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Abstract : We present a tractable and stable technique for num crual  dc ien m n .m on  of 
transmittance and conductance through random media, 7he rneihcKlology is mirnerually siublc 
for large systems and capable of being generalised for higher dimensums We ilUiMr.iie the 
technique by two specific applications
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1. Introduction
I he problem of iransmiiiancc through random media is a long standing one, Inicrcsi in die 
firoblcm is spread over a wide range : from the physicists’ iniercsi in the conductance of 
electrons through disordered solids, or the transmiitance and reflecuince ot clastic waves 
ihmiigh the earth’s crust, of interc\sl to oil or water prospectors, U) the passage of starlight 
through the disordered dielectric media of the universe. In general, analytic solution ol the 
problem IS exceedingly difficult, except in the most trivial of models. Nor are analytic 
attempts free from controversy. The configuration averaged viewpoint, which has been 
successful in many problems, unforiuncitcly tends to mask the characteristics ol individual 
systems which in many cases dominate the specific system’s properties. I ’his is certainly 
true of resonance properties. It is for this reason that there has been considerable emphasis 
on the numerical study of disordered systems. However, stable numerical proccclurcs exist 
by and large for one dimensional systems alone. Either these methods have not been 
extended to higher dimensions, or those that are available involve numerically unstable 
procedures involving divergent recursions and matrix inversions.

The aim of this article is to present a numerical procedure which is tractable and 
stable a n d  f o r m u la te d  f o r  g en era l  d im ensionality .  We should like to suggest that Uic vector 
recursion method should be tried out in transmittance problems. The technique is relatively 
fast and numerically stable. We shall also present some applications of die method to bring 
out the fact that the technique, in contrast to earlier methods, gives unambiguous 
information.

Fhe woik described in this article is based on the collaborative work of the author with Chaiiah Basu, Indra 
Dasgupta and Tanushrec Saha of the S N Bose National Centre and Drs Asok K Sen and Prabhat K I hakur of 
the Saha Institute of Nuclear Physics, Calcutta. India.
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A h h iiit

2. T h f w i  to r  recursion  in e lh od

vvc shall (Icscrihc a system ilirougli whicli wc wish 10 Study the trans/niuance by an 
Anderson tight-binding Haniillonian o f the type described in (1). The chain will be ol 
lengdt 2 N :

2 N

« = 1 1 m 3
( 1 )

T o  ihc two ends n  -  1 and /j = 2N wc attach elementary, perfectly conducting, semi-infinite 
l e a d s .  The purjx)sc of these leads is to bear the incoming, reflected and transmitted waves 
(iodm and tlaydock (1] have shown that in any solid, for instance, since only a finite 
number o f bands cross the Fermi energy, the Hamiltonian of the leads can always be 
converted to independent elemental chains o f the type described below by the use of the 
simple r^ecursion method [2|

/ / i n  =  I {  e '(!> n  ( 0  n .  1 0 .  +  0  n 0 n  .  1 )  )  •
« -  0

^ ^ o u i -  ^  0  n V " ' {0\  0 n  +  0^n  0n  + 1 ) ) •
n ^T N   ̂ \

( 2 )

b\)r simplicily we shall take t  '  ~  t ' "  = 0 and = V" =

The soliilion o f the wSchrddingcr equation in the two leads arc known. These are 
iraveiling Bloch waves of the form

V̂ lc.uls = H y ^ n 0 \  (3)

with \j/^ =  .4 As the wave travels through the leads, it phase changes by 9  from one 
sue to the next. In the elementary, perfectly conducting leads, this phase change is 
delermmale :

COS^;=a:/2Fiead)

w here F  is the energy associated with the incoming wave.

We have assumed tliat transport is ideal in the leads right upto the contacts with the 
sample. This ignoies boundary effects. However, if we consider large enough samples, such 
lx)undary effects are cxiK'cted to be negligible.

The deiusiy of states is non-zero in the region £] < £  < £ 2 - I f  we wish to examine 
the transmittance within this band, we must choose a Fiead. which allows this full band 
pass, i.e. >  ( £ 2  - £i)/4. This is because, in order to have propagating slates in the 
leads, wc must have a real solution to cq. (4).

The V e c t o r  r e c u r s i o n  t e c h n i q u e  now changes to a new v e c t o r  b a s i s  with vector 
annihilation operators



and ihc others are generated from the recursive formula ;

* 1 V̂n * 1 = {// V'n) y,„ -B„y/„ ,

where \}/„ = H Wn and B„ is found by discniangling b \  , i y/„
ilic Gram-Schinidt orthogonalisalion of its two compi)ncnis.

In this basis, the lead and sample Hamiltonians become :
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Msample n = I

II leads = £ . y {  +
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(5a)

1 using

(5h)

(5c)

The Schrodinger equation may be expressed as a three term linear dilTertmce equation 
involving the 2 x 2 matrices A and B, and the wave lunction vector am plitudes

¥n -  y/2  ̂+ 1 )

= (E I ~ A ^)  y / ^ -B ^Y ^  i. (6)

Let us now think of a situation where an incoming wave S  0 \  is travelling to 
the right along the input lead. As it reaches tlic sample it is scattered. A reflected wave X r 
{E) c ipn travels back in the input lead to the left and a transmuted wave X t {E)
0̂  ̂ travels in Uic output lead, r (£) and t (E) arc the complex reflection and transmission 
coefficients. Since the solution in the leads arc known, the boundary condiuons in tlie new 
vector basis iirc:

¥o = y  ( )  = \  t e

Note here that wc have chosen to measure our phases Irom the basis labelled O just 
outside the joint between the leads and the sample. It is also clear that Uie way wc have 
numbered the new basis, the rcHcctcd and transmitted waves both travel to the left, hence 
tlic negative sign in the exponent of the transmitted wave.

The general solution of (6 ) satisfying these boundary conditions may be wriitcn in 
terms of the two independent family of solutions of (7) [X^] and {K l̂, vyhich satisfy

= (E l- A JX ,- B „X „  , Xo = I,X, = 0
= (E I-A„)Y ,-B„Y„ , Y,, = 0 ,Y,=l. (8)

This solution is

= X„y/o + Y„ Yi
Direct substitution in (6 ) and (7 ) shows that this is indeed the required solution 

with the correct boundary conditions.
In exactly similar manner wc can discuss the case in which the incoming wave



travels to the right in the lead labelled 2. After scattering by the sample the reHected wave 
travels to the right in lead 2 and the transmitted wave to tlie left in lead 1. Here r' (£) and /' 
{E) arc the r e f le c t io n  and t r a n s m is s i o n  coefficients of this new problem, with boundar) 
conditions ^

V̂'« = ( l  + r ') V'l = (7)

and W'tt + Yn ¥'i (9')

We have a further boundary condition. Since the length of the chain is finite, in the new 
basis the vector chain terminates after N steps, so that

4 v*i = 0 and = 0. (10)

II we substitute this in (7), (7'), (9) and (9') we immediately obtain an expression for the 
scattering S-rnatnx

S =  ~ (X/v-f 1 1  ̂ i ^ N  f ] '̂n  + ] (11)

In the absence of magnetic fields the time-reversal symmetry gives i = i\ The S-rnatrix is 
symmetric. Mnally, the t r a n s m i t t a n c e  T (E )  = 1/ (ZT)Î  while llie r e f l e c ta n c e  R [ E )  = Ir (/T)r.

3. Applications of the vector recursion techni{|ue

3 1. The ^generalised A u h r y  m o d e l :

Recently there has been considerable cl fort in understanding the nature of electronic suites 
in quasi-periodic systems. Practical applications of such studies involve, among oihei 
things, incommensurate supcrlattices [3| and one dimensional quasi-crystals [41. While it is 
well known that in an one dimensional system with random potentials a l l  slates arc 
Ux'alised [51, and whereas a l l  slates arc extended Bloch states in the absence of disorder, it 
has recently been shown [6-11) that certain quasi-pcnodic systems in one dimension are 
capable showing transition from localised to extended slates. In addition, tliere is inicresting 
Ix̂ haviour in the inlermediale critical slates.

A simple quasi-crystalline model is the so called Aubry model where f „ = >1 cos 
(Inljn 5 ) \ 12-141. Typically the hopping energy is a non-random quantity (= VQ, set 
equal to 1 to fix the energy scale. In this case the period Q  ̂ of the potential is 
incommensurate with the pieriod of the lattice (= 1). When Q is irrational,, the spectrum is 
absolutely continuous (i.e. all states arc extended) for o < A < 2. It is point-like (i.e. all 
states arc localised) if A > 2. In fact, an interesting duality properly (Aubry duality) exists 
between the cases A < 2 and A > 2, with the case A = 2 being self dual. For this last case 
(A = 2), all stales are critical and the spectrum in singularly continuous. This self-dual case 
leads to global scaling properties of the specirum wiih a range of .scaling indices and an 
as.sociatcd multifracud character [8). These authors have also shown that, if Q is a rational 
approximani of an irrational number, e.g. Q = /'/ j/F/, where Fi is the /-th Fibonacci 
number, then the spectrum consists of F/ bands and ; gaps.
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The sim ple Aubry model in one dimension docs not have a mobility edge, whereas 

an extension due to G riniasty and Fishm an 19] seems to have an extcnded-loealised 
naiisitioii at an appropriate mobility edge under eeruiin circumstances, f'or this model, 
u Inch IS sometimes called the Hmper model, = X 4 3 ) and y / l Vor y 2, 11

lias been stated that the problem is equivalent to the corresponding random problem | LS] 
and all states are exponentially  localised. It may be noted that y ^  1 gives rise to an 

iiihomogcneity in the period of the potential. It is known that mhomogeneity m the 
amplitude variation o f the potential gives rise to localisation-delocalisation transition 1161. 
it will be interesting to study whether such an effect arises out of inliomogeneiiy ol the 
pciiod of the potential. The idea of inhomogcneiiy of the period may be easily noted il we 
wnie the potential as X eos\2mi ((Jn̂  ' )|. The eflectixe period Q' -  O/J is // dependent, 
and so inhomogeneous.

G riniasty and Fishm an 19) studied the band centre stales lor 0 < 1 with (J
malional within the perturbation theory and concluded that all slates are extended. In 
eonirast Das wSarma et aL |101 observed, using a heuristic argument and exact numerical 
wiiculations of eigenvalues and wave amplitudes in finite systems, that l̂ .>r o < y< 1, A < 2 
liicic aie mobility edges at £,. = 1  (2 V* X ), with extended slates at the centre of ihe band 

ir I <' {2V - X ) and localised states at the band edges {2V -  A ) < l£ I < (2T + A ). Further 
lv»r I < 7 < 2 they find along w'iih Thouless 117] that all sLUes away liom the euu l band 

u;mie are localised and the Lyapunov exponent (inverse localisalion length) appioachi's 
/Lio extremely slowly at tlie band centre.

Our aim is to study wave piopagation in such models by numerically calculating the 
icmsmiiiance as a function of the energy of the incident wave and by monitoring the ŵ ay 111 
winch the phase o f the transm ission coeflicient (which is related to the phase oi the 
eleclronic wave function) changes as the wave propagates Uirough the mediiun This will be 
(lone for all values o f *7 including negative values not explicitly repoiled so far Our 

approach based on the vector recursion technique of Godin and Haydock [1] is 
omplcmeniary to that o f Das Sarma et al [9). The vector recursion luelhod, as we shall 

indicate, is easily extended to more than one dimensions : a w'ork wdiich we shall report in a 
subsequent communication. Our results arc, to a large extent, m agreement w ah those oi Das 
Sanaa cl al [10], justifying their criticism of the earlier of Griniasty and Fishman [9|.

The results we report [181 except those on Argand maps of die complex U'ansmission 
eocflicient, are to a large extent complementary to those ol Das Sarma et al 110]. 'Ihe 
recursion m ethod has the great virtue o f giving a measurable quantity (namely, the 
iransmittance) and the m obility edges can be located relatively easily wath smaller s i/e  
systems by looking at the transm ittance rather than by first exactly diagonalr/ing the 
Hamiltonian for a much larger system and then by calculating the Lyapunov exponent (or 
inverse localization length) from the eigenenergies or the eigenfunctions. As an added 
advantage, since the transmission coefficients contain information on the wave function at a



particular energy, one can m onitor the change o f the electronic phase at successive 
scatterings. Furtlicr, since using the transfer matrix method and applying Landauer formula 
one can calculate the conductance direx:tly as a function o f length, one can check the validity 
of the one-param eter scaling theory. One may also study the form of the renormalization 
group flow within this one-parameter scaling and locate its fixed-point (or points, if tlicrc is 
more than one). This we shall discuss in a subsequent paper. For all the results presented 
below, the non-random hopping term has been set at V = 1. Most of our calculations are 
done on chains of length 10 .̂
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r ijliiro  1(a). I ran«;T7H!laruc versus energy ol ihe ineom m g \savc (in units of the overlap lemi 
V) for the Auhr)' model lor h  -  1

Figure 1(b). llic density of states (states / atom-spin) for the Aubry model A = 1.



Figure 1(a) shows the U-ansmiiiancc versus energy of Qie incoming wave for die pure 
Auhry m o3cl ( 7 = 1.0) with A = 1. The iransm iiiancc fluciuaiions characieristic of 

incommensurale system s are clearly visible. These, in turn, lead to sirong lluciuaiions in 
conductance with changes in the chem ical poicniial [ l l j .  In F ig u re  1(b), we show the 
density o f states (DOS) for the same situation. The DOS strongly resembles ihai of a model 
where the site diagonal term s are in a Fibonacci sequence. In the Aubry model, the site- 
diagonal terms are incom m ensurate with the underlying lattice. However, the qualitative 
features o f DOS (e.g., the gap structures) do not seem to be very dillereni in these two 
cases. These tw o figures together show that all states arc extended in ihis case. I ’his is 
consistent with the fact that in the Aubry model there is an cnergy-independeni meial- 
insulator transition at A = 2 , which separates the region A < 2 where all stales aie extended 
and A > 2, where all states are localized.
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Figure 2. TransmiUancc at ^  -  0 (full curve) and at 1: = 0.5 (dolled curve) (/' measured m 
units of V) for the Harper model wiiii y -  D.5, as a function of A

Figure 2 shows the transmittance at the band centre £  = 0 (full curve) and at ^  = 0.5 
(dotted curve) o f a more general Harper model with 7 = 0.5 as a function o( A. At A = 0 
{Bloch case) T (E) = 1 as expected for both the energies. / (E) 0 as A > 2 lor bodi the
energies. For E  = 0.5, T (E) becomes very small beyond A = 1.5 but truly vanishes only lor 
A > 2 . This shows very clearly that for the Hart)er model with 0 < 7 "̂  I »there exist mobility 
edges with E^ = ± (2K -  A ). Since in this plot we have fixed E, and plotted only positive 
A 's, this shows up as the existence of a mctal-insulator transition atA^ = ( 2 V - E ) .  The 
existence o f very small values of the transmittance lor A > 1 .5 for the E = 0.5 case is simply 
due to finite-size effects. Below A = 1.49 the logarithm of the transmittance is virtually 
independent o f size. Around A = 1.49 the transmituincc drops exponentially showing



exponential localisation and with an exponent increasing with size. We should emphasize 
here that this method of location of the metal-insulator transition is computationally cllw 
and fast (taking CPU time 21.75 sees on a UP 9000(300 desktop computer for a single 
value of X or E and a system size of 10  ̂ ) and does not require cutylbersome formulae f u r  

calculating  ̂ the localisation Icn îth involving diagonalisation of very large matrices, and 
assumptions of exponential localisation. Indeed, as seen from Figure 2, we need not go u> 
system sizes larger than 10  ̂for locating the mobility edges. Moreover, we may use our  

methodology to analyse situations where we have non-exponential localisation.

Figures 3-5 show the DOS and the transm ittance as a function of energy for the 
Harper model with X = 1 and y=  0.7, 0.5 and -2 .0  respectively. In the first two cases then 
exist mobility edges at = ± 1 since K = /I = 1 . The case o f negative y  needs special 
mention and we do that later on. In Figures 3 and 4 the non-tinalylicily of the DOS in the 
localised regime is evident from the rapid fluctuations in that region in contrast to ilk* 
relatively smooth behaviour in the extended regime. 'Fhis contrast is more apparent in the 
Figure 3 (7 = 0.7) than in Figure 4 {7 = 0,5) since the localisation length tends to infnm> 
as 7 ~> 0 {Bloch case). Das Sarma et al's 110) more elaborate DOS calculations on much 
larger systems are qualitatively similar although they show the unsmooili behaviour the 
localised regime with an inicgrable divergence at , much more transparently.
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Fijjurc J .  H r- density ol states (slates per atom-spin, sealed up by a factor of 10) and the 
1 ransmiu.iTXi.c energy, lor ilu' Harper model with y ~ Q . l  and A = 1. Mobiliiy edges are
c learb seen

Let us discuss tlie location of band and mobility edges for the Harper model. We can 
easily understand this from the following discussion put forward by Das Sarma et al [10] 
for positive ymodcls. Let us first note that

d e jd n  = -  { IXyjvQrC' ‘ sin(2;r«’'e ) } (12)
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For all y<  I, ihis vanishes as n - > since | r „ . , - | ~ () '). ih,,t ,s. localh ihe r'„s
do not change m uch. If one assum es that ihc wave!unction amphiude.'y <p„ ~ then 
substituting this in llic Schrodingcr equation, one obtains

3C»00 -2^000 -18000 -12000 - 6000 0000 ^000 12000 IflOOO 2X030 3 0000
ENERGY

Figure 4. The same as m 1-igure 3 with

2 -  C „z  +  1 =  0 . ( 1 3 )

where C„ = E -  e„. If  C„  ̂< 4 , ilicn z is complex, and Iz I = 1 as appropriate for extended 
states. For large n, although e„ is locally constant, it can take any value between -A  and +A 
for the case 0 < y <  1. Thus if the maximum possible positive value ot C„, namely (C„)max = 
(F + A) S 2 , i.e. if  £  :S (2 -  A), then the condition of complexity of z is satisfied for all



large n. vSimilarly, if the minimum possible negative value, (C).„,n 2 (£  -  A) < -2 , i.e. it 
E'd -(2  - A), again the condition of complexity of z is satisfied for all laijgc n. Thus lor 

0 < y< I, the mobility edges were earlier 110 | predicted to be at ±(2 -  A), while band edges 
are at ±(2 + A). We see ifom Figures 3 and 4 that, although the effect of the metal-insulator 
iransition clearly shows up on the transmittance as a function of energy, finite size effects 
cause the DOS to shrink inside the band edges, particularly as 7 -^  1 .

We discuss the case o f negative /som ew hat more elaborately since it docs not seem 
to have been mentioned in the literature before. We see in Figure 5 for the case 7 = -2.0, 

that the DOS has a centre shifted to £  = A and the mobility edges are at (-2  + A) and (2 + 
A). This asymmetric shift o f the centre is common to Harper model with all negative 7(111 

the large length limit).

For the case y< 0, the argument o f the trigonometric functions in eq. (13) and in the 
model potential approaches z.cro for large n. Thus, for negative values o f /a n d  large n, the 
site-energies do not alternate in sign and approach a globally constant value of -i-A, the 
approach being more rapid for larger absolute value of 7. Thus, asym ptotically, the band 
edges shift to -(2  -  A) and (2 + A), with the band centre being shifted to A (in comparison 
to the case o f positive 7, where the band centre was at 0). It may be noted that for small 

values o f n close to the origin, the site energies have not yet reached the constant 
asymptotic value and hence given rise to some band states in the domain (-(2 + A), -(2  -  
A)l, but the weightage o f these states in the DOS become smaller and smaller for larger and 
larger size chains. Tliis is the reason why we can see a few slates in the DOS of Figure 5 (7  
= -2.0  and A = 1) between £  = -3 .0  and £  = -1 .0 . As for the condition for complexity ol 
the solutions for z, we now have (£  -  X f  < 4. Thus, the mobility edges are at -(2  -  A) and 
(2 + A). Thus asymptotically almost all slates arc extended for y<  0, even though for finite 

size chains this statement is not exact. It is thus interesting to note here that for y=  0, all 
stales are extended {Bloch stales), but such is not the ease for / >  0. Thus y = 0 seems to 

be a singular point.

One of the statements often made in dial localisation results from the randomisation 
o f the phase o f the w avcfunction as it travels through the system . To study this 
phenomenon for the present model, in Figure 6 we have plotted the Argand map of the 
complex transmission coefficient, i.e. its imaginary versus the real part, as the size of the 
system varies. This is directly related to the Argand map of the outgoing wavefunction.

At A = 1 for y =  1, we have a reasonably well transmitting state (Figure 6(a)). The 
Argand map is a regular curve with a few Fourier components. As A increases, the maps pick 
up more Fourier components and resemble more complicated Lissajous’ figures. The scatter 

about the base curve also increases. The average absolute amplitude remains reasonably 
close to 1 , as is seen from Figure 6(a) with A upto 1 .8 . Around A = 2.0, the transmittance 
precipitately goes down to zero, and the Argand maps collapse to a point for A > 2.0 for 

large enough lengths [Figure 6(b)].
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F ljju rf  6(a). Argand m aps ol ihc complex transm ission coefficients tor the Aubry mode] al 
E  -  0 (in units of V) and A -  1 0, 1 4, 1 fS, and 1 8 (cliKkwise)

F ig u re  6(b). Same as in higure 6(‘0  ssiih \ 9^, 1 98, 2.0 and 2 02 (clockwise) where — 2.0.
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3.2. Azhel resonances

Ii has been known for some lime ihai in ught-bindm g, one-dimensional chains with shun 
ranged overlap integrals, ihe eloelronie spoelrum is a dense, point sci; almost all of winch 
supports exponentially localised slates. 'I’he existence ol a few transmuting stales have also 
been known lor some time. These are the so called Stochastic Resonances or A/\x\ 
Resonances 110-22]. Pendry |231 examined the reasons for the existence of these rcsonani 
stales. He speeulaied that these suites could be ncrUucc states. That is, a linear combination 
ol a number o f localised stales alm ost dcgeneraie in energy, but whose centres of 

localisation arc at different parts of the chain. They have sufficient overlaps between 
themselves and together span the chain. Azbcl and Soven 124) had earlier estimated the 
width of these resonances and the way m which lhe.se scale with the sizes of the chains.

Since the width o f the Azbel resonances decreases with length as exp (~2L )
where is a measure of the localisation length, ific search for Azbcl resonances begin wiih 

quite sm all chains. For small chains, states at several energies will show large 
transmittance. Many of these iire actually localised states whose localisation lengths are 
larger tlian the chain length. As we increase the length of the chain most of these states no 
longer show non zero iransrnituince. However, even at quite large lengths some transmiiung 
suites remain. These arc the Azbel resonances. The neighbourhood of these energies arc then 
searched for very large lengths carefully and at a very fine energy mesh to locale the 
posiuon of the resonances.

For diagonal disorder f „ = 5 -- 0.5) and all the = 1. s are independcni
random variables uniformly distributed between 0 and 1 . ^  is a measure of the strength ol 

the disorder in the system and the energy is scaled in units of V in this case.

The u*ansmiiied wave is (E) = tf̂  y/̂  (£'), so that /yv (^ ) carries the information 

about the relative amplitude and phase of the transmitted wave for a sample of size N. rhe 
set { Ts (E) = hyv (£ )  P ) then represents a set o f measurements on a collection of chains ol 

varying sizes (n ). The chain of size n + 1 is identical to the chain of size n upio the n-ih 
element. Note that this set is different in essence from the wavcfunciion am plitudes at 
different sites of a single isolated chain. For the mullifractal analysis we shall use this set 
of u*ansmittances properly normalised. Again, »his analysis is different in essence from the 

mullifractal analysis of wavcfunciion amplitudes for isolated chains.

7'hc C-lh moment of this distribution for any real value o f Q is

Z { Q ) =  (14)

where P„ = T„ {E)/T and T = £ 7 ,  (£). This g-th  moment is also called the partition 
function of the distribution [25J.

The indices t ( 0 ,  a  and / ( a )  are defined by the asymptotic behaviours :



:md the fraction of atoms having exponents between a  and a  + da  is f /

The three exponents t (0), a  and/  (a) arc related to each otlier by

t ( C )  = a - Q - f { a )  = { Q - 1 ) D q (15)

Dq is referred to as the generalised (Renyi) dimension of index Q. As can be easily seen

from (6) a  = dr IdQ. The curvature of the/  (a) curve is C = ^  ^  = -----1- '- --------
\ d C f  Ja^a^ (  (tZ \

V  d(p ) q .  0

Non divergence of the curvature is a signature of genuine muliifractality.

For numerical facility a  a n d /( a )  can also be computed directly avoiding numerical 
differentiation [26]
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“  -  Z (Q )ln(2 /V ) 

expression for C [27] is

and f  ( a )  = _  1
\r\(lN) ( InZ (Ĉ ) Z(C^)

±
C

1
ln(27/) (I (o r  '  z ( 0 ) )

uul the

(16)
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Figure 7(a). Transmittance v e r s u s  energy (in units of V) for a chain of si/o 30,f)00 (in unils c>f 
lattice spacing)

Wc have studied transmittance v e r s u s  the energy of the incoming electron E ,  
numerically to obtain the resonant states. The width of die resonance peaks get narrower as 
the sample length is increased. Figure 7 shows the position of the Azbcl resonance lor an 
Anderson model with purely diagonal disorder. The resonance peak sharper as the length is 
increased from 30,000 (in Figure 7a) to 40,000 (in Figure 7b). The stales, over a very 
naiTow energy region are transmitting while all the rest arc localivSed. As seen in these 
figures, the resonant slate persists with increasing length but the energy at which resonance 
occurs tend to shift. For the length 30,000 the resonance is at ZT = -  0.3344 while for the 

length 40,000 it occurs at E = -  0.3385.



F-’igiirc 8 shows ihc iransmillance plot for Azbcl resonant siatps. In both the length 
scales, the transmittance remains finite in most parts of the sample size. The sample is 
connected to perfectly conducting leads on both sides. So the transmittance at the incoming
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ENERGY
r ’imiri* 7(1)). rransm ilta iK f v e r s u s  crii-rn) (m umis ol V) lor a thajM ol si/,c 4(),(K)() (in units ol 
lattice spacing)

end is always eciual to 1 . Figure 8a shows the transmittance at an Azbcl resonance in a 
sample of lengtli 1(),0()(), while Figure 8b show\s the transmittance at the shifted A /bel

LUo
<r

s:

3OJ0OO
LENGTH

F ig u rt’ 8(a). rransrn iuancc pluttc-d against chain length (in units ol lattice spacing) for an 
A/,be! resonant energy in a chain ol length 30,()(X).

resonance in a sample of length 40,000. Figure 8c shows the same for a localised suite in a 
sample o f length 100,000. Here the incoming lead has transmittance equal to 1 and this falls 
off exponentially as the wave travels through the sample. The wave is localised within a



srniJl length region from the incoming sides. In contrast to Figure 8u und Figure 8b except 
for a small mc.soscopic regime the transmituincc rapidly goes lo zero.

Transmittance through random media 5 7 -̂

rimjn* S(b). 'rransm iliancc  ploiU'ij ag.unsi chain Icn^ilh (in mills ul la liu c  spaun^i) the 
shilled A/.bcl resonant cncij^iy in a chain o( s i /r  4(),()(X)

lOjtXX)

Figure 8(c). Transmillanct* plotted against chain length (in units ol lattice spacing) lo r a 
l«caliscd Slate in a chain ol length 100,0(X).

The transm ittanccs in the.se di.sordered samples show very large fluctuations from 
size to size and are highly fragmented. One of the powerful methods of analysing such 
fragmented objects is through multifracial analysis descrilx^d earlier (25].

Figure 9 shows T {Q) versus Q graph lor all three types of states : extended, 

localised and Azbel. For the extended state, ihc graph is a straight line with an almost 
constant slope denoted by the dashed lines here. For a localised slate, the graph consists ol 
two separate straight lines o f  different .slopes for +vc and -v c  values ol G, continuous at



Q -  0. This IS shown by the dash-dot lines. For the Azbcl stale, the graph is a straight line 
W illi a consiani slope. Its slope is different from the extended case. It is denoted by a solui
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line in the figure. For extended stales P„ ~ 1/A/, so that Z {Q) ~ This leads u>
T (O') = which IS a straight line with unit slope. For localised states P„ is
signilicantly non-zero only in an interval of size L. For positive and increasing Q tlic size

F igu re  9 . 1 he iiu lcx r(C.^) vrr\t4,\ Q  U>r exlenticd localised  and A/i:>cl slate

of the interval over which Z’/  i.s signilicantly non-zero {L {Q )) decreases as Q increases. /  

(Q ) ~ l ' ■ T ((7 ) ~ (1 -  Q) curve decreases from unity

with increasing positive Q value. For negative and large Q = -  Q\ P ^  = Pn ^ is now 
large over that interval over which P„ is almost zero. If we estimate P„ in the intervals ol 

width e, then Z (Q) ~ N' (f) ' ~ N' \

Figure* 10(a). Ihc rnulii I racial spccimtTi /  ( a )  versus a  for vanous lengths for an extended state.



H Q - )  -  Q-
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In N' 
In N where N' = N ~ L ((?).

This is large and negative as e is small. These characicrisiics are clear in Figure 
Particularly in this respect the A/.bcl states resemble extended states. We expect this, as tlie 
nature of the localised states o f being non-/cro in a small interval, which is reflected in the 
t (Q) versus Q graphs is not shared by the Azbel states. However the slope for die Azbel 
state curve is not unity, since the states do not po.s.sess translational symmetry and P, i  
(l/A /).

F ijju rc  10(b). 'J he speclnmi /  {(x) vt rM4.s a  io t vjm njs  lcn^;ihs fur j  l(KtiJistiJ slalc

Figure 10 sh o w s/ (a )  versus a  curves for exlendcd, localised and Azbel stales at 
different sample lengths. Since numerical work is always carried out on finite samples, the 
study of the asyinptolic behaviour of the cx f  (a )  curves as the size increases is very

Figure 10a shows the graph for an extended slate. The state is lor S ~ 0.01 and 
E = 0. For one-dimension no true extended states exist lor 5 > 0, but lor this weak disorder 
and energy, the state has a locali.sation length >> 30,000, the maximum si/e taken and lor 
these lengths conveniently mimic extended stales. For almost all values ol Q J  {cx) and (x 
has values 1 . The interesting point here is the behaviour ol the graphs as we increase the 
length o f  the sam ple. For a sam ple of length 10,000 t h e /  (a) versus a  curve is the 
outerm ost solid line curve. The curve converges inwards as the length of the sample 
increases to 20,000 and 30,000 respectively. For larger lengths the curve will converge to 
the point ( 1 , 1 ).

Figure 10b shows the graph for a localised slate. Here the curves move outwards as 
we increase the length scale. The interesting point to observe is that tlie density ol points 
near and is very high whereas the intermediate region is sparsely populated. This

4A (20)



indicates clearly the fact that for exponential localisation, becoming smaller and smaller 
corresponds to a large probability (which should ideally be ~ 1) for getting the electron 
within the localisation length, becomes larger and larger implying that probability 
decays exponentially for lengths larger than the localisation length. The asymptotic 
convergence is at the point (0 , 0) and (o°, 1).
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lO u ). I he speu iu iii / (f/) a  it>r vanm is lenglhs for an A/,bcM stale

Mgure 10(d). 'Hie muliilracial spcciruin of /  {u) versus a  for a localised stale and an 
A/ix*} slate.

Figure lOc shows the same for an Azbcl slate. Here the graphs are spread out, with a 
significant -  Omm) compared to the cxtciKicd slate though the peak still occurs at

(> 1, 1). The behaviour of the graph with increasing lengths is however significantly 
different from the extended or localised case. Here tlic Oniax oscillate about some



mean position. The graph moves significantly inside as ilic Ictigih is increased from .SOOO lo 
10,000. But after that increase in length scale results in clo.se ovoilap on the side hul 
having a small oscillation on the side. As seen with inereasme N the A/hel state show 
imitc Omax)- Unlike the extended stale a,,,,,,  ̂ a,,,,, and unlike localised states is 

liniie. The true multifracial nature o f the A/bel states rc.semble more clo.sely the ciitical 
suites in incommensurate systems.

Figure lOd compares the a  - f (a)  curves of a localised slate and an A/,bel slate. As 
seen, the density o f ixiints in the curve for the A/,beI stale is iinilorm wheieas loi the 
locali.scd stale the points are concentrated at the two ends.
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Figure 11 shows the behaviour of and o,„,x for an Azbel resonant state with 
increasing Q. Q is varied from 50 to 200 in Figure 11a. Omin decreases in the begining but 
approaches a constant value-for Q > 110. Figure 11b shows Q variation from -50 to -200 
to estimate Om,*. As expected a^tx increases with increase in -ve Q value and reaches a 
fixed value from about Q = -120.
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Figure 12(a). f ( a ^ )  versus Q.

Figure 12(b). / ( a ^ )  versus Q.

Figure 12 shows the behaviour of/(amm) and/(am*,) with increasing Q for Azbel 
resonant state. Figure 12a has Q variation from 50 to 2(X) to find/  («„»)• Figure 12 has Q



variation from —50 to —200 to find/(o(n,,j).ydecreases for both large +ve and —vc values of 
decreases more sharply than/(o^„), going towards zero for large —vc Q values. 

However any further increase in Q value brings in numerical instability and to overcome 
this, quadruple precision, not available with us, has to be used .
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F ig u re  13(a). 'I’hc curvature C' vt-rsiLs ihc chain si/,c
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Figure 13(b). The curvature C versus the inverse of the chain size

Figure 13 shows the curvature for the multi fractal analysis of the transmittances’at 
Azbel resonance. Figure 13a gives curvature C versus 2N, the sample size. Figure 13b gives




