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Abstract :  ‘The non-lincar panial diffcrential cquations describing the problem ol heat transfer
from a lincarly siretching continuous surface with a power law temperature distribution of two-
componcnt fluids, urc reduced by similarity transformation 1o non-linear ordinary dificrenual
equations. To obiain the numerical solution of this problem we used a modified Newton-Raphson
shooting techuique using Runge-Kutta Merson mecthod with automatic error control as an witial
value solver.

The heat transfer characteristics for this problem arc found to be determined by the
temperature 2 and Prandd number P, , and F, . The magnitude of 2. affects the direction and

quantity of heat flow. For 4=-1,P, =072, P, = 3. 10 and 100, the wall tempcrawre
gradient vanishes, (8'y (0) = 0). In this casc there is no heat transfer occurring between the
continuous surfacc and the fluids. In general hicat is transferred from the continuous surface 1o the

fluids for 2> -1, 4 = =1 in casc of & (0) and 1o the continuous surface for 2 < =1 casc of )
(0). For A = -3 and cenain I’rz valucs, unrcalisuc temperature distributions are encountered in

case of 6, (0). For the temperature profile 8, (), themmal boundary {ayer thickness increases as 2
decreases and no significant cffect wath different values of l’,2 1s obscrved. The temperature

profile 8, (n) 15 slightly affected by difterent values of 2 and increases as P, , decreases. Tor a
given /. and P, v the smaller the P, 2 the Jurger thermal boundary layer thickness. The velocity
profiles Fy, ', and the shear stresses are not significantly affected by the variation of 2 and P, >

Keywords : Non-lincar partial diffcrential equations, Runge-Kutta Merson, Newton-Raphson
shooting techruque, Prandtl number.
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1. Introduction

The continuous surface heat transfer problems has many practical applications in industrial
manufacturing processcs, for cxample the extrusion of plastic sheets and the boundary layer
along a liquid film in condensation processes. The boundary layer on a continuous surface
moving steadily through stationary incompressible (luid was first studicd theoretically by
(Sakiadis 1961a). Most studies have been concerned with constant surface velocity and
lemperature (Tsou er af 1967) but for many practical applications the 'surface undergoes
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stretching and cooling or heating that cause surface velocity and temperature variations
(Crane 1970, Vieggaar 1977 and Gupta and Gupta 1977) have analyzed the stretching
problem with constant surface temperature while Soundalgekar and Ramana Murty (1980)
investigated the constant surfacc case with power law tempcrature variation. However,
Grubka and Bobba (1985) have analyzed the heat transfer from a lincarly stretching
continuous surface with a power law tcmperature distribution. The aim of this paper is 10
investigate the problem of the flow and heat transfer of a two-component fluid near 2
continuous lincarly strciching surface. The effects of power law surface temperature
variation and Prandu number of one of the componcnts are analyzed. Numerical results for
local wall heat flux, temperature profiles for various valuesof temperaturc parameter and
Prandtl number arc given in tables and figures.

2. Analysis

The laminar velocity and thermal boundary layers of slationary incompressible mixture of
fluids on a continuous stretching surface with velocity u,, and temperature 7,, are considercd
when the physical properties are constant with the ambient temperature T,.. Under the
Boussinesq approximation and using the boundary layer approximation (Schlichting 1968),
the fundamental equations for [low in the boundary layer are :

o  dv;
ax + ay =0, M
o 9 & : :
ul_a;l Vi j::vl = fin "a;’uzl + (kipy) (uz - uy), ‘ v
T T
Uy % i % = ) a‘;’y‘f , ®))
vy
o ()y =0, )
e ) &
b'ge + V2% = hn 57 + W) - w), )
U 5 +vz%7y2—az%]-?, ©
with the boundary conditions
u = cx, u, = cxla,
ay =0 M
v, = 0, V = 0,

Tl = Tz = 'I.w =T, + Ax1
Uy = Uy =0, ) —=> 1., T—> Ty, al y—— oo,

The x-axis runs along the continuous surface in the direction of motion, and the y-axis is
perpendicular 0 it; « and v arc the velocity components in the direction of x and ¥
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respectively. Note that the viscous dissipation is neglected in the cnergy eq. (3) and (6). It
should be remembered that from the definition of the volume fraction we have

f 1 + f2 =1, ' (8)
The solution of eq. (1), (4) may bc writien inzterms of the strcam functions defined by the
relations )

)]

Introducing the usual similarity transformationg and dimensionless wemperature

M=y ©m' M) = W RO Fy = v/ [x ()7 o

6= (N-TH/ (T, =T, 6 = (13-T) /(T - T.).
The momentum cgs. (2), (5) and the encrgy cgs. (3), (6) can be written as

FEV" + IR < F 2 b Py = Fy ) = 0, (1

2" +aFafy” ~aFy * + (pilpy) ba® (@Fy' - Fy' ) = 0, (12)

6," +P, F,6," —P, AF\"6, =0, a3)

6" + Pua(F26, - 26,Fy" ) = 0. (14)
an =0 F,' (@) =Fy (0 =1

Fi(0) = F2(0) = 0

6,(0) = 6,(0) = 1, (15)
aN——> 00 [’ (0) —— 3" (00)—> 0

6) (c0)—> 0 6, (0)—> 0

where primes denote order of differcntiation with respect to .

The local wall heat can be expressed as

al 124 o
W= —k = kA (c/1)"%* 6" (0),
9 (9}' )y=0 (c/h) 1
dl, 2.4 o
dow = —k ) = —kA ()4 6, (0).
» ),

3. Numerical treatment
Egs. (11-15) are expressed in the following form
Y=Y Y2 =y 33 = (UA) (= nys+y2° - b (Ma)ys-y,), Ya'=Ys,

3B (10)
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¥s'= Yo Yo' = (Uf) | — ayays + ays® - 6a° (pi/p2) (@y2—ys)b y2' = ya. (16)
¥s'==Pp, 01ys = A7), ¥9' = Y10 Y10 = = Pr @ OaY10 — Aysys)
with the boundary conditions
¥1(0) = y4(0) = 0, ¥5(0) = y5(0) = y7(0) = ¥5(0) = 1, Ya(e) = ys(o2) = y7(e2) = yg(0) =0  (17)
where

N=FLyn=FLy3=F",y4=Fyys=F",

(18)
Yo=F"2y1=61,y8= 0, y9=6,and y;o= 7.

In order to solve the above sysiem we apply a modified Newton-Raphson shooting
tcchnique (Hall and Waut 1976). The practical details are explained in the following steps :

(1)  Sctny=3, k=0 (whcre nyis the terminal value of the independent variablc )
(2)  Assume the missing initial conditions
730) = 51, y5(0) = 22, y5(0) = 5%, y10(0) = 5. (19)

(3)  Integrate forward, the system (16) over an interval [0, 7,] using Runge-Kutta
Merson method with automatic error control where the local truncation error is bounded by
the tolerance E = 10°% we get the solution U (7, §) where U = (4;, U, ...... » Uy0), S = (51,

52, 53, S4)-
(4) Tryto find S, such that the solution U (7, S) satisfies the end conditions at n = 7,
i.e. We solve the system

U, (Mg 51, 52,53, 84)=0, r=2,5,7,9, 9(s)=0 (20)
with O1 = Uz, @y = Us, P3 = U7, @4 = Uy @n
by applying Newton-Raphson itcractive process

s+ _ s® _ [J (S(k))]—! " (S(k)) (22)

where

j(S("’) is the 4x4 Jacobian matrix whose element in the i-th row and j-th column is
sy (90 _ W
‘,l,j(s( )) = (asj ),—S .
In order to get the Jacobian we use the approximation
0:
}% = (8 Sty vvvees S+ 8Sjrreernss S2) = 05 (S1s vevvr 54)) 185

ij=1,273.4 @)

i.e. we have to solve the system (16) five times, once with the current values of the
parameters §; and once with cach of the four parameters perturbed in turn. |
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Note that the perturbations &5; must be larger than the local truncation error allowed
in the integration method used in solving the system; otherwise the truncation errors will
dominate in (23). ;

In our case we take &5;= 10

(5) Setk=k+1and to step (2) and repea
I 5%+ D - s® )l < £ (we 1ake £= 107%).

6) In this case we integrate (16) forward i'ith the full set of initial values and print the
solution values at the required intcrmediate po#ts.

(7  Repeat the process from (2) to (6) by i§jcreasing the value of 77, in small steps until
we notice that no significant changes have urred to the solution from one step to the
next. Then we accept this value of 7y as our priktical infinity.

In our case it is acceptable to take 7, = 3

4. Results and discussion

Egs. (11-14) with boundary conditions (15) are solved numerically using shooting method
with Runge-Kutta Merson with automatic error control as an initial value solver. Numerical
calculations are carried out for fluids having differcnt Prandt! numbers of the second phase

and constant Prandtl number of the first phase with various values of A. Temperature
profiles 6,, 6, were obtained for P, = 0.72, P,, = 0.01, 1, 3, 10 an 100 with A ranging

10 20 3.0 40

Figure 1. Temperawre profiles for Py | =10.72 \

between —3 and 3. Plots for the various parameter ombinations are shown in Figures 1 and 2.
Both parameters are seen to have a significant effect on the temperature profiles 6 with 4
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and 8, with P,,. The tecmperature 6, is slightly affected by the differcnt valucs of 2,
temperaturc 8, is not affected by the change of P, ,. For given values ol P, and P, ,. the
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00 1.0 20

ki

Figure 2. Temperature profiles for P, , values.

30 40

temperaturc increases as the temperature parameters decrease. Further thermal boundary layer
thickness increases when 4 decreascs. For a given A and P, |, the smaller the P, , the larger

the thermal boundary layer thickness. To discuss the cffect of 4, it is helpful o examine
Tables 1, 2 which give a tabulation of the wall temperature gradient 6',(0), 8°5(0). From

Table 1. Wall iemperature gradicnt of the first phase 8 (0) values for Prandtl number P, =
0.72 and values of temperature parameter A and Prandtl number of the second phase P, .

AP, .01 1 3 10 100
-3 0.7076 0.7076 0.7076 0.7076 0.7076
-2 02519 02519 0.2519 0.2519 2519
-1 -.1185 -.1185 ~.1185 -.1185 -.1185
0 -.4306 -4306 -.4306 -.4306 -43006
1 7009 -7009 7009 ~.7009 -7009
2 -94 -94 -94 -94 -94

3 -1.155 -1.155 -1.155 -1.155 -1.155

Table 1, for A > - 1 the wall temperature gradient is negative and heat flows from the
continuous surface (o the ambient. The magnitude of the wall temperature gradient incrcascs
with decreasing 4 and no significant effect with different values of P, , is observed. For
A < -1, the sign of the temperature gradient changes and heat flows into the continuous
surface from the ambient fluid. From Table 2, we find that the magnitude of the wall

temperature gradient increases with decreasing A. For A > — 1, the wall temperature gradient
is negative and heat flows from the continuous surface to the ambient. When A=-1,P,,=
3, 10 and 100, there is no heat transfer between the continuous surface and the ambient

fluid.
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Table 2. Wall iemperature gradient of the second phase " (o) valucs for Prandil number of the
first phase (P, | = 0.72) and various values of temperature parameter A and Prandil number of the

second phase P, v

AP, 0.01 1 10 100

-3 -2354 1.96% 69.86 -7.758 -5.364

-2 -2413 0.696) 2.504 8.447 85.85

-1 -247 -.55 -7263010)°  -1541100¢ - 1935010)"®
0 -2529 -.58 -1.172 -2.378 -8.132

1 -.2587 -99 ~1.961 -3.8600 -12.9

2 -2645 -1.33 -2.578 -4.9930 -16.5

3 -2702 -1.631F -3.094 -5.9380 -19.49

§
ForA=-2,P,,2land A=-3,P, 5= 1, 3 the sign of the temperature gradient

changes and heat flows into the continuous surface from the ambicnt fluid. For 4= -3,
P,,=0.01, 10 and 100 the sign of the temperaturc gradient changes again and the hcat is

directed from the continuous surface 1o the free stream, Temperature distributions for the
above A and P,2 values are found to have regions of temperature less than that of the

ambicnt fluid. The velocity profiles F*, F', and the shear stresses are not affected by the
variation of 4 and P,.

Appendix
Nomenclature
C = Constant.
A = Constant.
F), F3 = Dimensionless stream funcuons.
P, " P, 2 T Prandu number of the first and second {luids.
Uy, 43 = Veloaty components tn the x-dirccuon of the first and second fluids.
v1, V5 = Velocity components 1n the y-direction of the {irst and sccond fluids.
x = Coordinate measuring distance 1n the direction of surface motion.
y = Coordinate measuning distance normal to surface.
@y, &, = Thermal diffusiviues of the first and second fluids.
A = Temperature parameter.
n = Dimensionless similarity vanable
6y, 8, = Dimensionless temperatures of the first and second fluids.
. Y2 = Kinematic viscosity of the first and second fluds.
P1, P2 = The densiuies of the first and sccond fluids
W, ¥, = Stream funcuons of the first and second fluids.
N1.f2 = The volume fractions of the first and sccond fluids.
K = The Rakhmatulin cocfficient.
a = Constant.
h = Constant, interaction between two phases.

Subscripts

1,2 = Correspond 1o the first and sccond fluids.
W = Continuous surface conditions,

w = Ambient conditions.
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