Transmittance through random media*

Abhijit Mookerjec
S N Bose National Centre for Basic Sciences, DB 17, Sector 1. Salt Lake City. Calcutta-700064, India

Abstract: We present a tractable and stable techngue fos numernal detemmation of transmittance and conductance through random media. The methodology is numerically wable for large systems and capable of being generalised for higher dimensums We lluatrate the technique by two specific applications

Keywords: Transmitance, Azbel resonances, random chans, quast pertodh , hatm
PACS Nos.: $\quad 7150+1,7155 . \mathrm{Ju}, 7215 \mathrm{~Eb}$

1. Introduction

The problem of transmittance through random media is a long standing one. Interest in the problem is spread over a wide range : from the physicists' interest in the conductance of dectrons through disordered solids, or the transmitance and reflectance of clastic waves through the earth's crust, of interest to oil or water prospectors, to the passage of starhght through the disordered dielectric media of the universe. In general, analyuc solution of the problem is exceedingly difficult, except in the most trivial of models. Nor are analytic attempts free from controversy. The configuration averaged viewpoint, which has been successful in many problems, unfortunately tends to mask the characteristics of monvidual systems which in many cases dominate the specific system's properties. This is certamly true of resonance properties. It is for this reason that there has been considerable emphasis on the numerical study of disordered systems. However, stable numerical procedures exist by and large for one dimensional systems alone. Either these methods have not been extended to higher dimensions, or those that are available involve numerically unstable procedures involving divergent recursions and matrix inversions.

The aim of this article is to present a numerical procedure which is tractable and stable and formulated for general dimensionality. We should like to suggest that the vector recursion method should be tried out in transmitance problems. The techmque is relatively fast and numerically stable. We shall also present some applications of the method to bring out the fact that the technique, in contrast to earlier methods, gives unambiguous information.

[^0](C) 1992 IACS

if(1

Abhijïl Morkerjice

2. The rector recursion method

We shall dexcribe a system through which we wish to study the transmittance by an Anderson tught-binding Hamiltonian of the type described in (1). The chain will be of kongth $2 N$:

$$
\begin{equation*}
I_{\text {vample }}=\sum_{n=1}^{2 N}\left\{\varepsilon_{n} \phi_{n}^{\dagger} \phi_{n}+\sum_{m} V_{n m}\left(\phi_{n}^{\dagger} \phi_{m}+\phi_{m}^{\dagger} \phi_{n}\right)\right\} \tag{1}
\end{equation*}
$$

Tis the two ends $n=1$ and $n=2 N$ we attach clementary, perfectly conducting, semi-infinite leads. The purpose of these leads is to bear the incoming, reflected and transmitted waves (iodin and Haydock [1] have shown that in any solid, for instance, since only a finite number of bands cross the Fermi energy, the Hamiltonian of the leads can always be converted to independent elemental chains of the type described below by the use of the simple Recursion method [2]

$$
\begin{align*}
& H_{\mathrm{m}}=\sum_{n=0}^{-\infty}\left\{\varepsilon^{\prime} \phi_{n}^{\dagger} \phi_{n}+V^{\prime}\left(\phi_{n+1}^{\dagger} \phi_{n}+\phi_{n}^{\dagger} \phi_{n+1}\right)\right\} . \\
& H_{\mathrm{out}}=\sum_{n=2}^{\infty}\left\{\varepsilon^{\prime \prime} \phi_{n}^{\dagger} \phi_{n}+V^{\prime \prime}\left(\phi_{n+1}^{\dagger} \phi_{n}+\phi_{n}^{\dagger} \phi_{n+1}\right)\right\} . \tag{2}
\end{align*}
$$

For simplicily we shall take $\varepsilon^{\prime}=\varepsilon^{\prime \prime}=0$ and $V^{\prime \prime}=V^{\prime \prime}=V_{\text {ledd }}$.
The solution of the Schrödinger equation in the two leads are known. These are travelling Bloch waves of the form

$$
\begin{equation*}
\psi_{\text {lc.s. }}=\sum \psi_{n} \phi_{n}^{+} \tag{3}
\end{equation*}
$$

with $\psi_{n}=A e^{\operatorname{tmn} \theta}$. As the wave travels through the leads, it phase changes by θ from one sile to the next. In the elementary, perfectly conducting leads, this phase change is determmate:

$$
\begin{equation*}
\cos \theta=\left(E: / 2 V_{\text {lcad }}\right) \tag{4}
\end{equation*}
$$

where F is the energy associated with the incoming wave.
We have assumed that transport is ideal in the leads right upto the contacts with the sample. This ignores boundary effects. However, if we consider large enough samples, such boundary effects are expected to be negligible.

The demsty of states is non-zero in the region $E_{1} \leq E \leq E_{2}$. If we wish to examine the transmitance within this band, we must choose a $V_{\text {lead }}$, which allows this full band pass, i.e. $V_{\text {iedd }} \geq\left(E_{2}-E_{1}\right) / 4$. This is because, in order to have propagating states in the leads, we must have a real solution to eq. (4).

The Vector recursion technique now changes to a new vector basis with vector annihilation operators

$$
\Phi_{n}=\binom{\phi_{n}^{(1)}}{\phi_{n}^{(2)}} \quad \text { with } \Phi_{:}=\binom{\phi_{1}}{\phi_{2 N}}
$$

and the others are generated from the recursive formula:

$$
\begin{equation*}
B_{n+1}^{\dagger} \psi_{n+1}=\left\{I I \psi_{n}\right\}-A_{n} \psi_{n}-B_{n} \psi_{n}{ }_{1} \tag{5a}
\end{equation*}
$$

where $\psi_{n}=\psi_{n} \Phi_{n}{ }^{\dagger} \cdot A_{n}=\psi_{n}{ }^{\dagger} I I \psi_{n}$ and B_{n} is found by disentangling $B_{n+1}^{\dagger} \psi_{n+1}$ using the Gram-Schmidt orthogonalisation of its two components.

In this basis, the lead and sample Hamiltonians become :

$$
\begin{align*}
H_{\text {sample }} & =\sum_{n=1}^{N}\left\{A_{n} \Phi_{n}^{\dagger} \Phi_{n}+B_{n+1} \Phi_{n+1}^{\dagger} \Phi_{n}+B_{n+1}^{\dagger} \Phi_{n}^{\dagger} \Phi_{n+1}\right\} \tag{5b}\\
H_{\text {leads }} & =\sum_{0}^{\infty} V\left\{\Phi_{n+1}^{\dagger} \Phi_{n}+\Phi_{n}^{\dagger} \Phi_{n+1}\right\} \tag{5c}
\end{align*}
$$

The Schrödinger equation may be expressed as a three term linear difference equation mvolving the 2×2 matrices A and B, and the wave function vector amplitudes

$$
\begin{align*}
& \psi_{n}=\binom{\psi_{n}}{\psi_{2 N+1-n}} \\
& B_{n+l}^{+} \psi_{n+1}=\left(E I-A_{n}\right) \psi_{n}-B_{n} \psi_{n} \tag{6}
\end{align*}
$$

Let us now think of a situation where an incoming wave $\sum e^{\min \theta} \phi_{n}^{\dagger}$ is travelling to the right along the input lead. As it reaches the sample it is scattered. A reflected wave $\sum r$ (E) $e^{\operatorname{in} \theta} \phi_{n}{ }^{\dagger}$ travels back in the input lead to the left and a transmutted wove $\sum t(E) e^{\text {min }}$ $\phi_{n}{ }^{\dagger}$ travels in the output lead. $r(E)$ and $t(E)$ are the complex reflectuon and transmission coefficients. Since the solution in the leads are known, the boundary conduoms in the fiew vector basis are :

$$
\begin{equation*}
\psi_{0}=\binom{1+r}{t} \quad \psi_{1}=\binom{e^{t \theta}+r e^{t \theta}}{t e^{t \theta}} \tag{7}
\end{equation*}
$$

Note here that we have chosen to measure our phases from the basis lab:lled () just outside the joint between the leads and the sample. It is also clear that the way we have numbered the new basis, the reflected and transmitted waves both travel to the left, hence the negative sign in the exponent of the transmitted wave.

The general solution of (6) satisfying these boundary conditions may be written in terms of the two independent family of solutions of (7) $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$, which satusfy

$$
\begin{array}{lll}
B_{n+1}^{\dagger} X_{n+1}=\left(E I-A_{n}\right) X_{n}-B_{n} X_{n} 1 & X_{0}=I, X_{1}=O \\
B_{n+1}^{\dagger} Y_{n+1}=\left(E I-A_{n}\right) Y_{n}-B_{n} Y_{n} 1 & Y_{0}=O, Y_{1}=I . \tag{8}
\end{array}
$$

This solution is

$$
\begin{equation*}
\xi_{n}=X_{n} \psi_{0}+Y_{n} \psi_{1} \tag{9}
\end{equation*}
$$

Direct substitution in (6) and (7) shows that this is indeed the requircd solution with the correct boundary conditions.

In exactly similar manner we can discuss the case in which the incoming wave
travels to the right in the lead labelled 2. After scattering by the sample the reflected wave travels to the right in lead 2 and the transmitted wave to the left in lead 1. Here $r^{\prime}(E)$ and i^{\prime} (E) are the reflection and transmission cocfficients of this new problem, with boundary condtuons

$$
\begin{equation*}
\psi_{0}^{\prime}=\binom{t^{\prime}}{1^{\prime}+r^{\prime}} \quad \psi_{1}^{\prime}=\binom{t^{\prime} e^{-t \theta}}{e^{t \theta}+r^{\prime} e^{-t \theta}} \tag{7'}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{n}^{\prime}=X_{n} \psi_{0}^{\prime}+Y_{n} \psi_{1}^{\prime} \tag{9'}
\end{equation*}
$$

We have a further boundary condition. Since the length of the chain is finite, in the new basis the vector cham terminates after N steps, so that

$$
\begin{equation*}
\xi_{N+1}=0 \text { and } \xi_{N+1}^{\prime}=0 \tag{10}
\end{equation*}
$$

It we substitute this in (7), (7'), (9) and (9') we immedrately obtain an expression for the sallterng. S-matrix

$$
S=\left(\begin{array}{l}
r \tag{11}\\
t^{\prime} \\
r^{\prime}
\end{array}\right)=-\left(X_{N+1}+Y_{N+1} e^{i \theta}\right)^{1}\left(X_{N+1}+Y_{N+1} e^{\prime t}\right) .
$$

In the absence of magnetic fields the tume-reversal symmetry gives $t=t^{\prime}$. The S-matrin is symmetric. Finally, the transmittance $T(E)=|t(E)|^{2}$ while the reflectance $R(E)=\left.\operatorname{lr}(E)\right|^{2}$.

3. Applications of the vector recursion technique

31. The generalised Auhry model:

Recently there has been considerable effort in understanding the nature of electronic states in quast-periodic systems. Practical applacations of such studies involve, among other thangs, incommensurate superlattices [3| and one dimensional quasi-crystals [4]. While it is well known that in an one dimensional system with random potentials all states are localised [5], and whereas all states are extended Bloch states in the absence of disorder, it has recently been shown $[6-11]$ that certain quasi-periodic systems in one dimension are capable showing transition from localised to extended states. In addition, there is interesting: behaviour in the intermediate critical states.

A simple quasi-crystalline model is the so called Aubry model where $\varepsilon_{n}=\lambda \cos$ $(2 \pi() n+\delta)[12-14]$. Typically the hopping energy V_{n}^{\prime} is a non-random quantity $(=V)$, set equal to 1 to fix the energy scale. In this case the period Q^{1} of the potential is incommensurate with the period of the lattice $(=1)$. When Q is irrational, the spectrum is absolutely contmuous (i.e. all states are extended) for $0<\lambda<2$. It is point-like (i.e. all states arc localised) if $\lambda>2$. In fact, an interesting duality property (Aubry duality) exists between the cases $\lambda<2$ and $\lambda>2$, with the case $\lambda=2$ being self dual. For this last case ($\lambda=2$), all states are critical and the spectrum in singularly continueus. This sclf-dual case leads to global scalng propertes of the spectrum with a range of scaling metices and an associated multifractal character [8]. These authors have also shown that, if Q is a rational approximant of an irrational number, e.g. $Q=F_{l} \quad{ }_{1} / F_{l}$, where F_{l} is the l-th Fibonacct number, then the spectrum consists of F_{l} bands and F_{l+1} gaps.

The simple Aubry model in one dimension does not have a mobility edge, whereas an extension due to Griniasty and Fishman [9] seems to have an extended-localised iansition at an appropriate mobility edge under certain circumstances. For this model, Wheh is sometimes called the Harper moxdel, $\varepsilon_{n}=\lambda \cos \left(2 \pi n^{2}()+\delta\right)$ and $\gamma+1$ For $\gamma \geqslant 2$, "1 has been stated that the problem is cquivalent to the corresponding random problem [15] and all states are exponentially localised. It may be noted that $\gamma \neq 1$ gives rise to an mhomogencity in the pertod of the potential. It is known that mhomogencity in the amplitude variation of the potential gives rise to localisation-delocalisation transition [16)|. It will be interesting to study whether such an effect arises out of mhomorencoly of the prood of the potential. The idea of mhonogencity of the perood may be casily noted it we
 and so inhomogencous.

Griniasty and Fishman $19 \mid$ studied the band centre state for $0<\gamma<1$ with Q mational within the perturbation theory and concluded that all states are extended. In contrast Das Sarma et al, |10| observed, using a heuristic argument and evact numerical , weulations of eigenvalues and wave amphtudes in finite systems, that for $0<\gamma<1, \lambda<2$ there are mobility edges at $E_{c}= \pm\left(2 l^{\prime}-\lambda\right)$, with extended states at the cente of the band if $1<\left(2 V^{\prime}-\lambda\right)$ and localised states at the band edges $\left(2 V^{\prime}-\lambda\right)<|E|<\left(2 V^{\prime}+\lambda\right)$. Further hn $1<\gamma<2$ they find along with Thouless $|17|$ that all states away fom the cunt band cutre are localised and the Lyapunovexponent (mverse localbation length) appoaches wo extremely slowly at the band centre.

Our amm is to study wave propagaton in such models by numerk ally calculatung the banmutance as a functon of the energy of the incident wave and by montoring the way in wheh the phase of the transmission cocffictent (which is related to the phase of the chectronic wave function) changes as the wave propagates through the meduun This will be done for all values of γ including negative values not explictly reported so far Our approach based on the vector recurston technque of Godin and Haydock [1] is :omplementary to that of Das Sarma et al [9]. The vector recursom inethod, as we shall madicate, is easily extended to more than one dimensions: a work wheh we shall report in a vubsequent communication. Our results are, to a latge extent, in agreemem wath those of Das Sarma et al [10], justifying their critucism of the cather of Cirmasty and Fishman $[9]$.

The results we report [18] except those on Argand maps of the complex transmission coefticient, are to a large extent complementary to those of Das Sarma et al [10]. The recursion method has the great virtue of giving a measurable quantity (namely, the transmittance) and the mobility edges can be located relatively easily with smaller stee systems by looking at the transmittance rather than by first exactly diagonalizing the Hamiltonian for a much larger system and then by calculating the Lyapunov exponent (or mverse localization length) from the eigenenergies or the cigenfunctions. As an added advantage, since the transmission coefficients contain information on the wave function at a
particular energy, one can monitor the change of the electronic phase at successive scatterings. Further, since using the transfer matrix method and applying Landauer formula one can calculate the conductance directly as a function of length, one can check the validity of the one-parameter scaling theory. One may also study the form of the renormalization group flow within this one-parameter scaling and locate its fixed-point (or points, if there is more than one). This we shall discuss in a subsequent paper. For all the results presented below, the non-random hopping term has been set at $V=1$. Most of our calculations are done on chains of length 10^{5}.

Figure 1(a). I rancmilance versus energy of the incoming wave (in unts of the overlap tern V) for the Aubry model for $2=1$

Figure 1(b). The density of states (states / atom-spin) for the Aubry model $\lambda=1$.

Figure 1 (a) shows the transmittance versus energy of the incoming wave for the pure Aubry model $(\gamma=1.0)$ with $\lambda=1$. The transmittance fluctuations characteristic of meommensurate systems are clearly visible. These, in turn, lead to strong fluctuatuons in conductance with changes in the chemical potential [11]. In Figure 1(b), we show the density of states (DOS) for the same situation. The DOS strongly resembles that of a model where the site diagonal terms are in a Fibonacci sequence. In the Aubry model, the sitedragonal terms are incommensurate with the underlying lattice. However, the qualtative features of DOS (e.g., the gap structures) do not seem to be very different in these two cases. These two figures together show that all states are extended in this case. This is consistent with the fact that in the Aubry model there is an energy-independent metalinsulator transition at $\lambda=2$, which separates the region $\lambda<2$ where all states ate extended and $\lambda>2$, where all states are localized.

Figure 2. Transmitance at $E=0$ (full curve) and at $E=0.5$ (dotted curve) (E medsured in unts of V) for the Harper model with $\gamma=0.5$, as a function of λ

Figure 2 shows the transmittance at the band centre $E=0$ (full curve) and at $E=0.5$ (dotted curve) of a more general Harper model with $\gamma=0.5$ as a function of λ. At $\lambda=0$ (Bloch case) $T(E)=1$ as expected for both the encrgies. $T(E) \rightarrow 0$ as $\lambda \rightarrow 2$ for both the energies. For $E=0.5, T(E)$ becomes very small beyond $\lambda=1.5$ but truly vanıshes only for $\lambda>2$. This shows very clearly that for the Harper model with $0<\gamma<1$, there exist mobility edges with $E_{c}= \pm(2 V-\lambda)$. Since in this plot we have fixed E, and plotted only positive $\lambda^{\prime} \mathrm{s}$, this shows up as the existence of a metal-insulator transition at $\lambda_{c}=(2 V-E)$. The existence of very small values of the transmittance for $\lambda>1.5$ for the $E=0.5$ case is simply due to finite-size effects. Below $\lambda \cong 1.49$ the logarithm of the transmittance is virtually independent of size. Around $\lambda=1.49$ the transmittance drops exponentially showing
exponentral localisation and with an exponent increasing with size. We should emphastze here that this method of location of the metal-insulator transition is computationally pasv and fast (taking CPU time 21.75 secs on a IIP 9000/300 desktop computer for a single vulue of λ or E and a system size of 10^{5}) and does not require cumbersome formulae fur calculating the localisation length involving diagonalisation of very large matrices, and assumptions of exponential localisation. Indeed, as seen from Figure 2, we need not go t, system sizes larger than 10^{4} for locating the mobility edges. Moreover, we may use our methodology to analyse situattons where we have non-exponential localisation.

Figures 3-5 show the DOS and the transmittance as a function of energy for the Harper model with $\lambda=1$ and $\gamma=0.7,0.5$ and -2.0 respectively. In the first two cases there exist mobiltty edges at $E_{c}= \pm 1$ sunce $V=\lambda=1$. The case of negative γ needs spectal mention and we do that later on. In Figures 3 and 4 the non-analyticity of the DOS in the localised regime is evident from the rapid fluctuations in that region in contrast to the relatuvely smooth behaviour in the extended regime. This contrast is more apparent in the Figure $3(\gamma=0.7)$ than in Figure $4(\gamma=0.5)$ since the localisation length tends to infimty as $\gamma \rightarrow 0$ (Bloch case). Das Sarma et al's $\{10]$ more elaborate DOS calculations on much larger systems are qualitatively similar although they show the unsmooth behaviour w the localised regme with an integrable divergence at E_{6}, much more transparently.

Figure 3. The denstly of states (states per atom-spm, scaled up by a factor of 10) and the tranumblane versus energy, for the Harper model with $\gamma=0.7$ and $\lambda=1$. Mobility edges are dearl) seen

Let us discuss the location of band and mobility edges for the Harper model. We can casily understand this from the following discussion put forward by Das Sarma et al [10] for positive γ models. Let us first note that

$$
\begin{equation*}
d \varepsilon_{n} / d n=-\left\{2 \lambda \gamma \pi Q n^{\gamma-1} \sin \left(2 \pi n^{\gamma} Q\right)\right\} \tag{12}
\end{equation*}
$$

For all $\gamma<1$, this vamishes as $n \cdots>\infty^{\text {, unce }}\left|\varepsilon_{n+1} \cdot \varepsilon_{n}\right| \sim 0\left(n^{\gamma}\right)$, that is, lociallv the ε_{n}^{\prime} s do not change much. If one assumes that the wavefunction ampltudes. $\phi_{n} \sim z^{n}$, then substututing this in the Schrödinger equation, one obtains

Figure 4. The same as in Figure 3 with $\gamma=0.5$

Figure 5. The same as in Figure 3 with $\gamma=2$
$z^{2}-C_{n} z+1=0$.
where $C_{n}=E-\varepsilon_{n}$. If $C_{n}{ }^{2} \leq 4$, then z is complex, and $|z|=1$ as appropriate for extended states. For large n, although ε_{n} is locally constant, it can take any value between $-\lambda$ and $+\lambda$ for the case $0<\gamma<1$. Thus if the maximum possible positive value of C_{n}, namely $\left(C_{n}\right)_{\max } \equiv$ $(E+\lambda) \leq 2$, i.e. if $E \leq(2-\lambda)$, then the condition of complexity of z is satisficd for all
large n. Similarly, if the minimum possible negative value, $(C)_{\min } \equiv(E-\lambda) \leq-2$, i.e. it $E \geq-(2-\lambda)$, again the condtion of complexity of z is satisfied for all lange n. Thus tor $0<\gamma<1$, the mobility edges were carlıer $|10|$ predicted to be at $\pm(2-\lambda)$, while band edges are at $\pm(2+\lambda)$. We sec from Figures 3 and 4 that, although the effect of the metal-insulator transition clearly shows up on the transmittance as a function of energy, finite si\%e effects cause the DOS to shrink inside the band edges, partucularly as $\gamma \rightarrow 1$.

We discuss the case of negative γ somewhat more claborately since it does not seem to have been mentioned in the litcrature before. We see in Figure 5 for the case $\gamma=-2.0$, that the DOS has a centre shifted to $E=\lambda$ and the mobility edges are at $(-2+\lambda)$ and $(2+$ λ). This asymmetric shift of the centre is common to Harper model with all negative γ (m the large length limit).

For the case $\gamma<0$, the argument of the trigonometric functions in eq. (13) and in the model potential approaches zero for large n. Thus, for negative values of γ and large n, the site-energies ε_{n} do not alternate in sign and approach a globally constant value of $+\lambda$, the approach being more rapid for larger absolute value of γ. Thus, asymptotically, the band edges shift to $-(2-\lambda)$ and $(2+\lambda)$, with the band centre being shifted to λ (in comparison to the case of positive γ, where the band centre was at 0). It may be noted that for small values of n close to the origin, the site energies have not yet reached the constant asymptotic value and hence given rise to some band states in the domain $[-(2+\lambda),-(2-$ $\lambda)]$, but the weightage of these states in the DOS become smaller and smaller for larger and larger size chains. This is the reason why we can see a few states in the DOS of Figure 5 (γ $=-2.0$ and $\lambda=1$) between $E=-3.0$ and $E=-1.0$. As for the condition for complexity of the solutions for 2 , we now have $(E-\lambda)^{2} \leq 4$. Thus, the mobility edges are at $-(2-\lambda)$ and $(2+\lambda)$. Thus asymptotically almost all states are extended for $\gamma<0$, even though for finite size chains this statement is not exact. It is thus interesting to note here that for $\gamma=0$, all states are extended (Bloch states), but such is not the case for $\gamma>0$. Thus $\gamma=0$ seems to be a singular point.

One of the statements often made in that localisation results from the randomisation of the phase of the wavefunction as it travels through the system. To study this phenomenon for the present model, in Figure 6 we have plotted the Argand map of the complex transmission coefficient, i.e. its imaginary versus the real part, as the size of the system varies. This is direculy related to the Argand map of the outgoing wavefunction.

At $\lambda=1$ for $\gamma=1$, we have a reasonably well transmitting state (Figure 6(a)). The Argand map is a regular curve with a few Fourier components. As λ increases, the maps pick up more Fourier components and resemble more complicated Lissajous' figures. The scatter about the base curve also increases. The average absolute amplitude remains reasonably close to 1 , as is seen from Figure 6(a) with λ upto 1.8 . Around $\lambda=2.0$, the transmittance precipitately goes down to zero, and the Argand maps collapse to a point for $\lambda \geq 2.0$ for large enough lengths [Figure 6(b)].

Figure 6(a). Argand maps of the complex transmission coefficients for the Aubry model at $E=0$ (in units of V) and $\lambda-10,14,16$, and 18 (clockwise)

Figure 6(b). Same as in ligure $6(a)$ with $2-195,198,2.0$ and $2\left(12\right.$ (clockwise) where $\lambda_{c}=2.0$.

3.2. Azbel resonances

It has been known for some tume that in tght-binding, one-dimensional chains with short ranged overlap integrals, the clectronic spectrum is a dense, point set; almost all of wheh supports exponentally localsed states. The existence of a few transmutting states have aho, been known for some tume. These are the so called Stochastic Resonances or A/bul Resonances |19-22|. Pendry [23| examined the reasons for the existence of these resondm state. He speculated that these states could be necklace states. That is, a linear combinatom of a number of localised states almost degenerate in energy, but whose centres of localisation are at different parts of the chain. They have sufficient overlaps between themselves and together span the cham. Azbel and Soven [24| had carlier estimated the width of these resonances and the way in which these scale with the si/es of the chains.

Since the width of the Azbel resonances decreases with length as $\exp (-2 L / 5)$ where ξ is a measure of the localisation length, the search for Azbel resonances begin with quite small chains. For small chains, states at several energies will show large transmittance. Many of these are actually localised states whose localisation lengths are larger than the chain length. As we increase the length of the chain most of these states no longer show non zero transmittance. However, even at quite large lengths some transmitung states remain. These are the Azbel resonances. The neighbourhood of these energies are then searched for very large lengths carefully and at a very fine energy mesh to locate the posituon of the resonances.

For diagonal disorder $\varepsilon_{n}=\delta\left(\xi_{n}-0.5\right)$ and all the $V_{n}=1 . \xi_{n}^{\prime}$ s are independent random variables uniformly distributed between 0 and $1 . \delta$ is a measure of the strength of the disorder in the system and the energy is scaled in units of V in this case.

The transmitted wave is $\psi_{N}(E)=t_{N} \psi_{\mathrm{o}}(E)$, so that $t_{N}(E)$ carries the informaton about the relative amplitude and phase of the transmitted wave for a sample of size N. The set $\left\{T_{N}(E)=\left|t_{N}(E)\right|^{2}\right\}$ then represents a set of measurements on a collection of chains of varying sizes $\{n\}$. The chain of size $n+1$ is identical to the chain of size n upto the n-th element. Note that this set is different in essence from the wavefunction amplitudes at different sites of a single isolated chain. For the multifractal analysis we shall use this set of transmittances properly normalised. Again, this analysis is different in essence from the multifractal analysis of wavefunction amplitudes for isolated chaings.

The Q-th moment of this distribution for any real valuc of Q is

$$
\begin{equation*}
Z(Q)=\sum_{n=1}^{2 N} P_{n}^{Q} \tag{14}
\end{equation*}
$$

where $P_{n}=T_{n}(E) / T$ and $T=\Sigma T_{n}(E)$. This Q-th moment is also called the partition function of the distribution [25].

The indices $\tau(Q), \alpha$ and $f(\alpha)$ are defined by the asymptotic behaviours :

$$
Z(Q) \sim N^{\tau(Q)}, P_{N} \sim N^{-\alpha}
$$

and the fraction of atoms having exponents between α and $\alpha+d \alpha$ is $N^{f(\alpha)}$.
The three exponents $\tau(Q), \alpha$ and $f(\alpha)$ are related to each other by

$$
\begin{equation*}
\tau(Q)=\alpha \cdot Q-f(\alpha)=(Q-1) D_{Q} \tag{15}
\end{equation*}
$$

D_{Q} is referred to as the generalised (Renyi) dimension of index Q. As can be casisly seen from (6) $\alpha=d \tau / d Q$. The curvature of the $f(\alpha)$ curve is $C=\left(\frac{d^{2} f}{d \alpha^{2}}\right)_{\alpha=\alpha_{0}}=\frac{1}{\left(\frac{d^{2} \tau}{d Q^{2}}\right)_{Q=0}}$. Non divergence of the curvature is a signature of genuine multifractulity.

For numerical facility α and $f(\alpha)$ can also be computed directly avonding numerical differentiation [26]

$$
\alpha=\frac{Z^{\prime}(Q)}{Z(Q) \ln (2 N)} \text { and } f(\alpha)=\frac{1}{\ln (2 N)} \quad\left(\ln Z(Q)-\frac{Q Z^{\prime}(Q)}{Z(Q)}\right) \text { and the }
$$

expression for C [27] is

$$
\begin{equation*}
\frac{1}{C}=\frac{1}{\ln (2 N)}\left(\frac{Z^{\prime}(0)^{2}}{Z(0)^{2}}-\frac{Z^{\prime \prime}(0)}{Z(0)}\right) \tag{16}
\end{equation*}
$$

Figure 7(a). Transmittance versus energy (in unts of V) for a chan of ste 30,(X)) (in units of latuce spacing)

We have studied transmittance versus the energy of the incoming electron E, numerically to obtain the resonant states. The width of the resonance peaks get narrower as the sample length is increased. Figure 7 shows the position of the Azbel resonance tor an Anderson model with purely diagonal disorder. The resonance peak sharper as the length is increased from 30,000 (in Figure 7a) to 40,000 (in Figure 7b). The states, over a very narrow energy region are transmitting while all the rest are localised. As seen in these figures, the resonant state persists with increasing length but the energy at which resonance occurs tend to shift. For the length 30,000 the resonance is at $E=-0.3344$ while for the length 40,000 it occurs at $E=-0.3385$.

Figure 8 shows the transmittance plot for Azbel resonant states. In both the length scales, the transmittance remains finite in most parts of the sample size. The sample is connected to perfectly conducting leads on both sides. So the transmittance at the incoming

 latice spasing)
end is always equal to 1 . Figure 8a shows the transmitance at an Azbel resonance in a sample of length $30,()(0)$, while Figure 8 b shows the transmittance at the shifted Afbel

Figure $8(a)$. Tranmmtance plotted aganst chan length (in unts of latuce spacing) for an Adbel resonant encrgy in a chain of length $30,()(X)$.
resonance in a sample of length 40,000 . Figure 8 c shows the same for a localised state in a sample of length 100,000 . Here the incoming lead has transmittance equal to 1 and this falls off exponentially as the wave travels through the sample. The wave is localised within a
small length region from the incoming sides. In contrast to Figure 8a and Figure 8b except for a small mesoscopic regime the transmituance rapudly goes to zero.

Figure $\mathbf{X}(\mathbf{b})$. Transmitance plothed agams chan length (in unts of batice pacing) for the shifted Aatel reconant encegy in a (han of wire $4(0,()(x)$

Figure 8(c). Transmittance plotted aganst chan length (in unts of lattice spacing) for a localised state in a chain of length 100,000 .

The transmittances in these disordered samples show very large fluctuations from size to size and are highly fragmented. One of the powerful methods of analysing such fragmented objects is through multifractal analysis described carlicr (25).

Figure 9 shows $\tau(Q)$ versus Q graph for all three types of states : extended, localised and Azbel. For the extended state, the graph is a straight line with an almost constant slope denoted by the dashed lines here. For a localised state, the graph consists of two separate straight lines of different slopes for +ve and -ve values of Q, continuous at
$Q=0$. This is shown by the dash-dot lines. For the Azbel state, the graph is a straight line with a constant slope. Its slope is different from the extended case. It is denoted by a solid line in the figure. For extended states $P_{n} \sim 1 / N$, so that $Z(Q) \sim N^{1-Q}$. This leads to $\tau(Q)=Q-1$, which is a straight line with unit slope. For localised states P_{n} is signticantly non-\%ero only in an interval of size L. For positive and increasing Q the si/e

Figure 9. The saing index r(Q) versus Q for extended localsed and Asbel state
of the interval over which $P_{n}{ }^{4}$ is significantly non-zero ($L(Q)$) decreases as Q increases. / $(Q) \sim L^{1-q}, \tau(Q) \sim(1-Q)\left(\frac{\ln L(Q)}{\ln N}\right)$. The slope of this curve decreases from unty with increasing positive Q value. For negative and large $Q=-Q^{\prime}, P_{n}{ }^{Q}=P_{n} Q^{\prime}$ is now large over that interval over which P_{n} is almest zero. If we estimate P_{n} in the intervals of width ε, then $Z(Q) \sim N^{\prime}(\varepsilon)^{-\ell^{\prime}} \sim N^{\tau}$.

Figure 10(a). The mululractal spectrum $f(\alpha)$ versus α for vanous lengths for an extended state.

$$
\tau\left(Q^{\prime}\right)=Q^{\prime}\left(\frac{\ln \varepsilon}{\ln N}\right)-\frac{\ln N^{\prime}}{\ln N}, \text { where } N^{\prime}=N-L(Q)
$$

This is large and negative as ε is small. These characteristics are clear in Figure 3. Particularly in this respect the Azbel states resemble extended states. We expect this, as the nature of the localised states of being non-zero in a small interval, wheh is reflected in the $\tau(Q)$ versus Q graphs is not shared by the Azbel states. However the slope for the Azbel state curve is not unity, since the states do not possess translational symmetry and $P_{1} \not \equiv$ ($1 / N$).

Figure 10 shows $f(\alpha)$ versus α curves for extended, localised and A abel states at different sample lengths. Since numerical work is always carried out on finte samples, the study of the asymptotic behaviour of the $\alpha \quad f(\alpha)$ curves as the stee increases is very important.

Figure 10a shows the graph for an extended state. The state is for $\delta=0.01$ and $E=0$. For one-dimension no true extended states exist for $\delta>0$, but for this weak disorder and energy, the state has a localisation length $\gg 30,0(0)$, the maximum ste taken and for these lengths conveniently mimic extended states. For almost all values of $Q, f(\alpha)$ and α has values -1 . The interesting point here is the behaviour of the graphs as we increase the length of the sample. For a sample of length 10,000 the $f(\alpha)$ versus α curve is the outermost solid line curve. The curve converges inwards as the length of the sample increases to 20,000 and 30,000 respectively. For larger lengths the curve will converge to the point $(1,1)$.

Figure 10b shows the graph for a localısed state. Here the curves move outwards as we increase the length scale. The interesting point to observe is that the density of points near $\alpha_{\operatorname{man}}$ and $\alpha_{\max }$ is very high whereas the intermediate region is sparsely populated. This
indicates clearly the fact that for exponential localisation, $\alpha_{\min }$ becoming smaller and smaller corresponds to a large probability (which should ideally be ~ 1) for getting the electron within the localisation length. $\alpha_{\text {max }}$ becomes larger and larger implying that probability decays exponentally for lengths larger than the localisation length. The asymptotic convergence is at the point $(0,0)$ and $(\infty, 1)$.

Figure 10(c). The multhtactal pectrum $/(x)$ versus of for varous lengths for an Aabel wate

Figure $\mathbf{1 0 (d)}$. The mulufractal spectrum of $f(\alpha)$ versus α for a locaissed state and an Adbel state.

Figure 10c shows the same for an Azbel state. Here the graphs are spread out, with a significant ($\alpha_{\max }-\alpha_{\operatorname{man}}$) as compared to the extended state though the peak still occurs at ($\geq 1,1$). The behaviour of the graph with increasing lengths is however significantly different from the extended or localised case. Here the $\alpha_{\max }$ and $\alpha_{\min }$ oscillate about some
mean position. The graph moves significantly inside as the length is increased from $50(0)$ (0) 10,000 . But after that increase in length scale results in close overlap on the $\alpha_{\text {man }}$ side but having a small oscillation on the $\alpha_{\text {max }}$ side. As seen wath increasme: N the Astel state how tmite ($\alpha_{\min }, \alpha_{\max }$). Unlike the extended state $\alpha_{\operatorname{man}} \neq \alpha_{\max }$ and unlike localised states $\alpha_{\max }$ is fmute. The true mulufractal nature of the Azbel states resemble more closely the critical states in incommensurate systems.

Figure 10d compares the $\alpha-f(\alpha)$ curves of a locahsed state and an Adbel statc. As seen, the density of points in the curve for the Atbel state is untorm whereas tor the localised state the points are concentrated at the two ends.

Figure 11(b). $\quad \alpha_{\text {max }}$ versus Q.

Figure 11 shows the behaviour of $\alpha_{\text {min }}$ and $\alpha_{\text {max }}$ for an Azbel resonant state with increasing $Q . Q$ is varied from 50 to 200 in Figure 11a. $\alpha_{\min }$ decreases in the begining but approaches a constant value for $Q \geq 110$. Figure 11 b shows Q variation from -50 to -200 to estimate $\alpha_{\text {max }}$. As expected $\alpha_{\text {max }}$ increases with increase in -ve Q value and reaches a fixed value from about $Q=-120$.

Figure 12(a). $f\left(\alpha_{\text {min }}\right)$ versus Q.

Figure 12(b). $f\left(\alpha_{\text {max }}\right)$ versus Q.

Figure 12 shows the behaviour of $f\left(\alpha_{\min }\right)$ and $f\left(\alpha_{\max }\right)$ with increasing Q for Azbcl resonant state. Figure 12 a has Q variation from 50 to 200 to find $f\left(\alpha_{\min }\right)$. Figure 12 has Q
variation from -50 to -200 to find $f\left(\alpha_{\max }\right)$. f decreases for both large +ve and -ve values of $Q . f\left(\alpha_{\max }\right)$ decreases more sharply than $f\left(\alpha_{\operatorname{man}}\right)$, going towards zero for large -ve Q values. However any further increase in Q value brings in numerical instability and to overcome this, quadruple precision, not available with us, has to be used .

Figure 13(a). The curvature C versus the chan size

Figure 13(b). The curvature C versus the inverse of the chann size
Figure 13 shows the curvature for the multifractal analysis of the transmittances at Azbel resonance. Figure 13a gives curvature C versus $2 N$, the sample size. Figure 13 b gives

[^0]: * The work described in this article is based on the collaborative work of the author with Chattalt Basu, Indra Dasgupta and Tanushree Saha of the S N Bose National Centre and Drs Asok K Sen and Prabhat K Thakur of the Saha Institute of Nuclear Physics, Calcutta, India.

