (e.g. Bertone
& Merritt 2005; Diemand, Kuhlen & Madau 2007) mean that the
likelihood of seeing changes induced purely by WIMP energy trans-
port seems somewhat diminished. Indeed, later efforts to constrain
WIMP physics via helioseismology have proven fruitless (Bottino
et al. 2002).

Recent times have seen a resurgent interest in the impacts of
WIMPs upon stars, now focussing almost exclusively upon the in-
fluence of annihilation. Moskalenko & Wai (2007) and Bertone
& Fairbairn (2008) showed that it could be possible to see white
dwarfs heated by WIMP annihilation, at the Galactic Centre and in
globular clusters, respectively. Spolyar, Freese & Gondolo (2008)
and Natarajan, Tan & O’Shea (2008) showed that WIMP annihila-
tion might be able to partially inhibit the formation of Population
III stars, resulting in giant, cool, primordial stars supported entirely
by annihilation energy. In previous letters the current authors pre-
sented the first numerical simulations of the structure and evolution
of WIMP-burning main-sequence stars, employing and comparing
both a simple static structure code and a preliminary version of the
evolutionary code we present here (Fairbairn, Scott & Edsjö 2008;
Scott, Edsjö & Fairbairn 2008). We found that WIMP annihilation
in stellar cores diminishes nuclear burning and causes them to re-
ascend the Hayashi track, in agreement with the analytical estimates
of Salati & Silk (1989).

Iocco (2008) and Freese, Spolyar & Aguirre (2008a) performed
simplified capture calculations on models of ‘naturally formed’ Pop-
ulation III stars, showing that even if the stars were to form normally,
they might later accrete sufficient DM to alter their appearance. The
DM densities considered in these studies and in that of Spolyar et al.
(2008) were confirmed as reasonable by Freese et al. (2008b), using
a more detailed treatment of the collapse of the primordial DM–gas
halo. Both groups went on to consider different stages of the pre-
main-sequence evolution of WIMP-influenced Population III stars:
Freese et al. (2008c) employed polytropic models in an attempt to
understand the evolution of the stars postulated by Spolyar et al.
(2008), and Iocco et al. (2008) followed the evolution from the tip
of the Hayashi track using a full stellar evolution code. Both found
stalling phases, but of different durations and at different stages
of the stars’ formative evolution. Yoon, Iocco & Akiyama (2008)
and Taoso et al. (2008) have now presented simulations of main-
sequence Population III stars assumed to have formed normally,
but then allowed to evolve with the effects of WIMP capture and
annihilation. The last three studies show extended main-sequence
lifetimes and stalling on the Hayashi track, in agreement with our
earlier conclusions at non-zero metallicity and the results we present
here.

Those working on Population III stars have referred to WIMP-
burning stars as ‘dark stars’, whilst we and others working at non-
zero metallicities have typically used the terms ‘WIMP burners’ or
‘DM burners’. In the interests of cohesiveness and simplicity, we
will simply adopt the former term. We do acknowledge that the
term ‘dark star’ is something of a misnomer, since stars burning
DM are not strictly dark. As we shall see in the following pages,

except for cases where the ambient DM density is extremely high,
their luminosities are at least reduced relative to normal stars.

In this paper, we present a detailed analysis of the effects of DM
capture, annihilation and energy transport upon the structure and
evolution of main-sequence stars, specifically those which might
exist at the Galactic Centre. In Section 2 we give the full descrip-
tion of the DARKSTARS code and its input physics alluded to in
Fairbairn et al. (2008) and Scott et al. (2008). Section 3 presents the
properties of main-sequence dark stars, based upon a grid of stellar
models covering a range of masses and metallicities. We take up
the questions of the distribution of DM close to the Galactic Centre
in Section 4, and the properties of stellar orbits there in Section 5.
In Section 6, we present results from further grids of evolutionary
models computed with realistic treatments of the environment and
orbits expected near the Galactic Centre. We also discuss existing
and potential observations in Section 6, then give some final re-
marks on the prospect of detecting or constraining the nature of
DM through such observations in Section 7.

2 TH E O RY A N D M O D E L L I N G

2.1 Capture, annihilation and energy injection

The total population of WIMPs N(t) present in a star is given
(Jungman et al. 1996) by the equation

dN (t)

dt
= C(t) − 2A(t) − E(t), (2.1)

where C(t) is the rate at which WIMPs are captured, A(t) is the
rate at which annihilations occur and E(t) is the evaporation rate.
The factor of 2 in the annihilation term arises because each anni-
hilation destroys two Majorana WIMPs. In many cases of interest
evaporation is negligible, but we will return to this point later.

Many approximations to the full expression for C(t) derived by
Gould (1987b) have appeared in the literature, with widely varying
accuracies. Here we attempt to present the full theory in a compact
and usable form. We will also build upon the following in Section 4
when we consider alternative halo models. For a star capturing
WIMPs from an infinitely distant halo, the capture rate is

C(t) = 4π

∫ R�

0
r2

∫ ∞

0

f (u)

u
w�−

v (w) du dr, (2.2)

where r is the local height in the star, u is the incoming WIMP
velocity before it is influenced by the star’s gravitational field and
f(u) is the WIMP velocity distribution in the halo. The local escape
velocity at a height r is v(r, t), and w = w(u, r, t) ≡

√
u2 + v(r, t)2

is the velocity an incoming WIMP obtains by the time it reaches
a height r. �−

v (w) is the rate at which a WIMP with velocity w

scatters to a velocity less than v, and thereby becomes captured. This
formula does not apply to capture from an already-bound population
of WIMPs, such as occurs in an adiabatically contracting DM–gas
cloud.

For a scattering nucleus of mass mnuc and a WIMP mass mχ ,
kinematics dictate that the only collisions able to scatter a WIMP to
velocities less than v are those where the fraction � of the WIMP
energy lost in the collision obeys

u2

w2
≤ � ≤ μ

μ2+
, (2.3)

with

μ ≡ mχ

mnuc
, μ± ≡ μ ± 1

2
. (2.4)
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This is clearly only possible for values of u that obey

u2

w2
≤ μ

μ2+
, (2.5)

which is equivalent to

u2 ≤ μv2

μ2−
. (2.6)

The partial capture rate is then given by

�−
v (w) =

∑
i

�−
v,i(w)

=
∑

i

wσini(r, t)
μi

μ2
+,i

θ

(
μiv

2

μ2
−,i

− u2

)

×
∫ μi/μ

2
+,i

u2/w2
|Fi(�)|2 d�. (2.7)

Here i denotes the ith nuclear species, ni is its local number density
in the star and Fi(�) is the ith nuclear form factor. θ is the Heaviside
step function. The total cross-section σi for scattering of WIMPs
on the ith nucleus can be approximated as (Jungman et al. 1996;
Gondolo et al. 2004)

σi = β2

[
σSIA

2
i + σSD

4(Ji + 1)

3Ji

|〈Sp,i〉 + 〈Sn,i〉|2
]
, (2.8)

where

β = mnuc(mχ + mp)

mp(mχ + mnuc)
(2.9)

is the ratio of the reduced masses of the WIMP-nucleus and WIMP-
proton systems. Here σ SI and σ SD are the hydrogen-normalized
spin-independent and spin-dependent nuclear-scattering cross-
sections, respectively, Ai is the atomic number of the nucleus, Ji

is its spin and 〈Sp,i〉 and 〈Sn,i〉 are the expectation values of the spins
of its proton and neutron systems, respectively.

Assuming an exponential form factor

|F (�)|2 = exp

(
− mχw2�

2E0

)
(2.10)

for heavy elements and a delta function for hydrogen, the integral
in equation (2.7) can be performed analytically. Here E0 is the
coherence energy arising from the characteristic nuclear radius.
When mnuc is expressed in GeV/c2, it can be approximated as

E0 ≈ 5.8407 × 10−2

mnuc

(
0.91m

1/3
nuc + 0.3

)2 GeV. (2.11)

Making the further assumption that WIMP velocities in the halo
follow an isothermal distribution with dispersion v̄, the velocity
distribution in the rest frame of the DM halo is

f0(u) = 4√
π

(
3

2

)3/2
ρχ

mχ

u2

v̄3
exp

(
− 3u2

2v̄2

)
, (2.12)

with ρχ the ambient WIMP density. In the frame of a star moving
with velocity v� through the halo, this becomes

f�(u) = f0(u) exp

(
− 3v2

�

2v̄2

)
sinh(3uv�/v̄

2)

3uv�/v̄2
. (2.13)

Using equations (2.7), (2.10) and (2.13) it becomes possible to
perform the velocity integral in equation (2.2) analytically. One
converts the step function in equation (2.7) to a finite upper limit of
integration umax,i(r, t) = v(r, t)

√
u/μ−,i and obtains

C(t) = 4π

∫ R�

0
r2

∑
i

[Wi(umax,i(r, t)) − Wi(0)] dr. (2.14)

Here

Wi(u) ≡
∫

f�(u)

u
w�−

v,i(w) du

= σini(r, t)ρχμ2
+,iE0,i

m2
χ v̄v�μi

√
3

2

⎧⎨
⎩(B + G)−1/2ϒ(G)

× e−BGv2
� /(B+G) − (B + H )−1/2ϒ(H )

× e−H/(B+H )[B(v2
�+v(r,t)2)+Hv(r,t)2]

⎫⎬
⎭, (2.15)

G ≡ mχ

2E0
, H ≡ G

μ

μ2+
, B ≡ 3

2v̄2
, (2.16)

ϒ(X) ≡ ϒ−(X) − ϒ+(X), (2.17)

ϒ±(X) ≡ erf

{
Xu + B(u ± v�)√

B + X

}
(2.18)

for heavier elements, and

WH(u) = σHnH(r, t)ρχ

mχ v̄v�

√
3

2π

⎡
⎣ v(r, t)2�

2
√

B
+ μ2

−,H

4μHB3/2

×
{

2
√

B
[
(v� − u)e−B(u+v�)2 + (v� + u)

× e−B(u+v�)2+4Bv�u

]
− (

1 + 2Bv2
�

)
�
}⎤⎦ (2.19)

� ≡ √
π{erf[

√
B(u − v�)] − erf[

√
B(u + v�)]} (2.20)

for the special case of hydrogen.
The annihilation rate A(t) is simply the integral of the local anni-

hilation rate per unit volume a(r, t)

A(t) = 4π

∫ R�

0
r2a(r, t) dr, (2.21)

which is given by

a(r, t) = 〈σav〉0nχ (r, t)2. (2.22)

Here nχ (r, t) is the local WIMP number density in the star and
〈σ av〉0 is the non-relativistic limit of the velocity-averaged anni-
hilation cross-section. The energy injected by WIMP annihilations
εann per unit mass of nuclear matter is

εann(r, t) = 2a(r, t)mχ c2

ρ�(r, t)
− νloss(r, t), (2.23)

where ρ�(r, t) is the local stellar density and ν loss(r, t) accounts
for the fraction of the WIMPs’ rest-mass energy which escapes in
the form of neutrinos. We assume that the WIMPs annihilate only
into standard model particles which, apart from the neutrinos, very
quickly deposit their energy in the surrounding gas. Together with
the energy injection/removal rate εtrans due to conductive transport
by WIMPs, this gives the total local WIMP energy term

εWIMP(r, t) = εann(r, t) + εtrans(r, t). (2.24)

This acts as an additional source term in the standard stellar lumi-
nosity equation at every height in the star.
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2.2 Conductive energy transport and distribution

The simplest way to describe the density of WIMPs in a star is to
assume that they have thermalized with the stellar matter. We as-
sume that thermalization occurs instantaneously, as it would be too
cumbersome to allow for a non-thermalized evolution of the WIMP
distribution at the same time as evolving a star (no formalism be-
yond explicit Monte Carlo simulations exists at this stage for doing
such a thing). We expect this approximation to break down when
capture rates change rapidly, such as during the short-term evolution
of stars on elliptical orbits at the Galactic Centre (Section 6.2). Our
primary interest is in the longer term behaviour of such stars, which
should not be strongly effected by the thermalization process.

Thermalization can be local, such that the WIMP energies reflect
the local temperature at every height in the star, or global, such that
they reflect only a single overall characteristic temperature TW. In
the first case, WIMPs are in local thermodynamic equilibrium (LTE)
with the stellar matter, whilst in the second case they are isother-
mally distributed. The isothermal assumption gives the Boltzmann
distribution for particles in a gravitational well

nχ,iso(r, t) = N (t)
gj e−Ej /kT∑

j ′
gj ′ e−Ej ′ /kT

= N (t)
e−mχ φ(r,t)/kTW(t)∫ R�

0
4πr ′2e−mχ φ(r ′,t)/kTW(t) dr ′

, (2.25)

where φ(r, t) is the local value of the gravitational potential, gj

is the statistical weight of the jth energy level (1 in this case) and
Ej = mχφ(r, t) is its gravitational potential energy. Because WIMPs
cluster so strongly in the centre of a star, previous analyses typically
assumed that the area in which they reside can be approximated by a
sphere of uniform density ρc(t), the central density. This sets TW(t)
to the central temperature Tc(t), and gives

φ(r, t) ≈ 2π

3
Gρc(t)r

2. (2.26)

This takes equation (2.25) to

nχ (r, t) ≈ N (t)
e−r2/r2

χ

π3/2r3
χ

, (2.27)

with

rχ (t) ≡
[

3kTc(t)

2πGρc(t)mχ

]1/2

. (2.28)

In practice, there is no longer any real reason to prefer equa-
tion (2.27) to equation (2.25). The gravitational potential must be
tabulated anyway at all heights in the star to obtain v(r, t) for the
capture calculation, and the integral in equation (2.25) can be evalu-
ated quickly and easily using modern computers. Most importantly,
a reasonable estimate for TW(t) can be directly calculated from the
structure of the star (as we describe below).

The usefulness of the uniform sphere approximation lies in the
length-scale it defines, rχ . This gives the approximate scaleheight
of the WIMP distribution in the star, which can be compared with
the WIMP mean free path

l(r, t) ≡
[∑

i

li(r, t)
−1

]−1

, li(r, t)
−1 ≡ σini(r, t) (2.29)

at the centre of the star to give the Knudsen number of the system,

K(t) = l(0, t)

rχ (t)
. (2.30)

The Knudsen number indicates whether the WIMPs travel a distance
less than the scale size on average and transport energy locally
(K < 1), or typically travel out beyond rχ before depositing energy
non-locally (K > 1).

In the extreme limit K → 0, the energy transport is completely
local. In this case WIMPs scatter about so often that they are in LTE
with the nuclei, and the energy transport is exactly the case of LTE
conductive transport by a gas of massive particles. The exact form
of the energy injection/removal rate at a given stellar radius (i.e. the
contribution to the local luminosity), and the corresponding density
structure for LTE-distributed (rather than isothermally distributed)
WIMPs has been calculated by Gould & Raffelt (1990a). These are

Ltrans,LTE(r, t) = 4πr2κ(r, t)nχ,LTE(r, t)l(r, t)

×
[

kT�(r, t)

mχ c2

]1/2

k
dT�(r, t)

dr
(2.31)

and

nχ,LTE(r, t) = nχ,LTE(0, t)

[
T�(r, t)

Tc(t)

]3/2

× exp

[
−

∫ r

0

kα(r ′, t) dT�(r ′,t)
dr ′ + mχ

dφ(r ′,t)
dr ′

kT�(r ′, t)
dr ′

]
, (2.32)

where normalization to
∫ R�

0 4πr2nχ,LTE(r, t) dr = N (t) dictates the
value of nχ,LTE(0, t). Noting that in general

L(r, t) = 4π

∫ r

0
r ′2ρ(r ′, t)ε(r ′, t) dr ′, (2.33)

we see that

εtrans,LTE(r, t) = 1

4πr2ρ(r, t)

dLtrans,LTE(r, t)

dr
. (2.34)

Note that our sign convention differs from that of Gould & Raffelt
(1990a); equations (2.31) and (2.34) both refer to the energy injec-
tion rates, not the rate at which WIMPs remove energy (cf. the sign
conventions in equation 2.24).

The factors α and κ are the dimensionless thermal diffusivity and
conductivity, respectively. These vary throughout the star according
to the relative abundances of the different atomic nuclei (and the
distribution of WIMP-nucleus relative velocities, if the scattering
cross-section is velocity dependent due to a vector coupling to
quarks; this is not the case for the neutralino). They are obtained
through numerical solution of the Boltzmann collision equation for
any given gas mixture. Gould & Raffelt (1990a) found and tabulated
the values of α and κ for gases consisting of WIMPs and one other
nucleus, varying the WIMP-to-nucleus mass ratio μ from 0 to 100.
Whilst the rigorous thing to do for each physical mixture would
be to re-solve the Boltzmann equation with a composite collisional
operator given as a linear combination of the operators applicable
to the single-nucleus case, a good approximation is to simply take
a weighted mean of the tabulated α and κ values themselves. That
is,

α(r, t) =
∑

i

σini(r, t)∑
j

σjnj (r, t)
αi(μi) (2.35)

and

κ(r, t) =
{

l(r, t)
∑

i

[κi(μ)li(r, t)]
−1

}−1

. (2.36)

For μ < 100, α and κ can be found by interpolation in the tables
of Gould & Raffelt (1990a). For larger values of μ, the authors
found the limiting behaviour α → 2. 5 and κ → (5/32)

√
2πμ. To
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Figure 1. A snapshot of the energy deposited by WIMP conductive energy
transport with height in an example star (1 M�, Z = 0.01, evolved in an
isothermal halo with ρχ = 1010 GeV cm−3, v� = 220 km s−1 and v̄ =
270 km s−1). The snapshot was taken early in the star’s evolution, before its
structure had time to significantly adjust to the effects of WIMP annihilation.
Conduction by WIMP-nucleus scattering consumes energy from the very
centre of the core and redeposits it further out. The quantity shown here is
the final form of εtrans (equation 2.43), but it differs from εtrans,LTE only by
some correction factors given in equations (2.41) and (2.44).

get a smooth curve for both α and κ , we set the final point of the
interpolation table to the limiting values at μ = 120, so that for μ >

120 no interpolation is required and the analytical limits are used.
Note that Ltrans,LTE(R�, t) is always zero, as dT�(r, t)/dr (R�) ≈ 0;

this reflects the fact that conduction by WIMPs never constitutes a
net energy source nor sink in the star, and any energy the WIMPs
remove from a hotter region is always returned in full to a cooler
region. As shown in Fig. 1, εtrans,LTE is negative in the inner part of
the star, increases with radius until it becomes positive, peaks, then
drops again to asymptotically approach zero as r → R�.

The statement that there is no net energy outflow due to WIMP-
nucleon scatterings is equivalent to there being no evaporation of
WIMPs from the star. That is, a captured WIMP never upscatters
sufficiently energetically from a nucleus to become unbound and
exit the system. That this is the case in the LTE regime is imme-
diately apparent: WIMPs do not travel far from the centre before
rescattering and sinking back to the core. In the non-local regime,
things are not so clear; when the WIMPs’ mean free paths are much
longer than the system scaleheight, evaporation could in principle
be significant. In this case, the evaporation rate must be equivalent
to the net outward energy flux due to WIMP conductive energy
transport in the isothermal (non-local) picture. That is,

Ltrans,iso(R�, t) = mχc2E(t) ≡ Levap(R�, t), (2.37)

Ltrans,iso(r, t) = 4π

∫ r

0
r2ρ(r, t)εtrans,SP(r, t, TW) dr, (2.38)

Levap(r, t) = 4πmχ c2

∫ r

0
r2R(r, t, TW) dr, (2.39)

where R(r, t, TW) is the local WIMP evacuation rate per unit volume
from a shell at height r, discussed in detail by Gould (1987a). The

theoretical rate of energy conduction in the isothermal regime,

εtrans,SP(r, t, TW) = 8
√

2/πk3/2

ρ�(r, t)
nχ,iso(r, t)[T�(r, t) − TW(t)]

×
∑

i

σini(r, t)
mχmnuc,i

(mχ + mnuc,i)2

[
T�(r, t)

mnuc,i
+ TW(t)

mχ

]1/2

, (2.40)

was developed by Spergel & Press (1985). The equality in equa-
tion (2.37) uniquely determines TW, so given a a value of E(t) or
a particular choice of function R(r, t, TW), one simply implements
an appropriate root-finding algorithm to get TW. Knowing TW, one
has all the information required to compute the isothermal density
distribution (equation 2.25). Whilst the boundary condition itself
(equation 2.37) arises from the consideration of evaporation, and is
important to include in order to obtain TW, in most cases of interest
evaporation is negligible so E(t) = 0.

Treating conductive energy transport by WIMPs when K > 1,
where the LTE conduction approximation breaks down entirely,
is in general rather difficult. In a second paper, Gould & Raffelt
(1990b) showed via explicit Monte Carlo solutions to the Boltz-
mann equation that there is no good way of analytically determining
the WIMP energy transport for large K. One would naively expect
that as K → ∞, the WIMPs would behave essentially isother-
mally, following the isothermal density structure (equation 2.25)
and transporting energy according to equation (2.40). Whilst they
do get rather close to the isothermal density structure, the energy
transport via equation (2.40) cannot be reconciled with the true
Monte Carlo derived εW in any systematic way. Equation (2.40)
should therefore not be used as a description of WIMP conductive
energy transport in practice, even when K → ∞. Its value is in pro-
viding a means of treating evaporation which is consistent with the
isothermal density distribution, such that the characteristic temper-
ature of the distribution naturally results in the correct evaporation
rate (even if that happens to be zero).

In their earlier paper, Gould & Raffelt (1990a) showed that as K
increases, the true conductive luminosity is suppressed relative to
their analytical prediction (equation 2.31). The breakdown occurs
in a clearly quantifiable way for increasing K, so one way to treat
conductive energy transport by WIMPs in the non-local regime is to
adopt the local expression, but with a ‘semi-empirical’ luminosity
suppression pre-factor in line with the suppression seen numerically.
The suppression shows a sigmoidal shape on a log K scale in Gould
& Raffelt’s results,

f(K) ≈ 1 − 1

1 + e−(ln K−ln K0)/τ
= 1 − 1

1 + (K0/K)1/τ
. (2.41)

The relaxation scale must be about 0.4–0.5 to fit the numerical result
well; with τ = 0.5 this function agrees exactly with the suppression
function chosen by Bottino et al. (2002), so we use this value. K0

is the ‘crossing point’ from the local to non-local regimes, where
WIMP energy transport is most effective; Gould & Raffelt found
this to be K0 ≈ 0.4.

Gould & Raffelt (1990a) also showed a similar suppression of
the LTE WIMP conductive luminosity with radius. This can be fac-
tored into the final expression for LT(r, t) as a further multiplicative
suppression factor h(r, t), such that

Ltrans,final(r, t) = f(K)h(r, t)Ltrans,LTE(r, t). (2.42)
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The final form of the term appearing in equation (2.24) and the
stellar luminosity equation becomes

εtrans = 1

4πr2ρ(r, t)

d

dr

[
f(K)h(r, t)Ltrans,LTE(r, t)

]
, (2.43)

in analogy with equation (2.34). The radial suppression function
appears as a simple cubic polynomial

h(r, t) ≈
[

r − rχ (t)

rχ (t)

]3

+ 1 (2.44)

in Gould & Raffelt’s numerical results.
For any given K, the degree to which Ltrans(r) is suppressed rel-

ative to the LTE prediction can be thought of as a general indica-
tion of the goodness of the LTE approximation. Since the density
structure in the extremely non-local regime is at least moderately
well described by the isothermal approximation (equation 2.25),
the ‘goodness-of-LTE-assumption’ function f(K) can also be used
as a way of interpolating between the isothermal and LTE (equa-
tion 2.32) densities to give a semi realistic density structure for all
K:

nχ,final(r, t) = f(K)nχ,LTE +
[
1 − f (K)

]
nχ,iso. (2.45)

Since 0 ≤ f(K) ≤ 1 and both the LTE and isothermal densities are
individually normalized, nχ,final(r, t) will stay correctly normalized
for all K. Since it is only nχ,LTE which enters into the expression for
the final conductive energy transport, the density structure given by
nχ,final is important only for determining the radial distribution of
injected annihilation energy.

Because no simple measure of the overall efficiency of conductive
energy transport by WIMPs presently exists in the literature, we
define such a quantity as

E(t) =
∫ R�

0 r2 ρ�(r,t)
μ�(r,t)

∣∣∣ εtrans
εother

∣∣∣ dr∫ R�

0 r2 ρ�(r,t)
μ�(r,t) dr

, (2.46)

the dimensionless WIMP conductive effectiveness. Here μ�(r, t)
is the mean particle weight, εother refers to all other energy terms
(nuclear, gravitational and annihilation), and the denominator is
simply a normalization factor. E(t) is therefore the volume- and
number-density-weighted, integrated ratio of WIMP-mediated en-
ergy transport to all other energy terms. The weighting by number
density is appropriate because WIMP energy transport is presum-
ably more relevant in areas of higher nuclear density. The absolute
value arises because εtrans is a transport rather than a net source term
(i.e. takes on both positive and negative values). Roughly speaking,
in a star where WIMP conductive energy transport is the most im-
portant local source of luminosity, E is greater than 1; where it is a
subdominant contributor, E is less than 1. Whilst the weighting with
local number density rightly biases E(t) towards the stellar core, this
means that it is possible for extremely effective, localized energy
transport by WIMPs in the very centre of a star to dominate the
overall stellar energetic effectiveness, without significantly altering
the overall structure. This is because in such a case, the enhanced
transport only occurs in the most central parts of the core.

2.3 The DARKSTARS code

DARKSTARS includes WIMP capture based on equation (2.2), gen-
eralized from the solar capture routines of DARKSUSY (Gondolo
et al. 2004). Exponential form factor suppression (equation 2.10) is
assumed for scattering off nuclei heavier than hydrogen. In the basic
version, the integral over incoming WIMP velocities can either be

performed analytically assuming an isothermal velocity distribution
(using equations 2.15 and 2.19), or numerically over any arbitrary
velocity distribution. In Section 4 we describe two additional ve-
locity distributions which we have implemented in the code, one of
which includes another analytical option for the velocity integral.

The capture routines are coupled to the EZ version (Paxton 2004)
of the STARS stellar evolution code (Eggleton 1971, 1972; Pols et al.
1995), which uses relaxation to solve the hydrostatic equations of
stellar structure over a 199-point adaptive radial mesh at each time-
step. We implement annihilation according to equations (2.21)–
(2.23). We determine the local WIMP density with equations (2.25),
(2.32) and (2.45), obtaining TW as the solution to equation (2.37).
We include conductive energy transport via equations (2.31) and
(2.43).

The WIMP population is advanced at each time-step by solving
equation (2.1). We assume that since the stellar structure changes
very slowly under the influence of the WIMPs in comparison to
the evolution of N(t), the evolution of the population between time-
steps can be well described by the solution to equation (2.1) in the
special case where C(t) and Ac(t) ≡ A(t)/N(t)2 are constant in time:

N (t + �t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C(t)τeq(t)

[
tanh

(
�t

τeq(t) + tequiv

)]δ

when C(t) 
= 0,

N (t)

1 + N (t)Ac(t)�t
when C(t) = 0,

(2.47)

τeq(t) ≡ 1√
C(t)Ac(t)

, (2.48)

tequiv ≡ tanh−1

⎛
⎝[

N (t)

C(t)τeq(t)

]δ
⎞
⎠, (2.49)

δ ≡ sign

(
dN (t)

dt

)
. (2.50)

This is well justified because both C(t) and Ac(t) depend only upon
the stellar structure, not directly upon the absolute WIMP popula-
tion. Here τ eq(t) is the emergent time-scale of equilibration between
capture and annihilation, and tequiv is an equivalent earlier time from
which the approximate solution needs to be evolved for the current
values of C and Ac. Our approximation is an example of the general
approach to solving stiff differential equations by separation into
fast and slow subsystems known as coarse-graining, and allows a
numerical solution to equation (2.1) with time-steps of the order of
those typically required for stellar evolution.

This scheme constitutes an explicit solution to equation (2.1),
where each new stellar model is converged with the WIMP popula-
tion at the previous time-step, which is calculated with capture and
annihilation rates computed using the stellar structure of the previ-
ous model. The models are therefore not completely self-consistent,
as the WIMP population lags the stellar structure by one time-step.
Implementing equation (2.1) in the internal implicit differencing
scheme of the STARS code would have required extensive revision of
the internal solver. As a consistency check, we have implemented a
‘reconvergence mode’ similar to that described by Dearborn et al.
(1990b), where models are reconverged with the new WIMP popu-
lation at every time-step, producing a fully self-consistent solution.
We have also experimented with rescaling the automatically chosen

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 82–104



88 P. Scott, M. Fairbairn and J. Edsjö

time-steps to smaller values. Except for some special cases which
we describe in Section 3, the results do not change.

In general we limit time-steps to allow no more than a certain
proportional change in the WIMP population per step. Typically we
demand that the population does not change by more than the current
value in one step, but for the more extreme situations in Section 6
we reduce this by a factor of 10. To aid initial convergence and
prevent this prescription from demanding impossibly small time-
steps early in the simulation, we begin simulations with populations
of 1030–1035 WIMPs. This is many orders of magnitude less than
the population required to have an effect upon the stellar structure.

We calculate capture by the 22 most relevant nuclei: 1H, 3He,
4He, 12C, 13C, 14N, 16O, 18O, 20Ne, 24Mg, 23Na, 27Al, 28Si, 32S, 40Ar,
40Ca, 56Fe, 58Ni, 60Ni, 206Pb, 207Pb and 207Pb. The stellar code fol-
lows the abundances of 1H, 4He, 12C, 14N, 16O, 20Ne and 24Mg,
and we assume that the remaining mass is distributed amongst the
other 15 species according to their abundance ratios in the Sun.
The data on interelemental ratios comes from Asplund, Grevesse &
Sauval (2005, but with the Ni abundance from Scott et al. 2009),
and on isotopic ratios from Heber, Baur & Wieler (2003, 3He/4He),
Scott et al. (2006, 12C/13C and 16O/18O), preliminary results from
work in progress (58Ni/60Ni) and Tatsumoto, Unruh & Desbor-
ough (1976, via Anders & Grevesse 1989, 208Pb/207Pb/206Pb).
Atomic and nuclear masses are sourced from Wapstra, Audi &
Thibault (2003) and Audi, Wapstra & Thibault (2003). The present
code allows total heavy-element mass fractions Z of 0.0001–0.03,
which are paired with corresponding helium mass fractions of
0.24–0.30.

Since the annihilation rate goes as n2
χ whilst the evaporation rate

goes only as nχ , the evaporation rate is much smaller for the high
ambient WIMP densities and capture rates we are typically inter-
ested in. Even for the Sun, Gould (1987a) found that evaporation is
insignificant unless the WIMP mass happens to be relatively closely
matched with a nucleus found there in significant abundance. The
heaviest such element is iron, so evaporation can be considered
negligible in the Sun for mχ � 60 GeV, which is the case for most
WIMPs considered interesting today. (The limit given by Gould was
mχ � 4 GeV, but this assumed that elements heavier than helium
could be neglected because, at the time, a WIMP mass higher than
∼10 GeV was considered unlikely.) We therefore simply obtain TW

with E(t) = 0, neglecting evaporation.
To estimate the factor ν loss in equation (2.23), we carried out ex-

plicit Monte Carlo simulations of WIMP annihilation in the Sun,
along the lines of Blennow, Edsjö & Ohlsson (2008). We consid-
ered a range of masses and annihilation channels, and included full
three-flavour neutrino oscillations, neutrino interactions, stopping
of muons and interactions of heavy mesons (e.g. B mesons) in the
Sun’s core. For essentially all annihilation channels except τ+τ−,
ν loss for a 100-GeV WIMP is 5–15 per cent of the rest-mass energy.
For heavier WIMPs, ν loss is reduced due to neutrino interactions
in the star. For annihilation to τ+τ−, ν loss � 35–40 per cent for a
100 GeV WIMP (and drops for heavier WIMPs). Since the neu-
tralino (our canonical WIMP) has very limited annihilation to τ+τ−,
we assume a flat neutrino energy loss of ν loss = 10 per cent for all
annihilations. We also neglect the slight dependence upon stellar
structure and mass.

Capture integrals in DARKSTARS are performed with QUADPACK

(Piessens, de Doncker-Kapenga & Ueberhuber 1983), whilst simple
integrals are done by the users’ choice of Simpson’s rule, Romberg
integration or fifth-order Runge–Kutta with an adaptive step size.
Sufficiently well-behaved functions are interpolated using cubic
splines. For the others, we found the tensional spline routines of

Renka (1993) and Testa & Renka (1999), after a slight readjustment
of the convergence parameters, invaluable.

Some provision has been made in the code for later allowing
R(r, t, TW) 
= 0, alternative form factors and metal-free evolution if
required. Our intention is to make DARKSTARS available for public
download in the near future.

Except where explicitly stated otherwise, we perform all simula-
tions in this paper with a canonical WIMP mass of mχ = 100 GeV
and an annihilation cross-section 〈σ av〉0 = 3 × 10−26 cm3 s−1,
which arises from relic density considerations assuming WIMPs
to be the dominant component of DM. We use nuclear-scattering
cross-sections corresponding to the maximally allowed experimen-
tal values σ SI = 10−44 cm2 (Angle et al. 2008; CDMS Collaboration
2008) and σ SD = 10−38 cm2 (Desai et al. 2004; Behnke et al. 2008).

3 B E N C H M A R K I M PAC T S O N
MAI N-SEQUENCE STARS

To understand the general effects of DM accretion and annihila-
tion upon main-sequence stars, we start by considering a set of
benchmark stars in a reference halo of WIMPs. In later sections,
we will expand on these results for more realistic scenarios. For the
benchmark stars, we evolved a grid of models with 0.3 ≤ M� ≤
2 M�, 0.0003 ≤ Z ≤ 0.02 and 5 ≤ log10(ρχ/GeV cm−3) ≤ 11. The
models were started from the zero-age main-sequence (ZAMS), and
evolved until one of the following stopping criteria was met.

(i) The star left the main sequence (as indicated by the central
hydrogen mass fraction Xc dropping below 10−6).

(ii) The star reached a stable equilibrium where all its energy
was effectively provided by WIMP annihilation (as indicated by Xc,
log10 ρc and log10 Tc changing by less than 10−14 M�/M�, 10−10

and 10−10, respectively, over four consecutive time-steps).
(iii) The age of the star exceeded the age of the Universe.

Except for main-sequence lifetimes, we present results at Z = 0.01
and just give a brief discussion of the effects of metallicity in the
text, since most of the properties we discuss did not show any major
dependency upon metallicity.

For this grid we used the standard isothermal velocity distribu-
tion, with the default solar values of v� = v� = 220 km s−1 and
v̄ = √

3/2v� = 270 km s−1. The resultant capture rates (at t =
0) and ratios of annihilation-to-nuclear luminosity are presented
in Fig. 2. For the sake of comparison, nuclear luminosities Lnuc are
taken at zero age, whilst WIMP annihilation luminosities LW,max are
the maximum values the star achieves during its evolution. Since
stars start with almost no WIMPs, WIMP luminosity at zero age
is essentially nil, and nuclear luminosity changes significantly after
zero age as the WIMPs begin to influence the stellar structure. As
expected, capture rates and WIMP-to-nuclear luminosity ratios in-
crease linearly with ρχ , and lower mass stars capture less but burn a
greater ratio of WIMPs to nuclear fuel than their higher mass coun-
terparts. Significantly, WIMP annihilation outstrips nuclear burn-
ing in a large area of the parameter space. Capture rates increase
slightly at lower metallicity because of the dominance of spin-
dependent scattering and capture by hydrogen, but are outweighed
by the increased nuclear luminosity, causing a small decrease in
WIMP-to-nuclear burning ratios.

Because the primary factor governing the impact of WIMPs upon
stellar evolution is simply N(t), the benchmark results we present
in this section will hold in general for other combinations of input
particle and halo parameters, subject to an appropriate rescaling.
In particular, all scenarios which result in the same product of the
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Figure 2. Initial capture rates (top) and annihilation-to-nuclear luminos-
ity ratios (bottom) achieved by stars evolved in differing DM densities.
Nuclear luminosities Lnuc(0) are initial values, whilst annihilation luminosi-
ties LW,max are the maximum values achieved during a star’s lifetime. The
DM velocity structure is that typically assumed by direct detection experi-
ments, where the distribution is isothermal with solar values v� = 220 and
v̄ = 270 km s−1. We refer to this canonical example as the RSC, where
it should be understood that only the velocity structure, not the density, is
reflective of the true solar situation. These plots provide a simple conversion
mechanism between capture rates, WIMP luminosities and equivalent RSC
DM densities.

capture rate and WIMP mass map to roughly the same ratio of
WIMP-to-nuclear burning, which in turn maps in an essentially
one-to-one manner to all physical changes in a star’s structure
and evolution. (That is, ignoring ‘higher moment’ factors like
WIMP thermalization, distribution, conductive energy transport and
capture-annihilation equilibration.) In this way, Fig. 2 acts as a
conversion table between capture rates, WIMP luminosities and
equivalent DM densities in the reference solar configuration (RSC).
(We use the term ‘WIMP luminosity’ as shorthand for the ratio
LW,max/Lnuc(0) when it is clear what we mean, or when the distinc-
tion is irrelevant.)

Figure 3. WIMP-to-nuclear luminosity ratios achieved my a 1 M� star
with different annihilation cross-sections (top) and WIMP masses (bottom).
The DM halo configuration is the RSC. Since capture rates do not depend
upon the annihilation cross-section, the WIMP luminosity is independent
of the annihilation cross-section in stars where capture and annihilation are
in equilibrium at the time of maximum annihilation luminosity. Because v�

and v̄ are relatively large in the RSC, WIMP luminosities show a strong
dependence upon the WIMP mass.

Lines in Fig. 2 do not all extend to log10 ρχ = 11. This is because
as WIMP luminosity becomes a more significant contributor to a
star’s energy generation, the stellar models become steadily more
difficult to converge. In many cases, we had to very carefully adjust
the initial time-steps in order to converge models near the ends
of tracks in Fig. 2. In some cases we either could not obtain initial
convergence or could not properly maintain it until one of the criteria
above was met. Results from such models were discarded.

We performed control calculations on a single solar mass star with
different WIMP masses and annihilation cross-sections (Fig. 3).
When capture and annihilation have equilibrated in a star, the WIMP
luminosity effectively depends on the capture rate alone, which is in-
dependent of the annihilation cross-section (cf. equations 2.14, 2.15
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Figure 4. Evolutionary tracks followed in the HR diagram by stars of various masses, when WIMPs provide different fractions of their total energy budgets.
Filled, unlabelled circles indicate the starting points of tracks, whilst labelled ones give indicative ages during the evolution of 1.4 M� stars. Tracks have been
halted when the star exhausts the supply of hydrogen in its core or reaches the current age of the Universe. Stars with a greater luminosity contribution from
WIMPs push further up the Hayashi track and spend longer there before returning to the main sequence. Stars which come to be entirely dominated by WIMP
annihilation (bottom right-hand panel) evolve quickly back up the Hayashi track and halt, holding their position in the HR diagram well beyond the age of the
Universe.

and 2.19), so we see that 〈σ av〉0 makes no difference to the amount
of energy generated. When equilibrium has not been achieved, this
will not be the case. Such an effect can be seen in the slight upturn
of the WIMP luminosity in the uppermost curve of the upper panel
in Fig. 3. In this case the very high ρχ and very low 〈σ av〉0 sig-
nificantly change the stellar structure before equilibrium has been
reached, causing LW to peak prior to equilibrium. The dependence
of LW on mχ in Fig. 3 shows roughly an inverse square relationship,
which is a result of using the full capture expressions in the RSC.
As can be seen from careful inspection of equation (2.19) for ex-
ample, for small v̄ and v� such as those used in the context of the
early Universe by e.g. Iocco (2008) and Freese et al. (2008a), the
dependence disappears.

In Figs 4 and 5 we show evolutionary tracks in the HR and
central equation-of-state diagrams of stars with different masses
and WIMP luminosities. At low WIMP luminosities, the evolution is
essentially normal. As WIMPs are allowed to provide more energy,
the negative heat capacity of a star causes it to expand and cool.
The central temperature and density drop, nuclear burning reduces
and the star moves some distance back up the Hayashi track. The
reduction in central temperatures and overall luminosities provided
by pp-chain and CNO-process hydrogen burning are illustrated in
Fig. 6. These values are taken at the time tadjust when a star has
completed its initial reaction to the presence of WIMPs, which

corresponds to the central temperature and density reaching their
minima and the star arriving at the bottom leftmost point of its travels
in Fig. 5. At very high WIMP luminosities, the stellar core expands
and cools drastically, moving stars a long way back along the pre-
main sequence and effectively shutting down nuclear burning all
together. Such an object becomes a fully fledged dark star, powered
entirely and perpetually by WIMP annihilation.

At intermediate WIMP luminosities, nuclear burning is sup-
pressed rather than completely extinguished. Its continued contri-
bution to nuclear processing slowly raises the core temperature and
density once more, in turn increasing the rate of nuclear reactions
and accelerating the process. The star burns hydrogen alongside
WIMPs, and goes on to evolve through a hybrid WIMP-hydrogen
main sequence. Such evolution can be best seen in the bottom left-
hand panel of Fig. 4. Thanks to the energy input from WIMP anni-
hilation, the time it takes such a star to consume its core hydrogen
is lengthened, so its effective main-sequence lifetime is extended
(Fig. 7). The increase in main-sequence lifetime is notable at all
metallicities, but most prominent at low Z, essentially because nor-
mal main-sequence lifetimes are shorter at lower metallicity. We
did not see changes with metallicity in the central temperatures,
pp-chain or CNO luminosities of the stars in our grid.

We should point out here that in the extreme case of a very
large WIMP luminosity, it is highly questionable whether a star
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Figure 5. Evolutionary tracks followed in the central equation-of-state diagram by the stars of Fig. 4. Filled circles indicate the starting points of the tracks.
Dashed lines show the location at which hydrogen burning becomes the dominant energy source, which defines the ZAMS. To the bottom left-hand side of
this line, the core is too cool and diffuse to support the star by nuclear burning alone. Stars with a greater luminosity contribution from WIMPs push further
into this region as they ascend the Hayashi track and their cores cool and expand, and thus take longer to recontract and return to the main sequence. The slight
departure from smoothness apparent in some curves is simply due to finite temporal resolution of models.

would have ever reached the main sequence at all, or if it might
have simply halted during its initial descent of the Hayashi track.
The same might even be true of stars with intermediate WIMP
luminosities, since it is not clear whether nuclear burning will win
out over WIMP annihilation at exactly the same ages and capture
rates when a star is evolved from the main sequence as when it
is evolved from the pre-main sequence. This behaviour has been
seen explicitly by Iocco et al. (2008). We strongly suspect that
the solutions we find for high WIMP luminosities are the same as
those obtained with models begun from the pre-main sequence by
Iocco et al. (2008). We are currently investigating this question in
detail.

The greater influence of WIMP capture and annihilation upon
low-mass stars is strongly apparent in Fig. 7. Even if WIMPs sup-
ply only a tenth the energy of nuclear burning, the lifetime of a
0.8 M� star is increased by almost a billion years. With the same
ratio of WIMP-to-nuclear burning, the lifetime of a 2.0 M� star
is unchanged. Considering that according to Fig. 2, roughly an or-
der of magnitude more DM is required for a 2.0 M� star to even
achieve the same WIMP-to-nuclear burning ratio as a 0.8 M� star,
lower stellar mass is clearly a highly favourable property in the
observational search for dark stars.

In Fig. 8 we show the extent of convection at t = tadjust in stars
of various masses, as the WIMP luminosity is increased. Because

WIMP annihilation is far more concentrated at the centre of a star
than nuclear burning, stars with higher WIMP-to-nuclear burning
ratios exhibit steeper radiative temperature gradients in their cores.
This produces convective cores of increasing size, as the height over
which the temperature gradient is superadiabatic increases. In par-
allel, the overall cooling and expansion of the star results in cooler
surface layers, increasing the H− concentration and opacity and re-
sulting in progressively deeper surface convection zones. At high
enough WIMP luminosities the two zones meet and the star becomes
fully convective. At lower metallicities, the promotion of convection
is deferred until significantly higher WIMP luminosities, with the
effect strongest in higher mass stars. As an example, a 0.4 M� star
at Z = 0.02 becomes fully convective at log10 [LW,max/Lnuc(0)] ≈
−0.1, and requires log10 [LW,max/Lnuc(0)] ≈ 0.3 at Z = 0.0003. A
1.4 M� star on the other hand requires log10 [LW,max/Lnuc(0)] ≈
0.8 at Z = 0.02, but log10 [LW,max/Lnuc(0)] > 2 at Z =
0.0003.

We plot the dimensionless WIMP conductive effectiveness E

(equation 2.46) at t = tadjust for the full range of WIMP luminosities
and stellar masses in Fig. 9. Despite the Knudsen-dependent and ra-
dial suppression factors (equations 2.41 and 2.44), the contribution
of WIMP conductive energy transport turns out to be non-negligible
over a significant part of the parameter space. In fact, we see that
for high-mass stars dominated by annihilation rather than nuclear
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Figure 6. Central temperatures (top) and total luminosities provided by
hydrogen fusion via the pp-chain (middle) and CNO-process (bottom), as
a function of the luminosity provided by WIMP burning. Central tempera-
tures and hydrogen-burning luminosities are as measured at tadjust, the point
at which a star has just completed its initial adjustment to the presence of
WIMPs in its core. This corresponds to the time at which models’ evolu-
tionary paths have reached their bottom leftmost points in Fig. 5. Rates of
energy production from hydrogen burning are expressed as fractions of their
initial values.

energy, it outstrips all other stellar energy terms by up to a fac-
tor of 10. At lower metallicities, the values of E become slightly
larger, with the effect increasing with stellar mass. This result
suggests that a comparable treatment of WIMP energy transport
should be included in future studies of Population III dark star
evolution.

A number of numerical features complicate the interpretation of
Figs 6–9. To be able to simulate a grid of ∼3500 stars and produce
a manageable amount of output data, we chose only to save model
data every tenth time-step. This meant the resolution available for
choosing the points at which to define LW,max and tadjust was not
as high as it could have been. The effect upon tadjust was greater
than on LW,max, as it was compounded by the fact that tadjust is not
as simply found as its definition would have one believe. In cases
where the equilibration time-scale is long, tadjust can be comparable
to or longer than τ eq. When this happens, tadjust and τ eq begin to
lose meaning, as the adjustment alters the capture rate, which feeds
back on the adjustment. This only occurs when C(t) and A(t) are
of intermediate size, because even though τ eq is at its longest when
C(t) and A(t) are very small, very little adjustment is necessary in
this case so tadjust is also very small. The upshot of all this is that a
small amount of noise appears in Figs 6, 8 and 9. For the sake of
aesthetics, we recomputed individual evolutionary tracks in Figs 4
and 5 with data saved every time-step.

For 1.0 and 1.2 M� stars, the reference CNO-process luminosity
extracted at t = 0 in Fig. 6 was somewhat overestimated, due to the
initial relaxation of the stellar models. The CNO process is only just
present in 1.0–1.2 M� stars, and extremely temperature sensitive, so
is very likely to be significantly altered during numerical relaxation.
The overestimation is the reason curves for 1.0 and 1.2 M� do not
tend properly to zero at low WIMP luminosities in the lower panel
of Fig. 6.

Despite extensive prior testing, we found that our stopping cri-
terion (ii) was sometimes not quite stringent enough. Occasionally,
models were halted which would have just managed to leave the
main sequence in less than the age of the Universe. We removed a
small number of stars we suspected this of having influenced from
the grid. As a result, the exact slopes of the steepest parts of the
curves for higher masses in Fig. 7 are somewhat uncertain.

Some noise also exists in the plots of Fig. 7, simply due to the
finite temporal resolution of the models. Time-steps typically be-
come longer once a star nears the end of the main sequence, so some
temporal ‘overshoot’ can occur before criterion (i) is triggered. As
always, our choice of the internal time-step scaling was a com-
promise between obtaining the smoothest results and being able to
compute a reasonable number of models in a tractable timeframe
(proper treatment of WIMP capture makes dark stellar evolution far
more time consuming than standard evolution).

For a small window of WIMP densities, we also found that
stars underwent seemingly random expansion and recontraction
events during their evolution on the hybrid WIMP-hydrogen main
sequence. Suggestively, these windows correspond approximately
to the areas where we were unable to find solutions using our static
code (Fairbairn et al. 2008). The results of the static code sug-
gest that this window can be thought of in the following way: for
a particular ambient density of WIMPs, if one tries to obtain a
static solution, one may find that two solutions exist for a WIMP-
burning star. The first solution corresponds to a star where the
central temperature is rather close to that of a normal star of the
same mass, such that the WIMPs are spread over a larger volume
according to equation (2.25). Because the WIMPs are spread over
a larger volume, their annihilation is less centralized and the spatial
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Figure 7. Main-sequence lifetimes of stars with differing masses, metallicities and WIMP luminosities. Dashed lines indicate the present age of the Universe.
Stars with a greater fraction of their energy provided by WIMPs consume hydrogen more slowly, so spend more time on the main sequence. For a given
WIMP-to-nuclear burning ratio, the lifetimes of stars with lower masses and metallicities are more affected than their more massive, metal-rich counterparts.

distribution of their energy release into the star is closer to that of
normal nuclear burning. The core temperature of the star is therefore
not reduced very much and the solution is self-consistent. The sec-
ond solution occurs when the WIMPs are localized in a small region
in the centre of the star because the central temperature is low. The
low central temperature is what would be expected if energy were
input into a small region at the centre of the star, so this solution is
also self-consistent. This situation arises primarily for larger mass
stars, partially due to the extreme temperature dependence of the
CNO process which dominates nuclear burning in such stars.

The existence of two solutions with the static code suggests that
we might expect evolution in this region of parameter space to be
unpredictable when looked at with a time-dependent code. For ex-
ample, stars might exhibit genuine periodic or chaotic variability,
or could become numerically unstable. By reducing the internal
time-step scaling and employing the reconvergence mode, we es-
tablished that the apparently random expansions and contractions
are numerical artefacts caused by insufficient temporal resolution;
given sufficiently small time-steps, the time-dependent code seems
to follow a path intermediate to the two solutions appearing in the
basic static code. The borderline stability of the stellar structure
in this region when treated with a code which assumes hydrostatic
equilibrium (as DARKSTARS does) suggests that such stars might ex-
hibit some true physical variability after all, but due to dynamical
effects only capturable with a full hydrodynamic code. If there is
interesting variable behaviour in this region then, it probably occurs
on a time-scale smaller than can be resolved by DARKSTARS.

The evolution of such stars over an entire lifetime seems largely
unaffected by the excursions, so we are confident that the over-
all results of the grid still accurately reflect the general properties
of main-sequence dark stars. However, the excursions do further
complicate the task of automatically choosing tadjust, adding further
noise to Figs 6, 8 and 9.

4 TH E G A L AC T I C DA R K M AT T E R H A L O

In order to simulate the accretion of DM by stars at the Galactic
Centre, one should understand its distribution in the Milky Way. In
particular, the density and velocity distribution of DM both play a
role in determining the capture rate.

4.1 Density

Density profiles of DM haloes have been a topic of computational
study for over a decade (Navarro, Frenk & White 1996; Moore
et al. 1999; Navarro et al. 2004; Diemand, Kuhlen & Madau 2007).
As N-body simulations have been run on computers of ever in-
creasing speed, a standard lore for the expected distribution of DM
in haloes of all sizes has developed. Two conclusions that seem
to be universally accepted are that DM is denser in the centre of
halo simulations, and that the logarithmic gradient of the density
γ = d ln ρ/d ln r is more negative in the outer parts of simulated
haloes than the inner parts. A popular parametrization is the ‘NFW
profile’, which interpolates smoothly between asymptotic values
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Figure 8. The extent of convection at t = tadjust in stars of different masses as the energy from WIMP annihilation in their cores is increased. Shaded areas
indicate regions in which the stellar energy transport is convective; elsewhere, transport is radiative. Stars develop and extend their convective cores and
envelopes as the WIMP luminosity is increased, eventually becoming fully convective at high values of LW,max. Less massive stars require a smaller ratio
of annihilation to fusion energy to alter their convective properties than heavier stars. Plots in different panels extend over slightly different ranges of the
WIMP-to-nuclear burning ratio, according to which models we were able to converge. Not shown is the dependence upon metallicity: at lower metallicities,
the onset of convection is deferred to higher WIMP luminosities, with effects greatest in higher mass stars.

of γ = −1 in the inner regions of the halo and γ = −3 in the
outer regions (Navarro et al. 1996). Navarro et al. (2004) have since
suggested that a better profile would in fact be one where γ varies
smoothly with radius, and does not asymptote to any particular
value at large nor small radii; such a profile has been advocated
by various authors since the 1960s (see Merritt et al. 2006, for an
historical account).

Most simulations only include DM, since considering collision-
less particles does not require the complicated hydrodynamics nec-
essary to model baryons. The presence of baryons is expected to
change the distribution of DM: since the baryons are able to lose en-
ergy end sink into the middle of a galaxy, they create a potential well
which subsequently pulls the DM into the central region. This phe-
nomenon of adiabatic contraction was first predicted by Zel’dovich
et al. (1980), and formalized by Blumenthal et al. (1986). More
recently, it has been realized that the non-circular nature of typical
DM orbits reduces this effect, but does not remove it (Gnedin et al.
2004). In order to calculate the expected density profile of DM in a
given galaxy, it is therefore necessary to take a DM halo from an N-
body simulation of an appropriately sized galaxy, then adiabatically
contract it using the galaxy’s observed baryonic profile. This should

be done taking into account the non-circular nature of the DM or-
bits (Gnedin et al. 2004; Gustafsson, Fairbairn & Sommer-Larsen
2006).

This prescription gives a more realistic estimate of the expected
DM density in the central regions of a real galaxy than the results
of a collisionless N-body simulation (for a comparison of results
obtained using this procedure with pure DM haloes and those from
simulations which also include baryons, see Gustafsson et al. 2006).
The typical effect of such a contraction is to draw DM deeper into
the central part of the galaxy, changing the inner slope of the density
profile.

As one approaches the centre of a galaxy like the Milky Way
from a large distance, the gravitational potential is first dominated
by the diffuse DM halo. Approaching the central bulge, the gravi-
tational potential of the concentrated baryonic mass becomes more
important. If the current understanding of the DM distribution in the
Milky Way is correct, the changeover occurs at a radius of the same
order of magnitude as the solar position. In the centremost regions,
the supermassive black hole determines the gravitational dynamics.
The density of DM is thought to rise continuously towards the cen-
tre of the galaxy, but at radii much less than the solar position, its
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Figure 9. The significance of conductive energy transport by WIMPs,
as measured by the dimensionless WIMP conductive effectiveness (equa-
tion 2.46). A value of 0 on the y-axis roughly indicates that conductive
energy transport by WIMPs is as important as all other energy sources in the
star combined. At high WIMP luminosities, the importance of conduction
by WIMPs can be comparable to or even greater than that of actual energy
sources. Not shown is the fact that E becomes slightly larger at lower metal-
licity, with the effect increasing with stellar mass. This strongly suggests that
conductive energy transport should be taken into account when simulating
massive metal-free stars.

gravitational influence is always dwarfed by that of baryons or the
central black hole.

In the central parsec, where the black hole starts to dominate
the gravitational potential, the DM profile depends upon a number
of factors. One is simply the density of DM at larger radii, which
forms an initial condition for the central density profile. If the black
hole forms in situ, it may create a miniature adiabatic contraction
of the local DM profile, leading to a central spike where the density
gradient is steeper than in the rest of the galaxy. Immediately after
its formation, the density of DM in such a spike can be extremely
high (Gondolo & Silk 1999). The spike is expected to diffuse away
over time due to DM self-annihilation, loss of DM as it falls into
the black hole and heating of the DM by gravitational interactions
with stars.

These different effects can be incorporated into a diffusion equa-
tion that gives rise to a final prediction for the density of DM near
the central black hole (Bertone & Merritt 2005). In this paper we
will consider two DM density profiles, both approximations to the
profiles presented by Bertone & Merritt (2005). These approxima-
tions correspond to profiles B and C used by Bergström, Fairbairn
& Pieri (2006). The ‘NFW + spike’ profile is a standard NFW
γ = 1 profile with a central spike which has diffused away over
time, considerably reducing its density. The ‘AC + spike’ profile
has undergone adiabatic contraction on galactic scales due to the
presence of baryons, and also has a central spike which was allowed
to diffuse away over time. Both profiles can be parametrized by the
expressions

ρχ (r) = ρχ (100 pc)
( 100 pc

r

)γ1
r > rout,

ρχ (r) = ρχ (rout)
(

rout
r

)γ2
rout > r > rin,

ρχ (r) = ρχ (rin) rin > r,

(4.1)

Table 1. Parameters for the density profiles defined by equations (4.1),
which are approximations to the profiles presented by Bertone & Merritt
(2005).

Profile ρχ (100 pc) γ 1 γ 2 rout rin

NFW + spike 25 GeV cm−3 1 1.85 7 × 104 RBH 10 RBH

AC + spike 360 GeV cm−3 1.5 1.82 7 × 104 RBH 10 RBH

where parameters are listed in Table 1. Note that following adiabatic
contraction, the smoothly varying profile advocated by Navarro
et al. (2004) can become almost as steep in the central region as an
equivalently contracted NFW profile, depending upon the angular
momentum of the DM particles.

4.2 Velocities

Having obtained some estimates of the possible densities of DM
at the Galactic Centre, we must also think about its velocity dis-
tribution, which has a strong bearing upon the number of particles
captured by stars.

Various estimates of the velocity distribution exist in the litera-
ture. For direct detection experiments such as CDMS, Xenon and
COUPP to be able to easily compare results, the DM halo is typi-
cally assumed to be the isothermal RSC, with a radius-independent
Keplerian velocity. In this case, the velocity dispersion is set by
the Keplerian velocity at the solar position (v̄ = √

3/2 v� =
270 km s−1), and acts as the width for a Gaussian distribution of
velocities which is identical at every position.

As already mentioned, the highest resolution N-body simulations
do not predict an isothermal halo, but rather one where the loga-
rithmic density gradient close to the centre of the galaxy is much
less than −2. The Keplerian velocity in such a halo would there-
fore decrease to zero at the core, which would increase the rate at
which DM would be accreted by stars. In a real galaxy however,
the DM is a subdominant component at these small Galactic radii,
and the presence of stars and the central black hole increases the
gravitational potential there.

Our default assumption is that the velocity distribution of DM
is isotropic, spherically symmetric, Gaussian and has a dispersion
set by the Keplerian velocity in the solar vicinity. None of these
assumptions is strictly correct, as we shall discuss shortly. Our sim-
plest attempt to improve the realism of the velocity distribution
is to exclude velocities above the local Galactic escape velocity,
as WIMPs with such velocities would presumably already have
left the Galaxy some time earlier. We therefore truncate the veloc-
ity distribution at the local escape velocity (in the rest frame of
the Galaxy), which terminates the Maxwell tail of the distribution.
Given a generic WIMP velocity distribution g0(u), seen in the rest
frame of the galaxy, the equivalent truncated distribution will be

ggal,0(u) = ρχ

mχ

g0(u)θ (ugal − u)∫ ∞
0 g0(u′)θ (ugal − u′) du′ , (4.2)

where ugal is the local escape velocity, and the integral ensures the
new distribution remains correctly normalized. For a star at rest
with respect to the Galactic halo, this then brings the capture rate
(equation 2.2) to the form

C(t) = 4πD−1

∫ R�

0
r2

∑
i

∫ min[ugal,umax,i (r,t)]

0

g0(u)

u

×w�−
v,i(w) du dr. (4.3)
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The normalization factor D is

D = mχ

ρχ

∫ ugal

0
g0(u) du. (4.4)

Working from equation (2.12), in the case of an isothermal velocity
distribution this becomes

D = 4√
π

(
3

2

)3/2 ∫ ugal

0

u2

v̄3
exp

(
− 3u2

2v̄2

)
du

= erf

(
ugal

v̄

√
3

2

)
−

√
6

π

ugal

v̄
exp

(
− 3u2

gal

2v̄2

)
. (4.5)

To find the capture rate in the frame of a star moving relative
the Galactic rest frame, we need to transform ggal,0(u) to some
equivalent ggal,∗(u) via an appropriate Galilean transform, in analogy
with the step from equation (2.12) to equation (2.13), then consider
what ugal becomes in the frame of the star. The maximum velocity
any WIMP from a distribution cut-off at ugal can have in the galactic
frame is obviously ugal. In the frame of the star though, WIMPs
coming from e.g. the direction in which the star is moving through
the halo can appear with much greater speed than those coming
from ‘behind’ the star. If an incoming WIMP has speed u0 and
velocity in the direction of the unit vector eW in the galactic frame,
we see that its velocity u� in the star’s frame is

u� = u0eW − v�

⇒ u ≡ |u�| =
√

(u0eW − v�)2

∴ u <
√

(ugaleW − v�)2 = (
u2

gal + v2
� + 2ugalv� cos ϕ

)1/2
.

So in the star’s frame, we have

ugal −→ ugal,�(ϕ) = (
u2

gal + v2
� + 2ugalv� cos ϕ

)1/2
, (4.6)

where ϕ is the angle in the galactic frame between the motions of the
WIMP and star, such that ϕ = 0 corresponds to a head-on collision.
This then poses something of a problem, as in the analogous case
of the isothermal distribution, ϕ had to be implicitly integrated over
in the first place to obtain the integrand (equation 2.13) for which
this new cut-off velocity is the limit. The solution to this is either to
develop some sort of approximate averaging scheme, or to just do
the integral over ϕ explicitly, after the integral over u. In this case,
the expression for capture of a truncated isothermal distribution of
WIMPs by a moving star is

C(t) = 8
√

π

(
3

2

)3/2
ρχ

mχ

D−1

∫ R�

0
r2

∑
i

∫ 1

−1

∫ ucut,i

0

u

v̄3

×w�−
v,i(w) exp

[
− 3

2v̄2
(u2 + v2

�

+ 2uv� cos ϕ)

]
du d(cos ϕ) dr, (4.7)

where

ucut,i(ϕ, r, t) ≡ min[ugal,�(ϕ), umax,i(r, t)]. (4.8)

As in the non-truncated case, the velocity integral in equa-
tion (4.7) can be performed analytically, yielding the truncated
analogues of equations (2.14)–(2.19)

C(t) = 4πD−1

∫ R�

0
r2

∫ 1

−1

∑
i

[Mi(ucut,i(ϕ, r, t))

− Mi(0)] d(cos ϕ) dr, (4.9)

where

Mi(u) = 2σini(r, t)ρχμ2
+,iE0,iK

3/2

m2
χμi

√
π

{√
πKv� cos ϕ

[
�(H )

× eK2v2
� cos2 ϕ/(K+H )−Kv2

�−Hv(r,t)2
(K + H )−3/2

−�(G)eK2v2
� cos2 ϕ/(K+G)−Kv2

� (K + G)−3/2

]

+ e−2Kuv� cos ϕ−K(u2+v2
� )−H (u2+v(r,t)2)(K + H )−1

− e−2Kuv� cos ϕ−K(u2+v2
� )−Gu2

(K + G)−1
}

, (4.10)

�(X) ≡ erf

{
u(K + X) + Kv� cos ϕ√

K + X

}
(4.11)

for heavier elements, and

MH(u) = σHnH(r, t)ρχK−1/2

2mχ

√
π

⎧⎨
⎩2

[
μ2

−,i

μi

− Kv(r, t)2

+ K
μ2

−,i

μi

(u2 − uv� cos ϕ + v2
� cos2 ϕ)

]

× e−2Kuv� cos ϕ−K(u2+v2
� ) + v� cos ϕ

√
πK

×
[

3
μ2

−,i

μi

− 2Kv(r, t)2 + 2Kv2
� cos2 ϕ

μ2
−,i

μi

]

× erf[
√

K(u + v� cos ϕ)]e−v2
�K sin2 ϕ

⎫⎬
⎭ (4.12)

for hydrogen. This gives the machinery necessary to calculate
the capture rate for a truncated isothermal (Gaussian) velocity
distribution.

The fact that we do not expect the velocity distribution to be
Gaussian in reality is related to the fact that one only expects a
Gaussian distribution in the limit of an extensive distribution of
particles, such as an ideal gas. For particles coupled to a long-range
potential such as gravity, this is not the case. It has been suggested in
the literature that the Tsallis distribution, one designed specifically
to model the departure from extensivity, is a better fit to the data
than a Gaussian (Hansen et al. 2006).

Furthermore, there are good reasons to believe that the radial
distribution of DM will have a different width to the tangential
distribution, since the orbits of DM particles are far from circular.
For a star on a non-circular orbit around the centre of the Galaxy,
this could have important consequences.

Finally, it is interesting to test the truth of the assumption that the
velocity dispersion is fully determined by the Keplerian velocity at
the solar position. The relationship between the Keplerian velocity,
the velocity distribution and its anisotropy depends upon the shape
of the potential well of the galaxy; the anisotropy in the velocity
distribution can be obtained from the Jeans equations (Fairbairn &
Schwetz 2008).

In order to quantify the departures from the isothermal halo
model, we have examined data from the Via Lactea simulation
(Diemand et al. 2007). This N-body simulation contains more than
2 × 108 DM particles, and is one of the largest simulations of a
Milky Way sized DM halo to date. As suspected, the results do
indeed show that all four of the simplifying assumptions involved
in the isothermal halo model (isotropy, spherical symmetry, Gaus-
sianity and a dispersion proportional to the Keplerian velocity at the
solar position) are essentially incorrect. To obtain a new velocity
distribution from the data, we looked at the velocities of particles at
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different radii. We attempted to fit the distributions with the Tsallis
profile of Hansen et al. (2006), but found that although this does
provide a better fit than a Gaussian, the following one-dimensional
distribution is an even better fit:

h1D(ui) = exp

⎧⎨
⎩ −

[
1

2

(
ui

σi

)2
]αi

⎫⎬
⎭, (4.13)

where i ∈ {r, θ , φ} and ui is the velocity in the ith direction in
Galactic coordinates. No normalization pre-factor has been included
here. The parameter α measures the departure from Gaussianity and
is distinctly different for the one-dimensional velocity distributions
in the radial and angular directions. The values of α for the radial
distribution (αr ) and a composite tangential distribution (αT, where
u2
T ≡ u2

θ + u2
φ) can be found as a function of radius in Fairbairn

& Schwetz (2008). The ratio of the velocity dispersion to the local
Keplerian velocity (vKep, or more precisely, the square root of the
potential since the halo is not completely spherically symmetric) is
also a function of radius and can be found in Fairbairn & Schwetz
(2008).

These distributions become less Gaussian as one approaches the
Galactic Centre, with α � 1 in the region we are most interested
in. One should be careful not to take this result overly seriously
though; not because the physics of the simulation is in doubt (above
the ∼0.1 kpc resolution scale), but rather because the simulation
only includes DM. The velocity dispersion at the centre of an NFW
profile goes to zero, whereas in a real galaxy, the presence of baryons
and the central black hole would be expected to change the velocity
distribution quite significantly. We do not make any strong claims
as to the fitness of this non-Gaussian velocity distribution for mod-
elling the very centre of the Galaxy; we employ it more with the
goal of determining what degree of uncertainty exists in our capture
results due to the velocity distribution.

In order to reasonably calculate the effect of the non-Gaussian
distributions upon capture rates, we require a composite distribu-
tion of total velocity magnitudes in three dimensions. Since the
fitted values of α and σ/vKep become almost isotropic at low Galac-
tic radii, for this purpose we can set them to the same values in the
radial and angular directions. We choose these values as the means
of the fitted values in each spatial direction, for the smallest Galactic
radius at which we fit the velocity distribution (1 kpc). This gives
α = 0.35 and σ/vKep = 0.05. At the Galactic Centre, vKep is domi-
nated by the black hole, so

σ = 56.8 km s−1 ×
(

0.01 pc

r

)1/2

. (4.14)

To obtain a three-dimensional distribution purely as a function of
the velocity magnitude

u ≡
√

u2
r + u2

θ + u2
φ, (4.15)

we take the product of the three one-dimensional distributions, con-
vert to local spherical polar coordinates and integrate over the an-
gular directions. This gives

h3D(ur, uθ , uφ) = 4πu2 exp

[
− 1

(2σ 2)α
(
u2α

r + u2α
θ + u2α

φ

)]
.

(4.16)
When α = 1, this clearly produces a Gaussian distribution of veloc-
ity magnitudes. For α 
= 1, we can express u2

r , u2
θ and u2

φ in terms
of one another and u2, then expand to second order in a binomial
series to produce(
u2 − u2

i − u2
j

)α = u2α − αu2(α−1)
(
u2

i + u2
j

)
, (4.17)

where i and j are different members of the set {r, θ , φ}. This gives

u2α
r + u2α

θ + u2α
φ = (3 − 2α)u2α. (4.18)

Normalizing over u ∈ [0, ∞) gives the final three-dimensional ‘N-
body’ velocity distribution

h3D(u) = 3(3 − 2α)3/2α

23/2�[1 + 3/(2α)]

ρχ

mχ

u2

σ 3

× exp

⎧⎨
⎩ − (3 − 2α)

[
1

2

(
u

σ

)2
]α

⎫⎬
⎭. (4.19)

Whilst this expression breaks down at third order in the binomial
expansion, we expect it to be a reasonable approximation given the
level of uncertainty in choosing realistic values of α and σ/vKep.
We now have a three-dimensional velocity distribution as a func-
tion of the local Keplerian velocity, which can be inserted into
equation (2.2) to obtain the capture rate. Putting equation (4.19)
into equation (4.3) instead, one obtains the capture rate from an
equivalent truncated distribution, which is also a function of the
local escape velocity.

5 THE GALACTI C POTENTI AL

To calculate DM capture rates, it is extremely important to know
the stellar velocity v� through the DM halo. In order to correctly
truncate the velocity distribution of the DM, one also needs to know
the local Galactic escape velocity umax.

The orbital velocities are rather simply obtained. Within a few
tenths of a parsec, the Galactic potential is dominated by the central
black hole. All the elliptical orbits we will consider lie within one
fiftieth of a parsec, so they can be treated as exactly Keplerian about
a point mass black hole.

Calculating the escape velocities is more arduous, as we need
to integrate the potential experienced by a test particle exiting the
Galaxy. It is important to consider not only DM but also the presence
of baryons, which dominate the potential from around 0.5 pc to
several kpc. To model the baryon density of the Milky Way we
use the same prescription as Gustafsson et al. (2006), assuming a
central bulge of stars with density ρ ∝ r−γ e−r/λ. We assume a thin
disc of matter with surface density

σdisc(r) = cMdisc∞

2π
(
r2 + c2

)3/2 . (4.20)

We choose the free parameters to match observations of the Milky
Way: γ = 1.85, λ = 1 kpc, c = 5 kpc and the total disc and
bulge masses Mdisc∞ = 5Mbulge = 6.5 × 1010 M� (Kent, Dame
& Fazio 1991; Zhao 1996; Dehnen & Binney 1998; Klypin, Zhao
& Somerville 2002). We assume that the extent of the disc is 15 kpc.
We use an NFW profile with a scale radius of 20 kpc for the DM,
normalized to 0.3 GeV cm−3 at the location of the solar system, and
find the local escape velocity by integrating the energy loss along a
radial path exiting the Galaxy.

6 IMPAC TS ON STARS AT THE G ALAC TIC
C E N T R E

Armed with detailed estimates of the stellar orbits, local escape
velocity, density of DM and its velocity distribution at the Galactic
Centre, we can now realistically evaluate the potential impact of
WIMPs upon stellar evolution there. We ran two further grids of
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evolutionary models, both at Z = 0.02 and over 0.3 M� ≤ M� ≤
1.5 M�. We computed models in both grids using the NFW + spike
and AC + spike profiles from Section 4.

6.1 Circular orbits

The first grid covered single stars on circular orbits, with orbital
radii extending from 10 to 10−6 pc. For this grid we used the stan-
dard, non-truncated version of the isothermal velocity distribution
(equation 2.13). Results for models computed with the AC + spike
density profile are shown in Fig. 10. As orbits are made smaller,
capture rates rise because stars encounter higher densities of DM.
This effect is balanced by a reduction in capture caused by stars’
increasing circular velocities as they orbit closer to the black hole.
The capture rate and resultant WIMP luminosity peaks at an orbital
radius of ∼0.3 pc. Inwards of this the velocity effect dominates and
capture is highly suppressed. The constant WIMP luminosities at
very small radii in Fig. 10 are entirely due to the initial populations
of WIMPs that the models were started with.

We evolved some supplementary models (dashed curve in Fig. 10)
with the truncated isothermal distribution (equation 4.2 applied to
equation 2.12), to see if capture might be boosted to interesting
levels by removing unphysical WIMP velocities. On the contrary,
the truncation of the isothermal WIMP velocity distribution caused
a strong reduction in capture rates. Stars moving as quickly as those
on circular orbits near a black hole must capture predominantly
from the Maxwell tail of the isothermal distribution, so truncation
denies them many of their best capture candidates. The opposite
is true of a star in the RSC, which captures from the centre of the
distribution and benefits (slightly) in capture rate if the distribution
is truncated and renormalized.

If it follows a circular orbit in an isothermal WIMP halo, even
the lowest mass single star, placed at the optimal radius in the most

Figure 10. WIMP luminosities achieved by stars orbiting circularly about
the central black hole. The DM velocity distribution is isothermal with
dispersion v̄ = 270 km s−1, and the density profile follows the adiabatically
contracted profile (AC + spike). The impact of instead using a velocity
distribution truncated at the local Galactic escape velocity is shown with
a dashed curve. Capture is maximized at a radius of approximately 0.3 pc,
but no circular orbit produces capture rates high enough to translate into
a WIMP luminosity which can produce any significant changes in stellar
evolution. WIMP luminosities produced with the alternative density profile
(NFW + spike) are even lower, so are not shown.

optimistic density profile, cannot accrete enough WIMPs to bring
annihilation luminosity to within two orders of magnitude of its nu-
clear luminosity. We do not show WIMP luminosities resulting from
the NFW + spike density profile, as they are even less interesting
due to the profile’s lower central density.

6.2 Elliptical orbits

The primary assumptions of the previous grid were that stars al-
ways follow circular orbits, and that the halo is isothermal. We
know these to be untrue in reality, so in the second grid we con-
sidered the effects of elliptical orbits and a non-Gaussian velocity
distribution.

This grid consisted of single stars on orbits with various elliptic-
ities, within three classes: orbits with periods P = 10 yr, orbits with
P = 50 yr and orbits where the maximum star–black hole separation
was 0.01 pc. The galactocentric distances at periapsis and apoapsis
(rmin and rmax, respectively) of each of the orbits we considered for
this grid are given in Table 2. The maximum eccentricity in each
class was chosen so as to ensure that stars did not come within five
Scwharzschild radii of the centre of the black hole, ensuring that
relativistic corrections to the orbit were not critical.

The early evolution of one of the stars from the grid is shown in
the left-hand panel of Fig. 11. The initial flat sections of curves are
where the star was held at a constant galactocentric radius for the
first three time-steps to allow the model to properly relax. Capture
and annihilation occur in punctuated stages, clearly correlated with
the orbital period. Strikingly, the times of greatest capture are in
fact when the star is farthest from the centre of the Galaxy, at
apoapsis. This is because it has had a chance to slow down relative
to the DM halo, and achieve a significant capture rate for a time
before plummeting back down towards the black hole. By the time
it reaches periapsis, the star is moving so quickly that capture is
essentially zero, regardless of how high the DM density is.

Because following the dark evolution of a star on such an orbit is
extremely time consuming, we evolved the models in this grid for
just five full orbits each, then calculated the average capture rates
achieved over this time. We explicitly assume that given identical
initial mean capture rates, the long-term evolution of a star on a
short-period elliptical orbit would be the same as the evolution of

Table 2. Orbits considered in Section 6.2, along which we
evolved stars in Figs 11–13.

Orbit class e rmin (pc) rmax (pc)

P = 50 yr 0 9.49 × 10−3 9.49 × 10−3

0.5 4.74 × 10−3 1.42 × 10−2

0.9 9.49 × 10−4 1.80 × 10−2

0.99 9.49 × 10−5 1.89 × 10−2

0.999 9.49 × 10−6 1.90 × 10−2

0.9998 1.90 × 10−6 1.90 × 10−2

P = 10 yr 0 3.24 × 10−3 3.24 × 10−3

0.5 1.62 × 10−3 4.87 × 10−3

0.9 3.25 × 10−4 6.17 × 10−3

0.99 3.25 × 10−5 6.46 × 10−3

0.999 3.25 × 10−6 6.49 × 10−3

0.9995 1.62 × 10−6 6.49 × 10−3

rmax = 0.01 pc 0 1.00 × 10−2 1.00 × 10−2

0.5 3.33 × 10−3 1.00 × 10−2

0.9 5.26 × 10−4 1.00 × 10−2

0.99 5.03 × 10−5 1.00 × 10−2

0.999 67 1.65 × 10−6 1.00 × 10−2
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Figure 11. Evolution of a 1 M�, Z = 0.02 star on a highly elliptical orbit close to the central back hole, followed for 5 orbits in the beginning of its lifetime
(left-hand panel) and at an age of half a billion years (right-hand panel). The orbit is that listed in the final line of Table 2. DM velocities follow an isothermal
distribution with v̄ = 270 km s−1, truncated at the local escape velocity, and densities follow the AC + spike profile. WIMP capture occurs exclusively around
apoapsis despite this being the point at which the ambient WIMP density is lowest, thanks to the stars very low orbital velocity. Early in the evolution, before
capture and annihilation have equilibrated and the WIMP population has stabilized, the total population, annihilation rate and resultant WIMP luminosity
undergo punctuated increases each time the star goes through a period of capture. In the evolved star on the right-hand side, the equilibrium population of
WIMPs provides a buffer against the transient nature of capture, and the evolution is essentially smooth. Because explicitly following the evolution on an
elliptical orbit is highly time consuming, between these two plots the star was allowed to evolve on an artificial circular orbit with the same initial mean capture
rate as exhibited in the left-hand panel. Because of the finite temporal resolution, some of the peaks at periapsis are not properly resolved; because capture here
is effectively zero, this has no effect upon the evolution.

one which evolves on a circular orbit. That is, we assert that because
of the one-to-one mapping between capture rate, WIMP luminosity
and evolutionary effects discussed in Section 3, the evolution of
stars on elliptical orbits in the Galactic Centre can be predicted by
assigning them an equivalent RSC star from the grid of models we
presented earlier. Recall now our assumption in Section 2.2 that
WIMPs instantaneously thermalize with the stellar material. This
is almost certainly not a good approximation on the time-scale of
just five orbits. We therefore probably overestimate annihilation
rates and how closely they track capture during such stars’ early
years, since annihilation takes longer to catch up with capture when
instantaneous thermalization is not assumed. As our primary goal is
to predict the long-term evolution on the basis of the initial capture
rate, we do not expect this approximation to have a large impact
here. We plan to directly test all these assumptions in later papers,
using single simulations with very long runtimes and explicitly
simulating the thermalization process.

Under these assumptions, we evolved the star of Fig. 11 for a
further half a billion years with a constant equivalent RSC density
of 3 × 109 GeV cm−3, to let it fully adjust to the effects of its
captured WIMPs. We then put it back on the same elliptical orbit,
where it was allowed to evolve for a further five orbits (right-hand
panel of Fig. 11). As an evolved dark star, it continues to capture
in the same punctuated manner as during its early years. Now that
the star has built up an equilibrium population of WIMPs though,

its total population and annihilation rate are essentially immune
to the transient nature of capture. The small decrease in the total
population and annihilation rate over the 100 yr shown here is just
due to a slight mismatch between the chosen equivalent RSC density
and the actual mean capture rate on the elliptical orbit.

In an attempt to prevent very rapid changes in the capture rate,
we limited time-steps to those which would prevent the ratio ρχ/v�

shifting by more than 30 per cent in a single step. Because the
evolution code has trouble with convergence when time-steps are
reduced too far, we also had to impose a lower limit to time-steps of
0.5–1.7 yr in order to prevent the above criterion breaking conver-
gence as stars passed through periapsis. Luckily, periapsis turns out
to be the least important part of the orbit for the calculation of the
mean capture rate and the actual evolution, so the only consequence
of this is aesthetic: some of the peaks and troughs in Fig. 11 are not
fully resolved.

Fig. 12 shows the mean capture rates achieved by all stars in this
grid of models, assuming a truncated isothermal velocity distribu-
tion. Thanks to the additional capture window opened at apoapsis,
stars following elliptical orbits have their capture rates boosted by
up to 20 orders of magnitude beyond what they would have achieved
on the equivalent circular orbit. The more elliptical the orbit, the
slower the star is moving at apoapsis, so the more DM it is able to
capture. Whilst stars in the two orbital classes with constant periods
reach apoapsis further from the black hole with increasing orbital
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Figure 12. Mean capture rates achieved by stars on elliptical orbits with
periods of 50 yr (top) and 10 yr (middle), as well as orbits where the star–
black hole separation is 0.01 pc at apoapsis (bottom). DM velocities follow
an isothermal distribution with dispersion v̄ = 270 km s−1, truncated at the
local Galactic escape velocity. Capture rates are boosted by up to 20 orders
of magnitude when stars follow elliptical rather than circular orbits.

Figure 13. Mean capture rates achieved by a 1 M� star on elliptical orbits
through DM haloes with different velocity distributions. All haloes follow
the AC + spike density profile. The N-body velocity distribution results
in globally higher capture rates than the standard isothermal distribution.
Truncating the velocity distribution at the local Galactic escape velocity
decreases capture rates from the isothermal distribution, but has no impact
upon capture from the N-body distribution.

ellipticity, the reduction in capture rate caused by the resulting
decrease in DM density at apoapsis is completely outweighed by the
increase in capture brought on by the reduced star–WIMP relative
velocities. The ellipticity boost is most marked for shorter orbital
periods, as stars on shorter period orbits have the most to lose by
following circular orbits (due to their very high circular velocities),
yet the most to gain by following elliptical orbits (because they
sample regions of higher DM density).

Referring to Fig. 2, the stars of Fig. 12 evolved in the AC +
spike density profile can all break even between WIMP and
nuclear luminosity if their orbits have a period of 10 yr and
e � 0.99. A 0.6 M� star can achieve this goal even on a 50-yr
orbit, with ellipticity as low as e = 0.9, whilst a 1 M� star can do
the same for e � 0.99. With the NFW + spike density profile and
a truncated isothermal halo, stars will generally never achieve the
same level of energy output from WIMP annihilation as nuclear
burning (at least not if mχ ≥ 100 GeV; cf. Fig. 3).

In Fig. 13, we show the impacts upon capture of going beyond the
isothermal halo approximation. Here we illustrate the capture rates
achieved by a 1 M� star on 10-yr orbits through both truncated
and non-truncated versions of the N-body velocity distribution, and
compare with the corresponding capture rates from isothermal dis-
tributions. Regardless of the orbital ellipticity, capture is at least a
factor of 3 (i.e. half an order of magnitude) higher from the standard
version of the N-body distribution than from the standard isothermal
distribution. This difference blows significantly when the distribu-
tions are truncated at the local escape velocities and renormalized;
whereas the truncation reduces capture from the isothermal distri-
bution (particularly at low ellipticities), it leaves capture from the
N-body halo entirely unaffected.

The truncated N-body distribution boosts capture rates at high
ellipticities by a factor of 3–5 over the truncated isothermal distri-
bution, significantly increasing the range of orbits over which we
might expect to see dark stars. In Fig. 14 we estimate the long-term
behaviour of stars on the 10-yr orbits by combining the capture
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Figure 14. WIMP luminosities achieved by stars on orbits with 10 yr peri-
ods around the Galactic Centre. Annihilation can provide up to 100 times the
power of nuclear fusion in stars on realistic orbits. If the Galactic halo has
undergone adiabatic contraction (AC + spike), annihilation rivals nuclear
fusion in stars on any orbit with an eccentricity greater than about e = 0.9,
for all masses less than or equal to 1.5 M�. If not (NFW + spike), stars
of a solar mass or less break even between fusion and annihilation energy
on orbits with e � 0.99. These curves have been obtained by applying the
boosts seen in Fig. 13 to the capture rates of Fig. 12, and then interpolating
within the results shown in Fig. 2 to obtain the resulting WIMP-to-nuclear
burning ratios. The arrow indicates that the 1 M�, AC + spike curve is
expected to continue in this direction, but there is no reliable way to convert
capture rates to WIMP luminosities in this region because the capture rates
and implied WIMP luminosities are beyond the range of convergence of the
benchmark models in Section 3. In the case of the least interesting orbits
(circular orbits in an NFW + spike density profile), capture rates and WIMP
luminosities are in fact below the limits of the grid in Section 3, so WIMP
luminosities are extrapolations based on the assumption that the scaling with
ambient WIMP density is the same at e = 0 as at e = 0.5.

rates seen in Fig. 12, the boosts seen in Fig. 13 and the results
from our benchmark simulations in Section 3. Here we have made
the approximation that boosts do not depend upon the stellar mass
or halo density profile; that is, we adjusted the capture rates of all
stars by the difference between the truncated N-body and truncated
isothermal curves in Fig. 13, depending only upon the orbits which
stars followed. We then interpolated within the data of Fig. 2 to
obtain WIMP luminosities from the adjusted capture rates, which
included interpolating further amongst the curves of Fig. 2 to obtain
data for 1.5 M� stars.

Fig. 14 shows that the effects of WIMPs can be drastic, with the
energy produced by WIMP annihilation outstripping that of nuclear
fusion by up to a factor of 100. Indeed, some of the adjusted capture
rates imply a WIMP luminosity even greater than that of any star
we were able to reliably evolve in the grid of benchmark models
(indicated by an arrow pointing in the direction one would expect the
curve to continue in). We now see from Fig. 14 that even the NFW +
spike density profile can actually produce stars where annihilation
comes close to breaking even with nuclear burning (P ≈ 10 yr,
e � 0.99 and M� � 1 M�). With the AC + spike profile, the same
is true of stars with masses of up to 1.5 M�, following orbits with
eccentricities e � 0.9. If one were to perform the same conversion
on capture rates achieved by stars on other orbits, postulating similar
boosts as seen on 10-yr orbits and assuming an AC + spike density

profile, stars of M� � 1 M� would also break even for e � 0.9 with
orbital periods of up to 50 yr.

Finally, we point out that the magnitude of these results depends
upon the chosen WIMP mass (Fig. 3). As such, one expects the final
WIMP luminosities shown in Fig. 14 to be even further boosted for
WIMPs lighter than 100 GeV, but suppressed for higher masses. The
dependence of the capture rate and final WIMP-to-nuclear burning
ratio upon the WIMP mass becomes weaker for smaller velocity
dispersions, at least in an isothermal halo. Whilst we have not
explicitly investigated how this picture changes in a halo with a non-
Gaussian velocity distribution, we would expect similar behaviour.
With velocity dispersions given by equation (4.14), we therefore
expect WIMP luminosities in the N-body distribution to have some
dependence upon the WIMP mass, though not so pronounced as
seen in Fig. 3. This dependence should theoretically allow one to
place limits upon the WIMP mass in the event of either a positive
or null detection of dark stars at the Galactic Centre.

6.3 Binaries and higher multiplicity stellar systems

Although we have not calculated the WIMP luminosities achievable
by systems consisting of more than one star, our results with single
stars make it easy to comment on this scenario. If a binary system’s
internal orbital plane was partially aligned with its gross orbit about
the Galactic Centre, the motions of its component stars would at
various stages counteract the motion of the system about the cen-
tral black hole. At certain times the component stars would have
far smaller velocities relative to the WIMP halo than if they were
orbiting as single stars on a similar orbit, resulting in increased
capture rates. The systems most effective at achieving this boost
would be those with the highest orbital speeds, as these would pro-
duce the greatest reduction in the relative velocity between stars and
WIMPs. This effect would therefore be strongest in short-period,
low-separation, higher mass binary systems. Since the effects of
WIMP annihilation are most marked in low-mass stars though, the
optimal configuration would be a close binary with a maximal mass
difference. A system consisting of ∼1 and 4 M� partners orbiting
with a period of 5 h would have an orbital velocity of ∼700 km s−1,
enough to have a profound impact upon capture rates shown in
Fig. 11, for example. In favourable cases, binary systems could
mimic the effects of highly eccentric orbits upon capture rates, al-
lowing stars on almost circular orbits to achieve significant capture
rates, and further boosting capture rates from elliptical orbits. Simi-
lar effects could be expected in systems consisting of three or more
stars, though their stability on orbits close to the Galactic Centre
might be doubtful; indeed, even binaries might not survive for long
near the central black hole (Perets 2009).

6.4 Observational constraints and prospects

Single stars on circular orbits capturing DM from an isothermal
halo cannot achieve WIMP luminosities any greater than 1 per cent
of their nuclear luminosities. Even if the WIMP velocities were not
isothermal, but instead followed the N-body distribution, Fig. 13
indicates that capture would not be boosted by more than an ad-
ditional factor of 5. From the results of Section 3, we know that
log10 [LW,max/Lnuc(0)] � −1 would not result in any significant
change to a star’s structure or evolution. Whilst this level of
WIMP luminosity would create small convective cores in some
stars, potentially interesting for asteroseismology of Galactic Centre
populations some time in the distant future, we find it very unlikely
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that main-sequence dark stars would exist outside binaries on any
circular orbits in the Milky Way. Stars following elliptical orbits are
not only far more likely to be dark stars, but are also considerably
more common at the Galactic Centre.

The central 30 pc of the Milky Way not only contains a
3–4 × 106 M� black hole, but also two of the densest star clusters
in the Galaxy, including the Arches cluster. In the late 1980s, an
unusual star with broad H I and He I emission lines was detected less
than 0.5 pc from the central compact radio source, SgrA∗, which is
thought to be associated with the central black hole (Forrest, Pipher
& Stein 1986; Allen, Hyland & Hillier 1990). Because the centre of
the Galaxy is shrouded with dust, observations can only take place
in the infrared, so the normal spectral information used to identify
stars is not available. Over the next few years, an increasing num-
ber of such stars were discovered, appearing to be helium-rich blue
supergiants and Wolf–Rayet stars, with masses of up to 100 M�
(Krabbe et al. 1991, 1995). The presence of such young stars close
to the Galactic Centre was difficult to understand, as it was unclear
how a gas cloud could condense to form a star in a region so close
to the central black hole due to the extreme tidal forces there. This
problem came to be known as the ‘Paradox of Youth’ (Sanders 1992;
Morris 1993). Recent work has increased the number of known OB
stars in the central parsec of the Galaxy to close to 100, excluding
the central square arcsecond (Paumard et al. 2006). These young
stars appear to form two counter rotating discs, suggesting that they
are possibly associated with different star formation events in dense
accreting matter (Genzel et al. 2003; Levin & Beloborodov 2003;
Paumard et al. 2006).

The very fact that we know the mass of the central black hole
itself is due to the discovery and subsequent tracking of stars even
closer than the young He I stars: a cluster of stars was discovered
in the 1990s within the central square arcsecond, and dubbed the
‘SgrA∗ stellar cluster’ (Genzel et al. 1997). The stars in this cluster
(referred to as S stars, E stars or SO stars apparently depending
upon the native language of the lead researcher) move extremely
close to the central black hole. The star which has been observed
moving closest to the central black hole is called S14, E2 or SO-16,
and was seen within 45 au, or only 600 Schwarszchild radii, of the
black hole (Ghez et al. 2005). The kinematics of the SgrA∗ cluster
is such that stars are on randomly oriented, highly elliptical orbits,
rather than circular ones confined to a single disc.

Near-infrared observations of the S stars made with the Keck
telescope and VLT revealed that their atmospheres did not contain
CO (Genzel et al. 1997), setting a lower bound on their surface
temperatures. Further work led to the conclusion that the S stars are
in fact simply 10–15 M� main-sequence stars (Ghez et al. 2005;
Martins et al. 2008). The short main-sequence lifetimes of such
high-mass stars (∼107 yr) presents a further Paradox of Youth at the
Galactic Centre, not explainable by star formation in an accretion
disc due to the random orientation of the S star orbits.

Many have tried to explain the presence of the S stars. One
idea is that they formed far from the Galactic Centre (perhaps in the
Arches cluster) and subsequently migrated inwards (Gerhard 2001).
Another is that they formed in situ during an earlier era when the
density was much larger than it is today (Levin & Beloborodov
2003). They could also be old stars which look young because they
have collided with other stars (Genzel et al. 2003), a scenario rem-
iniscent of the blue straggler phenomenon in globular clusters. A
rather convincing explanation is that they were originally members
of binaries belonging to one of the outer discs, which were perturbed
either by interactions between the discs (Löckman, Baumgardt
& Kroupa 2008) or by interactions with other massive objects

(Perets, Hopman & Alexander 2007). The three-body interaction
then caused one star from each binary to become tightly bound
to the black hole, and the other to be ejected as a hypervelocity
star.

What implications might dark stars have for this picture? We
have already seen that stars burning DM have significantly in-
creased main-sequence lifetimes. One might then imagine a sce-
nario whereby stars are created elsewhere and migrate to the Galac-
tic Centre, where the presence of DM extends their lifetimes. This
might provide an alternative explanation for either the S stars or the
outer stellar discs of OB-type stars. However, such an explanation is
incomplete. The problem with models where stars are created else-
where and migrate to the centre of the Galaxy is that the inspiralling
time-scale is typically very large compared to their main-sequence
lifetime. One would therefore expect that stars should have left the
main sequence by the time they arrive at the central region. Further-
more, we have shown that more massive stars require higher DM
densities than low-mass ones to experience any structural changes;
it is highly unlikely that a star as massive as 10 M� could capture
enough WIMPs to significantly alter its main-sequence evolution
on any realistic orbit near the Galactic Centre. One possibility is
that such a star could reach the end of its main-sequence lifetime
during the migration, arrive at the Galactic Centre and then begin
capturing large numbers of WIMPs. If burning WIMPs during its
post-main-sequence evolution made such a star begin to resemble an
OB or Wolf–Rayet star, or revert to looking outwardly like a main-
sequence star, this could provide an additional explanation for the
dense stellar discs or the S stars, respectively. We will consider the
prospect of post-main-sequence dark stars in a later paper.

Whilst such an explanation for the Paradox of Youth must be
considered improbable, it is interesting to remember that the S stars
are indeed on more elliptical orbits than other stars at the Galactic
Centre, which would be consistent with them having accreted far
more DM than others (Zhu et al. 2008).

More promising is the possibility that future observations of the
Galactic Centre will reveal fainter, lower mass stars (although there
is some suggestion that the initial mass function within the central
parsec could be top heavy; Maness et al. 2007). If the binary disrup-
tion scenario is indeed the source of the S stars, one would expect
that the bursts of star formation which created them in the outer discs
would also have produced lower mass stars. Some such stars would
form in binaries, and could conceivably follow the same path to
the Galactic Centre as the S stars. This would produce a population
of low-mass stars in the central square arcsecond with randomly
oriented, highly elliptical orbits similar to those of the S stars. Like-
wise, most of the other explanations for the origin of the S stars
could also involve formation and subsequent migration/disruption
of a lower mass population alongside the S stars, also leading to a
population of potential low-mass dark stars.

Finally, the prospect of dark stars forming in binary systems opens
a very promising channel through which they might be observed.
Stars within a binary can be compared photometrically if they have
similar brightness, allowing their masses and evolutionary states
to be determined. In some cases, binaries might consist of a low-
mass star which is significantly affected by WIMP capture and
annihilation, and a high-mass partner which is too massive to show
any effects whatsoever. The most striking example of this would be
a binary consisting of a low-mass star ‘frozen’ by WIMP burning
(resembling a protostar) and a higher mass companion which had
evolved all the way into a white dwarf, though such a system would
be difficult to observe at the Galactic Centre because of the faintness
of the white dwarf.
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7 C O N C L U S I O N S

When the energy injected due to the annihilation of WIMPs ap-
proaches that of nuclear burning, the capture of weakly interact-
ing DM will significantly alter the structure and evolution of stars
on the main sequence. Stars on circular orbits in the Milky Way
are extremely unlikely to achieve sufficient capture rates for this
to occur unless they are present in binaries. Stars orbiting close
to the Galactic Centre on elliptical orbits have their capture rates
strongly boosted in comparison to those on circular orbits. The ve-
locity distribution of DM near the Galactic Centre may be highly
non-Gaussian, further boosting capture rates on elliptical orbits by
nearly an order of magnitude. Assuming that the nuclear-scattering
cross-sections are equal to their current experimental limits, that DM
forms a spike around the supermassive black hole at the Galactic
Centre and that the DM distribution on larger scales has undergone
adiabatic contraction, stars of 1 M� and below will break even be-
tween annihilation and fusion energy on orbits with periods of up
to 50 yr and eccentricities as low as 0.9. 1.5 M� stars can achieve
the same goal with comparable orbital eccentricities if they orbit
the central black hole in 10 yr or less. Without adiabatic contraction
of the galactic halo, orbits at least as short as this and eccentricities
of about 0.99 are required for stars of a solar mass and below to
become dark stars.

These requirements are likely to be significantly relaxed for stars
in binary systems. A binary consisting of a low-mass protostar and
a highly evolved massive star would make the impact of WIMP
annihilation very hard to deny.

The observation of one or more stars at the Galactic Centre ex-
hibiting the properties we have described would strongly suggest
the influence of WIMP DM. Conversely, since we have assumed
scattering cross-sections compatible with the current experimental
limits, the observation of even a single completely normal star or
binary on the orbits we have discussed would allow one to place
stringent limits on the properties of DM and its density at the Galac-
tic Centre. If one instead assumed a particular halo model for DM
at the Galactic Centre, the dependence of the capture rate upon
the WIMP mass and spin-dependent scattering cross-section would
allow one to derive limits on these parameters which are highly
competitive with current direct-detection sensitivities. If a star were
seen on an orbit where we expect effects even without adiabatic
contraction of the Galactic halo on large scales (i.e. M � 1 M�,
P � 10 yr, e � 0.99), then the derived limits could be made mostly
independent of the halo model.
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Iocco F., 2008, ApJ, 677, L1
Iocco F., Bressan A., Ripamonti E., Schneider R., Ferrara A., Marigo P.,

2008, MNRAS, 390, 1655
Jungman G., Kamionkowski M., Griest K., 1996, Phys. Rep., 267, 195
Kent S. M., Dame T. M., Fazio G., 1991, ApJ, 378, 131
Klypin A., Zhao H., Somerville R. S., 2002, ApJ, 573, 597
Komatsu E. et al., 2008, ApJS, in press (arXiv:0803.0547)
Krabbe A., Genzel R., Drapatz S., Rotaciuc V., 1991, ApJ, 382, L19
Krabbe A. et al., 1995, ApJ, 447, L95
Levin Y., Beloborodov A. M., 2003, ApJ, 590, L33
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