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Abstract :  We present a tractable and stable technique for numenical detenmination of
transmittance and conductance through random media. The methodology s numeric ally stable
for large systems and capable of being gencralised for higher dimensions We sllusirate the
technique by two specific applicatons
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1. Introduction

The problem of transmittance through random media is a long standing onc. Interest n the
problem is sprcad over a wide range : from the physicists’ interest in the conductance of
clectrons through disordered solids, or the transmittance and retlectance of clastic waves
through the earth’s crust, of nterest to oil or water prospectors, to the passage of starhght
through the disordered dielectric media of the universe. In general, analyuc solution ot the
problem 1s exceedingly difficult, cxcept in the most trivial of models. Nor are analyuc
attempts free from controversy. The configuration averaged viewpoint, which has been
successful in many problems, unfortunately tends to mask the characterisucs of mdividual
systems which in many cases dominate the specific system’s propertics. This 1s certainly
true of resonance properties. It is for this reason that there has been considerable emphasis
on the numerical study of disordered systems. However, stable numernical procedures exist
by and large for one dimensional systems alonc. Either these mcthods have not been
cxtended 1o higher dimensions, or those that are available volve numcrically unstable
procedures involving divergent recursions and matrix inversions.

The aim of this article is to present a numerical procedure which is tractable and
stable and formulated for general dimensionality. We should like to suggest that the vector
recursion method should be tried out in transmittance problems. The techmque 1s relatively
fast and numerically stable. We shall also present some applications of the method to bring
out the fact that the technique, in contrast to carlier methods, gives unambiguous
information.

* The work described in this article is based on the collaborative work of the author with Chaital B‘a.su, Indra
Dasgupta and Tanushreec Saha of the S N Bose National Centre and Drs Asok K Sen and Prabhat K Thakur of

the Saha Institute of Nuclear Physics, Calcutta, India.
© 1992 IACS

4A (18)


https://core.ac.uk/display/93520527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

560 Abhait Mookeryee

2 The vector recursion method
we shall describe a system through which we wish 1o study the transmiltance by 4y
Anderson tight-binding Hamiltonian of the type described in (1). The chain will be of
length 2V

2N

Hpie = Z [ e0.l 0.4 Vo (90" 0t 0’ ¢n>}. ()

n=1

To the two ends n = 1 and n = 2N we attach clementary, perfectly conducting, semi-infinite
leads. The purpose of these leads is to bear the incoming, reflected and transmitted waves
Godm and Haydock [1] have shown that in any solid, for instance, since only a finite
number of bands cross the Fermi cenergy, the Hamiltonian of the lcads can always be
converted to independent clemental chains of the type described below by the usce of the
simple Recursion method (2]

o= L0 004V @lar 00+ 0 0000))

(2)
Ilnu\ = _2 { £ ¢+n ¢n+ v (¢fn+ 1 (pn"" ¢fn ¢’n4 1 )}

n=2N4 1
For simplicity we shall tuke ¢ =¢"=0and V' = V" = V| 4.
The solution of the Schrodinger cquation m the two leads are known. These are
travelhing Bloch waves of the form

Wiewds = ZWn ¢+n (z)

. ) .
with g, = 4 ¢""% As the wave travels through the leads, it phase changes by 8 from one

siie o the next. In the clementary, perfectly conducting lcads, this phasc change s
deternunate :

cost = (L V) (4)
where I s the energy associated with the incoming wave.

We have assumed that ransport is idcal in the leads right upto the contacts with the
sample. This ignores boundary effects. However, if we consider large enough samples, such
boundary effects are expected 1o be negligible.

The demsty of states is non-zero in the region E| < E < E,. If we wish to examine
the ransmuttance within this band, we must choose a Vie,q, which allows this full band
pass, i.e. Vi.q 2 (£, - £,)/4. This is because, in order to have propagating states in the
leads, we must have a real solution to cq. (4).

The Vector recursion technique now changes to a new vector basis with vector

annihilation operators
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(1)
>, = (‘b"m) with @, = 9, )
n ¢'2N

and the others are gencrated from the recursive formula :
B?n¢anbl = {IIW”}—A,I“V,,—B,,W,, 1 (51])

where ¥, = ¥, @,.A, = y, Il y, and B, is found by disentangling B, , | v, . , using
the Gram-Schmidt orthogonalisation of its two componcents.

In this basis, the lead and sample Hamiltonians become :

I'Isamplt: = ngl{ An d)n.r d’n"‘Bn+l d)?n+l d’n"'B*nﬁl d)fn d’n*li (Sb)
t
Illeads = SOV{ d)n#l(pn"'d’fn d’n+l}- (5¢)

The Schrodinger equation may be expressed as a three term Iincar difference equation
mvolving the 2 X 2 matrices A and B, and the wave function vector amphitudes

_ Y
Vo = W2N+]fn)

4

Bn+an+l=(E1_An)v/n_Bn!I/n 1- (0)
Let us now think of a situation where an incoming wave ¥ ¢ ¢!
the right along the input lcad. As it reaches the sample it is scauered. A reflected wave 2 r
(£) e ™° ¢," travels back in the input lcad to the left and a transmutted wave 31 (E) ™’

¥ . ..
¢, travels in the output lead. r (E) and ¢ {£) arc the complex reflection and transmission

. 1s travelling to

coefficients. Since the solution in the Icads arc known, the boundary conditions n the new
vector basis are :

16 0
[//" = (ll+r) l//l = ((;('+‘5e ). (7)

Note here that we have chosen to measure our phases from the basis labzlled O just
outside the joint between the Ieads and the sample. It 1s also clear that the way we have
numbered the new basis, the reflected and transmitted waves both travel to the left, hence
the negative sign in the cxponent of the transmitted wave.

The general solution of (6) satisfying these boundary conditions may be written in
terms of the two independent family of solutions of (7) {X,} and (Y,}, which sausfy

Bl Xaor = (EI-A)X,-B,X, Xo=1,X,=0

B, Yo, = (EI-A)Y,-B,Y, Yo=0,Y, =1. (8)
This solution is

= Xo o+ Y, v, )

Direct substitution in (6) and (7) shows that this is indced the required solution

with the correct boundary conditions.
In cxactly similar manner we can discuss the case in which the incoming wave
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travels to the right in the Icad labelled 2. After scattering by the sample the reflected wave
travels to the night in Jead 2 and the transmitted wave to the left in lead 1. Here ' (E) and ¢/
(E) arc the reflection and transmission cocfficicnts of this new problem, with boundar,

. )
, t . Ie .
Vo = (l+r’) Vi = (e’9+r'e"9) 7

and &= Xayo+ Y,y 9"

conditions

We have a further boundary condition. Since the length of the chain is finite, in the new
basis the vector chan terminates after N steps, so that

t‘;,\,,] = () and é’N‘] = Q. (1())

It we substitute this i (7), (7'), (9) and (9') we immediatcly obtain an cxpression for the
scattering S-matrix

S = (’r Ir) = —(Xyar+ v e DXy, + Yy @) (I

In the absence of magnete fields the ume-reversal symmetry gives £ =", The S-matrix 16
symmetric, Finally, the transmittance T(E) = It (E )I2 while the reflectance R(E) = Ir (E )Iz.

3. Applications of the vector recursion technique
3 1. The generalised Aubry model :

Recently there has been considerable effort in understanding the nature of clectronie states
in quasi-periodic systems. Practical applicatons of such studies involve, among other
things, incommensurate superlattices (3] and once dumensional quasi-crystals [4]. While 1t 1
well known that 1in an onc dimensional system with random potentials all states are
localised [5], and whereas all states are extended Bloch states in the absence of disorder, 1t
has recently been shown [6-11] that certain quasi-peniodic systems in one dimension are
capable showing transition from localised to extended states. In addition, there is interesting,
behaviour in the intermiediate critical states.

A simple quasi-crystalline model is the so called Aubry model where €, = 4 cos
2n(n + §) [12-14}. Typically the hopping energy V, is a non-random quantity (= V), sct
cqual to 1 to fix the cnergy scale. In this case the period Q ' of the potential is
mcommensurate with the period of the lattice (= 1). When Q is irrational, the spectrum 1s
absolutely continuous (1.e. all states are extended) for 0 < 4 < 2. It is point-like (i.e. all
states arc localised) if 4 > 2. In fact, an interesting duality property (Aubry duality) exists
between the cases 4 <2 and A > 2, with the case A = 2 being self dual. For this last case
(A = 2), all states are critical and the spectrum in singularly continucus. This self-dual case
leads to global scaling properties of the spectrum with a range of scaling indices and an
associated multifractal character [8). These authors have also shown that, if Q 1s a rational
approximant of an irrational number, e.g. Q = F; /F,, where F; is the [-th Fibonacci
number, then the spectrum consists of ; bands and F, , | gaps.
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The simple Aubry modcl in one dimension docs not have a mobility edge, whercas
an cxiension due to Griniasty and Fishman {9] scems 1o have an extended-localised
nansition at an appropriatec mobility edge under certain circumstances. For this model,
which 1s sometimes called the Harper model, ¢, = A cosQmi’O + 8 ) and y# 1 Fory>2 n
hias been stated that the problem is cquivalent to the corresponding random problem |15]
and all states are exponentially localised. It may be noted that y = 1 LIVES TISC 10 an
mhomogencity in the period of the potential. 1t is known that inhomogenceity i the
amplitude variation of the potential gives rise Lo localisation-delocalisation transition [16].
It will be interesting to study whether such an effect arises out of mhomogencity of the
period of the potential. The idea of inhomogencity of the peniod may be casily noted 11 we
wnie the potential as A cos[2an (On 4 i)l. The eftecuve penod Q= On” 1 dependent,

and so inhomogencous.

Griniasty and Fishman |9] studicd the band centre states for 0 < y< 1 with
irational within the perturbation theory and concluded that all states are eatended. In
contrast Das Sarma et al, [10] observed, using a heunstic argumient and exact numerical
valculanions of eigenvalues and wave amplitudes n finite systems, that foro < y< 1, A <2
there are mobility edges at £, =1 (2V - 1), with extended states at the centie of the band
i 1< (2V - A ) and localised states at the band edges 2V — A ) < I 1< (2V 4 ). Further
tor 1 < y< 2 they find along with Thouless [17] that all states away from the ¢vadt band
centre are localised and the Lyapunov exponent (inverse localisation length) approaches
rao extremcly slowly at the band centre.

Our amm 15 10 study wave propagauon in such models by numencally calculaung the
nansmuttance as a function of the energy of the incident wave and by monitoring the way in
which the phasc of the transmission coctficient (which is related to the phase of the
clectronic wave function) changes as-the wave propagates through the meduun This will be
done for all values of ¢ including negative values not explicutly reported so far Our
approach based on the vector recursion techmque of Godin and Haydock [1] is
complementary to that of Das Sarma et ¢l |9]. The vector recursion myethod, as we shall
mdicate, is easily extended to more than one dimenstons : a work which we shall reportin a
subsequent communication. Our results are, 10 a large extent, m agreement with those of Das
Sarma et al [10], justifying their criticism of the carlier of Grintasty and Fishman [9].

The results we report [18] except those on Argand maps of the complex transmission
cocfticient, are to a large extent complementary to those of Das Sarma ¢ al [10]. The
recursion method has the great virtue of giving a measurable quantity (namely, the
transmittance) and the mobility edges can be located relatively casily with smallcr sizc
systems by looking at the transmittance rather than by first exactly diagonahzing the
Hamiltonian for a much larger system and then by calculating the Lyapunov exponent (or
mverse localization length) from the eigenencrgics or the cigenfuncuions. As an added
advantage, since the transmission cocfficients contain information on the wave function at a
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particular encrgy, onc can monitor the change of the clectronic phasc at successive
scatterings. Further, since using the transfer matrix method and applying Landauer formuly
onc can calculate the conductance directly as a function of length, one can check the validity
of the onc-paramcter scaling theory. One may also study the form of the renormalization
group flow within this onc-parameter scaling and locate its fixed-point (or points, if there 1y
morc than one). This we shall discuss in a subsequent paper. For all the results presenicd
below, the non-random hopping term has been sct at V = 1. Most of our calculations are
done on chains of length 10°.
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Figure I(a).  ‘Transmimance versus energy of the incoming wave (in units of the overlap tenn
V) for the Aubry model for 2 = 1
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Figure 1(b). The density of states (states / atom-spin) for the Aubry model 4 = 1.
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Figure 1(a) shows the transmittance versus encrgy of the incoming wave for the pure
Aubry model (¥ = 1.0) with 2 = 1. The transmittance fluctuations characteristic of
ncommensurate systems are clearly visible. These, in turn, Icad 1o strong fluctuations in
conductance with changes in the chemical potential [11]. In Figure 1(b), we show the
density of states (DOS) for the same situation. The DOS strongly resembles that of a model
where the site diagonal terms are in a Fibonacci sequence. In the Aubry model, the site-
diagonal terms are incommensurate with the underlying lattice. However, the qualitative
featurcs of DOS (c.g., the gap structurcs) do not secem 10 be very dilferent in these two
cascs. These two figures together show that all states are catended m this case. This is
consistent with the fact that in the Aubry model there is an encrgy-independent metal-
insulator transition at A = 2, which separates the region A < 2 where all states are extended
and A > 2, where all states are localized.
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Figure 2. Transmittance at £ = 0 (full curve) and at £ = 0.5 (dotted curve) (£ measured mn
ututs of V) for the Harper model with y= 0.5, as a funcuon of A

Figure 2 shows the transmittance at the band centre £ = 0 (full curve) andat E=0.5
(dotted curve) of a more general Harper model with y= 0.5 as a function of A ALA=0
(Bloch case) T (E) = 1 as expected for both the cnergics. T (E) — 0 as 2 — 2 for both the
cnergies. For E = 0.5, T (E) becomes very small beyond 4 = 1.5 but truly vamishes only for
A> 2. This shows very clearly that for the Harper model with 0 < y<1, there exist mobility
edges with E, = + (2V — 4 ). Since in this plot we have fixed £, and plotied only positive
A’s, this shows up as the existence of a mctal-insulator transition atA,. =2V - E). The
existence of very small values of the transmittance for 4> 1.5 for the E = 0.5 case is simply
duc 10 finite-size effects. Below A = 1.49 the logarithm of the transmittance is virtually
independent of size. Around A = 1.49 the transmittance drops exponentially showing
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exponenual localisation and with an exponent increasing with size. We should emphasz,.
here that this method of location of the metal-insulator transition is computationally ¢y
and fast (taking CPU time 21.75 sccs on a P 90001300 desktop computer for a single
vulue of A or E and a system size of 1 0’ ) and does not require cumbersome formulae for
calculanng the localisation length involving diagonalisation of very large matrices, uny
assumpiions of exponential localisation. Indeed, as seen from Figure 2, we need not go 1,
system sizes larger than 10° for locating the mobility edges. Moreover, we may use our
methodology to analyse situations where we have non-exponential localisation.

Figurcs 3-5 show the DOS and the transmittance as a function of energy for the
Harper model with A= 1 and y= 0.7, 0.5 and -2.0 respectively. In the first two cases there
exist mobility edges at E, =+ 1 since V = A = 1. The casc of negative y needs special
mention and we do that later on. In Figures 3 and 4 the non-analyticity of the DOS in the
localised regime is evident from the rapid {luctuations in that region in contrast to the
relauvely smooth behaviour in the extended regime. This contrast 1$ more apparent n the
Figure 3 (y=0.7) than in Figurc 4 (y = ().5) since the localisation length tends to infim,
as y— 0 (Bloch case). Das Sarma et al’s [10) more elaboratec DOS calculations on much
larger systems are qualitatively similar although they show the unsmooth behaviour 1s the
localised regime with an integrable divergence at £, much more transparcntly.

10000 —— e e e —_— -

3000

8000

DOSITRENS
EN
g

——

18000 24000 30000

001 e - .
30000 24000 -18000 -12000 --6000 0000 .6000 12000

Figure 3. T'he density of states (states per atom-spin, scaled up by a factor of 10) and the
transmittance versis energy, for the Harper model with ¥ = 0.7 and 4 = 1. Mobihity cdges are

clearly seen

Let us discuss the location of band and mobility edges for the Harper model. We can
casily undcrstand this from the folldwing discussion put forward by Das Sarma et al [10]
for positive ymodels. Let us first note that

de,fdn = - { 24ynQn"" ! sin@@nn"Q ) } (12)



1fransmittance through random media 567

For all y< I, this vamishes as n > oo, ainee e, , | -

~ }
Eal~0 " Yy that s, locally the £,
do not change much. If onc assumes that the wavefunction amphlitudes ¢, ~ 2", then

cubstitating this in the Schrédinger equation, one obtains
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Figure 5. The same as 1n Figure 3 with y= 2
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where C, = E - ¢,. If C,2 < 4, then z is complex, and Iz | = 1 as appropriate for extended
states. For large n, although &, is locally constant, it can take any value betwecn -Aand +A4
for the case 0 < y< 1. Thus if the maximum possible positive value of C,, namely (C,)max =
(E+2)<2, ie. if E < (2 - A), then the condition of complexity of z is satisficd for all

zz—C,,z+1 (13)
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large . Similarly, if the minimum possible negative value, (C)ypn = (E-4) -2, e if
E 2 -(2 - A), again the condition of complexity of z is satisfied for all lagge n. Thus for
0 < y< 1, the mobility cdges were carhier [10] predicted to be at £(2 - 4), while band edges
arc at 1(2 + A). We sce from Figures 3 and 4 that, although the cffect of the metal-insulator
transition clearly shows up on the transmittance as a function of cnergy, finite size effeciy
cause the DOS to shrink nside the band cdges, particularly as y— 1.

We discuss the case of negative ysomewhat morce claborately since it does not scein
1o have been mentioned in the litcrature beforc. We sce in Figurce 5 for the case y= -2.0,
that the DOS has a centre shifted to E = A and the mobility edges are at (-2 + A) and (2 +
A). This asymmetric shift of thc centre is common to Harper model with all negative y (in
the large length limit).

For the case y< 0, the argument of the trigonometric functions in eq. (13) and in the
model potential approaches zcro for large n. Thus, for negative values of yand large n, the
site-cnergies €, do not alternate in sign and approach a globally constant value Of +4, the
approach being morc rapid for larger absolute value of ¥. Thus, asymptotically, the band
cdges shift 1o (2 — A) and (2 + 4), with the band centre being shified to A (in comparison
1o the case of positive ¥, where the band centre was at 0). It may be noted that for small
values of n close to the origin, the sitc encrgics have not yct rcached the constant
asymptotic value and hence given rise to some band states in the domain [-(2 + A), -2 -
A)], but the weightage of these states in the DOS become smaller and smaller for larger and
larger size chains. This is the rcason why we can sce a few states in the DOS of Figure 5 (y
=-2.0and A = 1) between E = -3.0 and E = -1.0. As for the condition for complexity of
the solutions for z, we now have (E — ,1)2 < 4. Thus, the mobility edges are at —(2 — A) and
(2 + A). Thus asymptotically almost all states arc extended for y< 0, even though for finite
size chains this statement is not exact. It is thus interesting to note here that for y= 0, all
states are extended (Bloch states), but such is not the case for y> (), Thus y= 0 scems to
be a singular point.

One of the statements often made in that localisation results from the randomisation
of the phase of the wavefunction as it travels through the system. To study this
phenomenon for the present model, in Figure 6 we have plotted the Argand map of the
complex transmission coefficient, i.e. its imaginary versus the real part, as the size of the
system varics. This is directly related to the Argand map of the outgoing wavefunction.

At A =1 for y= 1, we have a reasonably well transmitting state (Figure 6(a)). The
Argand map is a rcgular curve with a few Fourier components. As A increases, the maps pick
up more Fourier components and resemble more complicated Lissajous’ figures. The scatter
about the basc curve also increases. The average absolutc amplitude remains reasonably
close to 1, as is seen from Figure 6(a) with A upto 1.8. Around A = 2.0, the transmittance
precipitately goes down 10 zero, and the Argand maps collapse to a point for A4 = 2.0 for
large enough lengths [Figure 6(b)].
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3.2.  Azbel resonances

It has been known for some time that in ught-binding, onc-dimensional chains with shor
ranged overlap itegrals, the electronic spectrum s a dense, point sct; almost all of winch
supports exponentially localised states. The existence of a few transmitting states have aly,
been known for some ume. These are the so called Stochastic Resonances or Asbi
Resonances [19-22]. Pendry 123} examined the reasons for the existence of these resonarn
states. He speculated that these states could be necklace states. That is, a lincar combinanion
of a number of locahsed states almost degenerate in cnergy, but whose centres of
localisation are at different parts of the chain. They have sufficient overlaps between
themselves and together span the cham. Azbel and Soven [24] had carlicr estimated the
width of thesce resonances and the way in which these scale wath the sizes of the chains.

Since the width of the Azbel resonances decreases with length as exp (<2L /&)
where & is a measurce of the localisation length, the scarch for Azbel resonances begin with
quitc  small chains. For small chains, states at several cnergies will show large
transmitlance. Many of these arc actually localised states whose localisation lengths are
larger than the chain length. As we increase the Iength of the chain most of these states no
longer show non zero transmittance. However, even at quite large Iengths some transmitung
states remain. These are the Azbel resonances. The neighbourhood of these encrgics arc then
scarched for very large lengths carefully and at a very fine energy mesh to locate the
posiuon of the resonances.

For diagonal disorder €, = 8 (§, - 0.5) and all the V,, = 1. &', s arc independent
random variables uniformly distributed between 0 and 1. 8 is a measure of the strength of
the disorder in the system and the encrgy 1s scaled in units of V in this case.

The transmutted wave is yy (E) = ty y, (E), so that &y (£) carrics the information
about the relative amplitude and phasce of the transmitted wave for a sample of size N. The
set { Ty (E) = lty (E) P} then represents a set of measurements on a collection of chains of
varying sizes {n}. The chain of size n + 1 is identical to the chain of size n upto the n-th
element. Note that this sct is different in essence from the wavefunction amplitudes at
different sites of a single isolated chain. For the multifractal analysis we shall use this set
of transmittances properly normalised. Again, this analysis is differcnt in essence from the
multifractal analysis of wavefunction amplitudes for isolated chains.

The (-th moment of this distribution for any real valuc of Q is
2@ = ype (14)

where P, =T, (E)/T and T = XT, (E). This Q-th moment is also called the partition
function of the distribution [25].
The indices 7 (Q), a and f (@) are defined by the asymptotic behaviours :
Z@~N @ Py-N"“
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and the fraction of atoms having cxponents between « and a + der is V@,
The three exponents 7 (Q), @ and f (o) arc related to cach other by
Q) = aQ-f(a) = (Q-1)Dy (15)
Dg1s referred to as the gencralised (Rényi) dimension of index Q As can be c.mly seen
from (6) o= dt/dQ. The curvature of the f (@) curve is C = ( )u o= B -
( dQ )Q =0
Non divergence of the curvature is a signature of genuine multifractality.
For numerical facility & and f (@) can also be computed directly avording, numerical

differentiation [26]

| ’
and (@) = i (lnA (Q)—QZ/ (g-;) and the

I () B

@ = 7(0) In(2N)
expression for C [27] is

11 A SVAR())

C ~ 2Ny \ Z @) ~ Z ()

(16)
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Figure 7(a). Transmittance versus energy (n units of V) for a cham of size 30,000 (in units of
latuce spacing)

We have studied transmittance versus the cnergy of the incoming clectron £,
numerically to obtain the resonant states. The width of the resonance peaks get narrower as
the sample length is increased. Figure 7 shows the position of the Azbel resonance for an
Anderson model with purcly diagonal disorder. The resonance peak sharper as the length is
increased from 30,000 (in Figure 7a) to 40,000 (in Figure 7b). The statcs, over a very
narrow encrgy region are transmitting while all the rest are localised. As scen in these
figures, the resonant state persists with increasing length but the energy at which resonance
occurs tend to shift. For the Iength 30,000 the resonance is at £ = - 0.3344 whilc for the
length 40,000 it occurs at E = — 0.3385.
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Figure 8 shows the transmittance plot for Azbel resonant statgs. In both the lengih
scales, the transmittance remains finite in most parts of the sample size. The sample 15
connected to perfectly conducting leads on both sides. So the transmittance at the incoming

08

TRANSMITTANCE

00

ENERGY

Figure 7(b).  Pransmuttance versus encrgy (in units of V) for a chan of size 40,000 (in units ol

lattice spacing)

end 1s always cqual to 1. Figure 8a shows the transmittance at an Azbel resonance in a
sample of length 30,000, while Figure 8b shows the transmittance at the shifted Azbel
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Figure 8(a).  Transmittance plotted aganst chain length (in umits of latice spacing) for an
Azbel resonanmt energy i a chain of length 30,000.
resonance i a sample of length 40,000. Figure 8¢ shows the same for a localised state in a
sample of length 100,000. Here the incoming Icad has ransmittance cqual to 1 and this falls
off exponentially as the wave travels through the sample. The wave is localised within a
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small length region from the incoming sides. In contrast to Figure 84 and Figurc 8b except
for a small mesoscopic regime the transmittance rapudly £0CS 10 7210,

TRANSMIT TANCE

o

LENGTH

Figure 8(b).  Transmiuance plotted agamst cham length (0 umits of lattice spacing) for the
shifted Azbel resonant encigy i a cham of size 0,000

RANSMIT TANCE

-
'

LENGTH

Figure 8(c). Transmittance plotied agamst cham length (in umts of lathee spacng) for a
lecahised state in a chan of length 100,000.

The transmittances in these disordered samples show very large fluctuations from
size 1o size and are highly fragmented. Onc of the powerful methods of analysing such
fragmented objects is through multifractal analysis described carlier [25].

Figure 9 shows 7 (Q) versus Q graph for all three types of states @ extended,
localised and Azbel. For the extended state, the graph 1s a straight line with an almost
constant slope denotcd by the dashed lines here. For a localised state, the graph consists of
two separate straight lines of different slopes for +ve and —ve values of Q, continuous at
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Q = 0. This 1s shown by the dash-dot lines. For the Azbel state, the graph is a straight line
with a constant slope. Its slope 1s different from the extended case. It is denoted by a solud
line in the figure. For cxtended states P, ~ 1/N, so that Z (Q) ~ N' €. This leads 1o
T(¢)=¢ - 1, which 1s a straight linc with unit slopc. For localised statcs P, 15
significantly non-zcro only in an interval of size L. For positive and increasing Q the size

14u (Q)
\

0 Q 10
Qa

Figure 9. The scaling mdex t(Q) versus Q tor extended localised and Azbel state

of the interval over which P,7 is sigmificantly non-zero (L (Q )) decreases as Q increascs. /.

In N
with increasing posiuve Q value. For negative and large Q = -0, re=r, 2" s now
large over that interval over which P, 1s almest zero. If we estimate 2, in the intervals of
width & then Z (Q) ~ N’ (e) € ~N'%.

; . ) . .
@) ~L" " t@)~U-0) ( M@) The slope of this curve decreases from unity

FALPHA)

998 1.002 100
ALPHA

Figure 10(a). The mulufractal spectrum f (@) versus a tor vanous lengths for an cxtended state.
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V)]
~
(9]

, C(Ine In N’
(@) = Q (m) - Tr:]",v .where N'=N - L (Q).

This is large and negative as € is small. These characteristics are clear n Figure 3.
Particularly in this respect the Azbcel states resemble extended states. We expect this, as the
naturc of the localised states of being non-zcro in a small interval, which is reflected n the
7(Q) versus Q graphs is not sharcd by the Azbel states. However the slope for the Azbel
state curve is not unity, since the states do not posscss translational symmetry and P, #

(I/N).

10 e
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Figure 10(b). 'The mululractal spectium /(@) versus @ for vanous lengths for a locahised staie

Figurc 10 shows f (@) versus a curves for extended, localised and Azbel states at
different sample lengths. Since numerical work is always carried out on finie samples, the
study of the asymptouc behaviour of the @ f («) curves as the siz¢ increases 1s very
important.

Figurc 10a shows the graph for an extended state. The state is for § = 0.01 and
I = 0. For onc-dimension no true extended states exist for 8 > 0, but for.this weak disorder
and cnergy, the state has a localisation length >> 30,000, the maximum <ize taken and for
these Iengths conveniently mimic extended states. For almost all values of O,f (a)and
has values ~ 1. The interesting point here 1s the behaviour of the graphs as we inerease the
length of the sample. For a sample of length 10,000 the f (@) versus o curve is the
outermost solid line curve. The curve converges inwards as the length of the sample
increasces to 20,000 and 30,000 respectively. For larger Iengths the curve will converge to
the point (1, 1).

Figure 10b shows the graph for a localised state. Here the curves move outwards as
we increase the length scale. The interesting point to observe is that the density of points
NEar O, and Gy is very high whereas the intermediate region is sparscly populated. This

4A (20
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indicates clearly the fact that for exponential localisation, 04, becoming smaller and smaller
corresponds to a large probability (which should ideally be ~ 1) for getting the clectron
within the localisation length. @.x becomes larger and larger implying that probabulity
decays exponentially for lengths larger than the localisation length. The asymptouc
convergence is at the point (0, 0) and (oo, 1).
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Figure 10(¢). The mulufractal spectrum f (a) versus o« for vanous lengths for an Azbel state
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Figure 10(d). The mulufractal spectrum of f («) versus @ for a locahised stale and an
Azbel state.

Figurce 10c shows the same for an Azbel state. Here the graphs are spread out, with a
significant (04, — Om,n) @s compared to the extended state though the peak still occurs at
(= 1, 1). The behaviour of the graph with increasing lengths is however significantly
different from the extended or localised case. Here the oy, and oy, oscillate about some
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mean position. The graph moves significantly inside as the length is increased from 5000 (0
10,000. But after that increase m length scale results in close ovetlap on the o, side but
having a small oscillation on the ¢, side. As scen with increasig N the Azbel state show
{1itC (Otnun> Gman)- Unlike the extended state @, # 04,,,, and unhike localised states a,,, 18

fiite. The true muluifractal nature of the Azbel states resemble more closcly the criucal
slales in incommensurate systems.

Figure 10d compares the @ - f (@) curves of a locahised state and an Azbel state. As

seen, the density of points in the curve for the Azbel state 1s uniform whereas for the
Jocalised state the points are concentrated at the two ends.
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Figure 11(b). @y, versus Q.
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Figure 11 shows the behaviour of a,;, and oy,,, for an Azbel resonant state with
increasing Q. Q is varied from 50 to 200 in Figure 11a. ay,;, decreases in the begining byt

approaches a constant value-for Q 2 110. Figure 11b shows Q variation from -50 to -200
to estimate Qg,,. As expected Qg Increases with increase in —ve Q value and reaches a

fixed value from about Q = -120.

F (ALPHA MIN)
$ 888 8 8§

g &

§

5000 000

Figure 12(a). f(ay,,) versus Q.
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Figure 12(b). f(a,,,) versus Q.

Figure 12 shows the behaviour of f(0m,s) and f (Gma,) With increasing Q for Azbel
resonant state. Figure 12a has Q variation from 50 to 200 to find f (0ty;,). Figure 12 has @

Q

-110.00



Transmittance through random media 579

variation from —50 to —200 to find f (0t,,). f decreases for both large +ve and —ve values of
Q. f (Omax) decreases more sharply than f (G,,), going towards zero for large -ve Q values.
However any further increase in Q value brings in numerical nstability and to overcome
this, quadruple precision, not available with us, has to be used .
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Figure 13(a). Thc curvature C versus the chan size
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Figure 13(b). The curvature C versus the inverse of the chain size

Figure 13 shows the curvature for the multifractal analysis of the transmittances-at
Azbel resonance. Figure 13a gives curvature C versus 2N, the sample sizc. Figure 13b gives





