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Abstract : The problem of laminar f^w of a viscoelastic incompressible fluid of small 
electrical conductivity near an infinite i|lsulated flat plate is discussed. 7'he plate oscillating 
harmonically in its own plane under the action of body force which is varying periodically 
with ume. The system is stressed by a unifomi magnetic field normal to the plate and the 
magnetic lines of force are taken to be fixed relative to the fluid.

'I'hc effect of the flow parameters is studied. It is found that both magnetic field 
and elasticity of the fluid have an important effect on the velocity distribution.
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1. Introduction

The importance of viscoelastic fluids, such as molten plastics, pulps, and emulsions in 
everyday chemical engineering practice has njotivated many investigators to analyze the 
behaviour of these fluids in motion. If we have vi.scoelasiic fiuid in an external magnetic 
field, the problem is of greater interest because we then have coupled non-Newtonian and 
magnetic force effects on the flowXield. Magnetic forces can be controlled through changes 
in the magnetic field. Thus, if a viscoelastic fluid were a conductor of electricity, it would 
be possible that the magnetic force produced in it could influence the flow in a significant 
way.

The purpose of the present work is to rediscuss the problem treated by Ong and 
Nicholls [1], namely, that of the flow of an ordinary Newtonian fluid near an oscillating 
solid flat wall. The study in [1] neglects the elasticity of the Huid. Since it is now known 
that all fluids in nature do possess elasticity, no matter how small it may be, for the present 
investigations, wc choose a model for a viscoelastic fluid as given by Rivlin-Ericksen [2].

The first solution for the flow of a purely viscous fluid about an infinite flat wall 
which executes linear harmonic oscillations parallel to itself was given by Stokes [3] and

Our new formal of references has been adopted in ihi.s paper.
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Rayleigh [4]. Later. Stuart [S] investigated the response of skin friction and temperature of 
an infinite plate thermometer to fluctuations in the stream with suction at the plate. Rossow 
[61 extended the work of Stokes and Rayleigh to a viscous incompressible electrically 
conducting fluid in the presence of an external magnetic field. Choudhary [7] treated a more 
general case by taking the flat plate to have a suction or injection.

In Section 1, we give the rheological equation of state for a viscoelastic fluid of 
Rivlin-Ericksen type along with the conservation of mass and momentum equations. 
Section 2 deals with the reduction of the flow equations fpr the present type of flow 
situation along with the appropriate boundary conditions. In Section 3 we, use a good 
assumption to obtain the exact solutions of the problem. The results are discussed in 
Section 4 and compared with those of Ong and Nicholls for the case of purely viscous 
liquid and of Stokes for a viscoinelastic liquid and in absence of magnetic field. Some 
interesting results are reported which bring out the effects of elasticity of the fluid on 
velocities.
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2. Rheological equation of state

Rivlin and Ericksen [2] have shown that if terms of order higher than the second are 
neglected in the kinematic tensors and their invariants, then the non linear stress-strain
relationship takes the form

Tij = -  PS,j + 2p£y -  koDi, + 4k'E, "-Ê j, ( 1)

where £y = |

(2 )

* n 1a ^ ~ ^ + u u

where the symbols have the usual meaning and a suffix following a comma denotes 
covariant differentiation with respect to that suffix. The normal summation convention for 
the repeated suffixes is assumed. It is to be noted that the viscoelastic parameter ko is 
positive from thermodynamic consideration. The above eqs. (1) and (2) have to be solved 
in conjunction with the equation of continuity

u,‘. = 0 (3)

and the equation of momentum 

du‘
+ F. (4)

where p is the density of the fluid and is the external force acting on the fhud. The 
positive coefficients p, ko, and k are known as the viscosity, visco-elasticity and cross- 
viscosity re^)ectively.
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3. Reduction of the flow equations

The magnetic Reynolds number /?, is usually small in case of problems of aeronautical 
engineering. Under such conditions the induced magnetib field due to the flow may be 
neglected with respect to the applied magnetic field. It is considered that an infinite 
insulated flat plate executes linear harmonic osc||laiions in its own plane in the presence of 
an externally applied transverse magnetic field ^  uniform strength //„ fixed relative to the 
fluid. The plate is under the imposition of a bot f̂ force which oscillates with time. As the 
plate is infinite in length, the physical variables depend only on y, the co-ordinate 
perpendicular to the wall and t, the time. The pressure P in the fluid is assumed constant

The equation of continuity (3) subject t  ̂ the condition v = 0 at y = 0 leads to the 
result V = 0, everywhere. The boundary layer equation for the hydromagnetic viscoelastic 
flow under the action of a body force (4) simplfics to

du
dt

d̂ u ^
" ~ P ~d^t (5)

where u is the velocity parallel to the plate, v = fj/p the kinematic viscosity, a  the electrical 
conductivity and the magnetic permeability. The term - /p represents the
pondermotive force parallel to the plate. The term - Ae represents the body force, while 
the term - (kjp ) {^u /dy^dt) is due to the non-Newtonian fluid effect.

The boundary conditions are :

Introducing

we have

y = 0 , u = Uo cost nt (6 )

y = u = 0 .

t = nt. 77 = y\n /i»)‘”  m = ap^n^lp. (7)

mi  ̂ m In = R„\ k -  k^nlpv.

du Al iwt*
(8 )-nuu ~~ c n

with the boundary conditions

77 = 0, u = Uo cos r*

77 s  00, « = 0

4. Solution of the problem
Let the solution of eq, (8) be assumed in the form

“ (n> <*) -  ^ (V) cos (/* -  .777) + Be""*"* 

Substituting in eq. (8), it yields
F " - 2 s k F ‘ - i s ^  + mi)F = 0,

(9)

(10)

(11)



362 Nabil T M Eldabe and Ahmed A A Hassan

kF" + 2sF’+( \ -ks^)F = 0, (12)

B = -  A /{« (ffii -  tw )J, (13)

where dashes denote differentiation with respect to t/. The solution of the differential eq.
(11) is

Fin)  = c  exp a n )

where A = -  {k̂ ŝ  + mi + j^)‘^] and C is the constant of integration.

Substituting for F (tj) into eq. (12), we have

4.v“ ik̂  + 1)̂  + 4.r̂  ik̂  + l ) { m i - k ) -  (km̂  + 1)̂  = 0.

Since /  is to remain always positive, hence

/  = m - n i i ) ^  + (Am, + -  (m, -  A ))/{2(A^ + 1)).

Hence

(14)s(k,mi)  = {[(Â  + l) (m ,^ + l) ] ' '^ -(m ,-A )) '^ /(2 (A ^ + 1)}’'̂  

and the solution is

u in, t*) = C exp [As -  (AV + ffii + s^)’'̂ ] n cos (<* - s n ) -  Ae~"^'y[n (m, -  iw ))(15) 

i.c. u in, /*) = C exp [As -  (AV + m, + s^)'^] Jj cos (/’ -  sn )
4i m 2 2-  A im\ cos wt + w sin vvt )f[n (m, + w )) 

the imaginary part is being neglected for obvious reasons.

The first of the boundary conditions (9) gives

C = Uo + A (mj cos w/ + w sin wt )/{n (m, + w )  cos t ).

(16)

(17)

Substituting from (17) in (16), the velocity distribution, is seen to be given by the 
following equation

M ij], t*) -  [Vo + A (m, cos wC + w sin wi*)l[n (m,^ + ŵ ) cost*)

exp [As -  (Â ŝ  + m̂  + .? )̂' ]̂ n cos (<* -  sn)  

-  A (m, cos wi* + w sin-H'<*)/(/i (m,^ + ŵ )] (18)

where s is defined by (14).

4. Discussion of the results

The velocity distribution for the flow of a viscoelastic incompressible fluid of small 
electrical conductivity near an infinite oscillating flat plate in the presence of a transverse 
magnetic field fixed relative to the fluid and under the imposition of a body force which 
varies periodically with time, is given by eq. (18).



If we put k = 0, we gel the results for hydromagnetic Newtonian flow near an 
oscillating solid flat wall under the imposition of a body force varying periodically with 
time as by Ong and NicholLs fl i.

If we take k = 0 and mi = 0, we get the results for the flow of a Newtonian viscous, 
incompressible non-conducting fluid near an infinite oscillating solid flat plate under the 
imposition of a body force varying periodically With time as studied by Stokes [3].

If mj = 0 and k^O  (this problem was not Seated before) eq. (18) becomes

u (tj, f*) = t/o + A sin wt*!nw cos|*)jc.

exp { -  7J {[/: + {k̂  + {k̂  f  1)])’' ’̂

cos [ f  -  T) {[(k  ̂+ 1)'^ + k ]/[2 {k̂  H 1)1)''^) -  A sin wt'/nw,

which is the solution for the flow of a non-cohduction non-Newtonian viscoelastic fluid 
near an oscillating solid flat plate under the imposition of a body force which varies 
periodically with time.

For numerical compulation, we have taken

/* = 0 , n/4, f/o = 2 , A = 2 ,«  = 1, w = 1, m = 0 ,2  and k = 0 and 1.8.
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Figure 1. Velocuy distribution at I* = 0  for various values of m and k.

The behaviour of the velocity profile with the variation of various parameters are shown 
graphically. As seen in Figures 1 and 2 the non-Newtonian property of viscoelastic fluid 
works to increase the velocity profile, while the magnetic effect is to decrease the velocity 
distribution.
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Figure 2. Vdocily distribution at ;• = >t/4 for various values of m and k.
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