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The Large H adron Collider (LH C) at CER N in G eneva (Switzerland) willgo in operation in the com ing m onths

and willsoon enable us to analyze the highest energy collisions ever produced at an accelerator. Beyond Standard

M odel searches at LH C require a detailed understanding of the detector perform ance, reconstruction algorithm s

and triggering. Precision m easurem ents ofStandard M odelprocesses are also m andatory to acquire the necessary

knowledge ofStandard M odelbackground. Both ATLA S and CM S e�ortsare hence addressed to determ ine the best

calibration candles and to design a realistic plan forthe initialperiod ofdata taking.

1. INTRODUCTION

ATLAS [1]and CM S [2]detectoraretwo generaldetectorswhich havebeen designed in orderto scrutinizeproton-

proton collisions ofLHC.The m ajor goalofthese experim ent is to search for beyond Standard M odelprocesses

and/orto push lim itsofStandard M odeltheory.The �rststepsofthese searcheswillbe to establish with precision

Standard M odelprocessesfora centerofm assof14 TeV.W ithin thestatisticsdelivered by LHC overthe�rstyears

ofrunning,precised Standard M odelm easurem ents willconstraint beyond Standard M odeltheories and allow us

to understand these background forsearches.In thispaper,the Standard M odelm easurem entwillbe presented as

a function ofincrease lum inosity. At each stage,these m easurem entswillbe exposed asa background fora given

search.

Before collisions,the com m issioning ofthe detectorsis crucialto already understand their response. Then with

10pb� 1 ofrecorded collisions,detector synchronization,alignm ent ofdetectors and com m issioning of�rst physics

objectswillbedone.The�rstphysicswillbethen dom inated by jetphysics.W ith lessthan 100pb� 1,m easurem ent

ofStandard M odelprocessesusing leptonscan beaddressed with a high precision and allow thestartofthesearches.

Studiesofcom plex �nalstatessuch ast�tproduction willhelp the �nalization ofthe com m issioning period.Beyond

1000pb� 1,the area ofsearcheswillbegin.

2. FIRST PHYSICS USING JETS

The�rstphysicseventsthatwillberecorded by thedetectorswillbem ainly m inim um biasevents.Them inim um

biaseventswillbeused atthe�rststageto calibrateand align detectors.In them eantim ea �rstlook atthecharged

hadron spectrum atcenterofenergy of14 TeV willbe possible. In the Fig.1,onescan see the di�erent dE

dX
from

proton,kaonsand pionsfortwo ofthe CM S trackerdetector.

In parallel,the studiesofunderlying eventsare m andatory atstartup.The currentsim ulation ofthese eventsis

based on an extrapolation oftheTevatron energy at2TeV up to LHC energy at14TeV.Theseextrapolationslead to

di�erentvaluesasshown in Fig.2.Itisthem im portantto be ableto discrim inatebetween di�erentextrapolations

in orderto �ne tune the sim ulation as such eventswillplay an crucialrole in isolation criteria to de�ned isolated

leptons.

Jetswillbethe�rstreconstructedobjectsatstartup butthesearealsothem ostdi�cultobjectstofullyunderstand.

It has to give a good description ofjet/parton properties from an interpretation ofcalorim eters response. The
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Figure1:D istribution ofthetruncated m ean estim atordE /dx asa function ofm om entum p forthepixelshits(left)and strip

hits(right)ofthe CM S detector.

Figure 2: D ensities dN/d�d� (left) and dpsum
T

/d�d� (right) for tracks with pT > 0:5 G eV=c,as a function ofthe leading

charged jetpT ,in the transverse region,foran integrated lum inosity of100pb
� 1

collected by CM S detector.

response ofthe calorim eterswillbe inuenced by experim entalfactorsand physicsfactors.The m ain experim ental

factorsthatoneshasto take care when building a jetare the am ountofdead m aterialin frontofthe calorim eters,

longitudinalleakageand lateralshowersize,non linearitiesin theread outaswellasthenon-com pensated behavior

ofthecalorim eter.Them ain physicsfactorsaretheunderstanding ofinitial/�nalstateradiation,fragm entation,the

am ountofunderlying events/m inim um biasevents.

Nevertheless,the physics program with jets is large and already som e searches/com plem entary m easurem ent of

the Standard M odelcan be established. O ne ofthe �rst m easurem entcan be the di�erentialcross section ofjets

production which willallow a testofQ CD theories:high m om entum objectscan be inuenced by processesbeyond

Standard M odel.Thecontactinteraction willtend to enlargethe rateofproduction ofjetsathigherm om entum as

shown in Fig.3. CM S analysis[3]describeswith 10 pb� 1 ofdata collected a sensitivity to �+ > 2.7 TeV which is

the currentlim itofTevatron experim ent.

The�rstadvanceeventtopology studied willbe the studiesofdijeteventsand m ainly the invariantm assofdijet

events.Thedijetresponsewillbeused atstartup in orderto providea �rstjetenergy scale.Thisscaleism andatory

to perform studiesofinvariantm assbut,already,with a few ofinversepicobarnsofintegrated lum inosity,som etests

beyond Standard M odelcan be perform ed.



Figure 3: Rate ofJets within the centralpart ofCM S detector as a function ofenergy for 10 pb� 1 ofexpected integrated

lum inosity.Contactinteraction willincrease the rate atlarge energy.

3. CHALLENGING MISSING ET

Even thoughtthe m issing ET (6E T )variablecan be calculated assoon asthe detectorsarecloseand ready,itwill

take som e tim e before to fully understand it. In the m eantim e,6E T isone ofthe variable the m ostsensitive to new

physics.Sourcesoffake6E T arem ainly beam gasinteractions,dead/hot/noisy cells/area in thecalorim etersystem s,

non linearity/non-com pensated detectors,�nite energy resolution or from m uons escaping detection as shown in

Fig.4 [5].

ATLAS and CM S collaboration develop techniquesto handle the bias,forexam ple,com ing from jetenergy scale

correction [4]. Techniquesare also developed in orderto estim ate the 6E T com ing from physicseventsasZ 0
! ��

from \visibleprocesses" asZ 0
! ll.

4. PHYSICS WITH LEPTONS

Jetsand 6E T are m ainly calorim etric object. The com bination ofthe trackerwith otherdetectorswillbring the

leptonsinto the gam e. Butthe leptonswillm ainly rely on the quality ofthe alignm entofthe trackerand also on

theknowledgeofm agnetic�elds.Thesequantitiescan bequickly estim ated by looking atresonancesasJ=	 and �

within 1 pb� 1 ofintegrated lum inosity asshown in Fig.5.

The LHC willbe a W � /Z 0 factories so with a few am ount ofdata collected,cross section production can be

established fora energy in the centerofm assof14 TeV.The m ain studiesthatwillbe done atthe beginning with

these events willbe the com m issioning ones. Indeed,Z 0 resonancesare really im portantto tune the EM -scale of

the calorim eterorto controlelectrom agneticcalorim etercalibration in case ofa decay in the electronic channel,to
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Figure 4: Left: D istribution of6E T variable for generator inform ation (triangle) and for fake 6E T (round). The fake 6E T from

m uon escaping the acceptance ofATLAS detector is com pared to the overallfake 6E T (black point). Right: D istribution of

6E T variableforgeneratorinform ation (triangle)and forfake6E T oncethe6E T iscorrected from m uonsescaping theacceptance

ofATLAS detector(round).

Figure 5:D ilepton invariantm assofthe expected �rstinverse picobarnsofdata collected by ATLAS detector.J=	 peak as

wellas� are clearly visible.

im prove/validate the alignm entoftrackerand m uonscham bersin case ofa decay m uonically. The resonanceswill

bealso used to determ inethee�cienciesoftheleptonsby using theTag-and-Probem ethod [6].TheTag-and-Probe

m ethod rely on wellknown resonances. O ne ofthe leg ofthe resonancesis asked to have a perfectly wellidentify

lepton.Theinvariantm assofthetwo leptonsshould bewithin theresonancem asswindow.In thatcasethesecond

lepton hasa high probability to be a true isolated lepton and itisa�ected only by the biasfrom the kinem aticsof

the resonanceproduction.Thissecond lepton sam plecan then be used to study lepton identi�cation criteria.



Figure 6:Invariantm assoftwo opposite charge m uonswithin CM S detectorforan expected lum inosity of100 pb
� 1
.A clear

signalofZ willbe seen on top ofthe di�erentbackground.

In addition to crosssection m easurem ent,itwillbe possible to im prove the constraintson PDF asatLHC,the

W � allow to accesslow-x range.W ith a few events,a m easurem entwith a precision lowerthan 5% ,a gain aslarge

as40% on system aticscan be expected on low-x gluon shape[7].

At this stage,Standard M odelphysicsusing leptons as m ain �nalstate willbe established. W ith a few inverse

picobarn ofdata,m ain propertiesofsuch eventsata centerofm assof14 TeV willbestudied.Som eearly discoveries

can happen in these topologiesby sim ply looking atthe tailofthe invariantm assdistribution. Forexam ple,CM S

analysiswith 100pb� 1 ofdata can see an excess ofeventsin the tailofthe invariantm ass oftwo opposite signed

m uons asshown in Fig.6. Forsuch analysisan optim aldetector is notm andatory but the interpretation ofsuch

signalasa possibleZ 0 candidateorasa graviton willrequirem orestudies.

5. TOP PHYSICS

The t�tcross section production is a factor 100 greater than the one at Tevatron. The statistics ofsuch events

willbewithoutcom parison and so itwillbepossibleto used thesevery com plex eventsin orderto validate/perform

calibration. From the sem i-leptonic decay ofa t�tevent,it willbe possible to constraint the two non b-jet to the

invariantm assoftheW and in thatcaseto im provethejetenergy scale.Thepresenceofb-jetin dileptonicdecay of

such eventswillgive usa high quantity ofeventswith a high purity ofb-jetsin orderto study b-tagging e�ciency.

The 6E T can also be controlled by constraining the sem i-leptonic decay to the W m ass. Allthese studies can be



Figure 7: Left: Invariant m ass of3 jets in sem ileptonic t�t events for 100pb
� 1

ofexpected lum inosity recorded by ATLAS

detector.SU4 signalwilldouble the levelofbackground.Right:Signi�cance asa function ofintegrated lum inosity with and

withouta SU4 signalwhich willdouble the background.

perform ed once only top eventsare seen in ATLAS and CM S detector. CM S analysis[8]shown thatwith 10pb� 1

ofcollected data,the �rst m easurem ent ofthe t�t cross section production can be done. The analysis have been

perform ed forthree channelsofdileptonic decay oft�tevents(di-electron,dim uon and one electron plusone m uon)

and in the caseofW ! m u� forsem ileptonic decay.

Physicsbeyond Standard M odelcan alsoplay an im portantrolein thestudiesoft�tsignalatLHC.ATLAS analysis

studied a squark signalwithin m Sugra fram ework which willappearasdoubling thebackground fort�tsem i-leptonic

analysis. The invariantm ass of3 jets as wellas signi�cance as function ofintegrated lum inosity are presented in

Fig.7.

O ncet�tproduction isestablished ata centerofm assof14 TeV studiesofthe invariantm assofthet�tsystem can

be scrutinized.An excessin such distribution can givea hinttowardsbeyond Standard M odelprocesses.

Contrary to t�t system ,the production ofsingle top willrequire a integrated lum inosity ofaround 1fb� 1 to be

established.Nevertheless,thisprocesseswillallow usto testquite som e theories.The crosssection production can

be enlarged in caseofb0;t0 production ifM b0 > M t0,W
0 production,avorchanging neutralcurrentaswellasSusy

correction etc.

Thetop physicsisa really challenging onedueto thecom plex �nalstatebutthisalso concludethecom m issioning

phaseofthe detectorsand allow usto push forward discoveries.

6. HIGGS BOSON SEARCH

The lastrem aining piece ofthe Standard M odelwhich isstillm issing isthe search fora Higgssignal.Depending

on them assoftheHiggsboson,theHiggsboson can bediscovered in a really clean and controlled m ultilepton �nal

state with a few hundreds ofpicobarns ofdata ifthe Higgs boson m ass is larger than 130 G eV.In that case the

Higgsboson decay willbe essentially via a pair ofW boson. These bosonswillbe studied in their leptonic decay

and m ainly electron and m uon. Due to the large 6E T expected from the W boson decay,the m assofHiggsboson

cannotbe reconstructed.TheHiggsboson isa spin 0 particleso the two leptonscom ing from W decay willtend to

becollinear.Thisproperty givesa handleto discrim inateHiggsboson decay from W W Standard M odelproduction.

Fig.8 presentsforCM S analysis,the invariantm assofthe dilepton system and the azim uthalangularseparation

between the two leptons for the �� �� channelafter the selection applied and for a Standard M odelHiggs boson

m asshypothesisofm H = 160 G eV [9]

TheHiggsboson discovery oritsexclusion willplay a crucialrolefortheseacrhesbeyond Standard M odelphysics

ifby thattim e nothing would havebeen already observed.



Figure 8:Left:Invariantm assofthedilepton system reconstructed in theCM S detector,right:azim uthalangularseparation

between the two leptonsforthe �
�
�
�
channelafterthe selection and fora Standard M odelHiggsboson m asshypothesisof

m H = 160 G eV.

Figure9:Integrated Lum inosity asa function oftim ewith expected pointwherediscovery ofprocessbeyond Standard M odel

can be perform ed.LHC willallow usto achieve large searches.

7. CONCLUSION

O nce the LHC willstart and once ATLAS and CM S experim ent willhave com m issioned their detectors using

Standard M odelprocesses,the vastarea ofsearchesforprocessesbeyond Standard M odelwillreally begin. Som e

processescan alreadyappearwithin thecom m issioningphaseoratleastindicatethatbeyond Standard M odelphysics

is at the corner. Fig.9 presents as a function oftim e and integrated lum inosity the discovery potentialowing to

LHC m achineand detectors.
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