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Abstract : 'Ihe non<ltiicar paitial differential equations describing the problem ol heal transfer 
from a linearly sireiching continuous surface with a power law temperature distriiiution of two- 
cx>mponcni Ouids, arc reduced by similarity transfonnation to non-linear ordinary differential 
equations. 'Fo obtain the numerical solution of this problem we used a modified Newton-Kaphson 
shooting technique using Rungc-Kutla Merson method with automatic error control as an initial 
value solver.

The heat transfer characteristics for this problem arc found to be determined by the 
temperature A and PrandU number and The magnitude of 7̂ affects the direction and 
quantity of heat flow. For A = -  !, = 0.72, P ,^  = 3, 10 and 100, the wall temperature
gradient vanishes, {$ '2  (<>) ^ I** there is no heat tran.sfcr occurring hciwcen the
continuous surface and the fluids. In general heat is transferred from the continuous surface to ihc 
fluids for *̂ > ~1, A = -I in case of ^̂  (o) and to the continuous surface for 7, < -1 in case ol (Tj 
(o). For A = -3 and ceruin values, unrealistic temperature distributions arc encoiinicred in
case of ^ 2  (̂ ')* tcmj>cralurc profile (rj), ihemial btHimlaiy' layer ihickncss increases as A
decreases and no significant effect with different values of is observed. Ihc lempcraiurc 
profile $2 (V) slightly affected by different values of A and incrcasc.s as  ̂decreases. For a 
given A and P̂ . the smaller the the larger thermal hcHindar)' layer thickness. 'I’hc velocity 
profiles F'j, F ’l  and the shear stresses arc not significantly affected by ihc variation of A and P^

Keywords : Non-linear partial differential equations, Kunge-Kuiia Merson, Xcwion-Raphson 
shooting icchruquc, Prandll mimber.

PACS \n s .  : 44.30. -hv. 02.30. Jr

1 . Introduction

The continuous surface heal transfer problems has many practical applications in iniiusirial 
manufacturing proccs.scs, for example the extrusion of plastic sheets and the boundary layer 
along a liquid film in condensation processes. The boundary layer on a continuous surface 
moving steadily through stationary incompressible lluid was first studied theoretically by 
(Sakiadis 1961a). Most studies have been concerned with constant surface vekx;iiy and 
temperature (Tsou ei al 1967) but for many practical applications ihe'surface undergoes
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stretching and cooling or heating that cause surface velocity and temperature variations 
(Crane 1970, Vleggaar 1977 and Gupta and Gupta 1977) have analyzed the stretching 
problem with constant surface temperature while Soundalgekar and Ramana Muriy (1980i 
investigated the constant surface case with power law temperature variation. However, 
Grubka and Bobba (1985) have analyzed the heat transfer from a linearly stretching 
continuous surface with a power law temperature distribution. The aim of this paper is to 
investigate the problem of the flow and heat transfer of a two-component fluid near a 
continuous linearly stretching surface. The effects of power law surface temperature 
variation and Prandtl number of one of the components are analyzed'. Numerical results fur 
local wall heat flux, temperature profiles for various values o f temperature parameter and 
Prandtl number arc given in tables and figures.

2 . A nalysis

The laminar velocity and thermal boundary layers of stationary incompressible mixture of 
fluids on a continuous stretching surface with velocity Uy, and temperature are considered 
when the physical properties arc constant with the ambient temperature 7«. Under the 
Boussinesq approximation and using the boundary layer approximation (Schlichiing 1968), 
the fundamental equations for flow in the boundary layer are;

( 1)

),)(U2 -U i), (2)

(3)

(4)

^2)  (Wi -  U2) ,  (5)

(6)

du}
dx

<9vi

dy
= 0 ,

du\ du\
= f i 7 \+  V, dy dy'̂

i i x
dx +  V, dy = « i

" 4. ■
dx dy ■

dUy
+  V2 dy

i u i
dy^

+  V2 =  0C2dx dy dy' '

with the boundary conditions

u\ -  cx, «2 = cx/a,

V, =  0 , V2 =  0 ,

h  = T2 = 7'„ + A x̂

aty = 0 (7)

U\ = U2 = 0 , 7 ) ----- > 7'i«., T2 ----- » 7’2,„, a ty ----- > «>.

The j:-axis runs along the continuous surface in the direction of motion, and the y-axi.s is 
perpendicular to it; u and v arc the velocity components in the direction of x and ,v



respectively. Note that the viscous dissipation is neglected in the energy eq. (3) and (6). It 
should be remembered that from the definition of the volume fraction we have

/l  + /2  = 1. (8)
The solution of eq. (1), (4) may be written in«terms of the stream functions defined by the 
relations
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dxify d\l/\

(9)

Introducing the usual similarity iransformaiion!p and dimensionless temperature

n = > (c/y,)''^. F, (TJ) = / U (y2e')"̂ ]

Ox = a \ - r ^ ) / ( T ^ -  TJ, 6 2  = {T2 -T^)ICI\,- TJ).
The momentum cqs. (2), (5) and the energy eqs. (3). (6) can be written as 

/,F ," ' + F ,F ,” - r , - ^ f b { j j 2 - P x '  ) = 0 .

/ 2̂ 2”" +fl^2̂ 2” -dF2'̂  + (pxlp^ bâ  {aFi'~ F2  ) = 0 ,
Ox" + / ’, / , 0 ,' -P r.^x'G i = 0 .

02" +P^a{F2e2'-XB2F2 ) = 0 . 

atTj = 0 F,' (o) = F2 (o) = 1 

(o) = F2 (o) = 0 

01 (0) = 02 (0) = 1,

all?------------------------ >0 F2'(oo) ----->0

01 (<«)-----> 0 6 2  (°°)-----> 0
where primes denote order of differentiation with rc.spcci to t).

The local wall heat can be expressed as

= „ = -^>1 (c /y !)'V  0,' (o),

rm->
1 , .

3 . Numerical treatment

(11-15) are expressed in the following form

< f \ v

2̂w = -k 0 ^  0  ̂ (<̂ /yi)‘V 02' (0).

( 10)

(11)

( 12)

(13)

(14)

(15)

JB (10)
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ys = >6. yd -  (Mfi) I -  "W 6 + ayi -  (P1/P2) (a>2 -  ys)l y d = >8. (16)
>-8' = -  (y\ytt -  Â zy?). yd  = >10. yio' = - Pr (y ŷio -  Ayjy,)

with ihe boundary conditions

>1(0) = y4(o) = 0, >2(0) = ys(o) = y7(o) = >9(0) = i . >2(“ ) = ysC") = yrC®®)= y9(«) = 0 (i?)

where

y\ = P\> y% = /^'i. >3 = ^"1. >4 = >5 = ^'2.

(18)

>6 = F"2,y7= 01,>8 = 0’i>y9 = ^andyio=  0'2- 

In order to solve the above system we apply a modified Newton-Raphson shooting 
technique (Hall and Watt 1976). The practical details are explained in the following steps:

(1) Set T)/= 3, /k = 0 (where rj/is the terminal value of the independent variable 77)

(2) Assume the missing initial conditions

>3(0) = Jl >6(0) = i2 *̂\ >8(0) = 53̂ *̂  >10(0) = (19)

(3) Integrate forward, the system (16) over an interval [0. Tjy] using Rungc-Kutta
Merson method with automatic error control where the local truncation error is bounded by 
the tolerance E -  10 *; we get the solution U (ri, S) where U = (ui, «2......... . «io), S = (si,
52, 53, S4).

(4) Try to find S, such that the solution U {rj, S) satisfies the end conditions at tj = tjj

i.e. We solve the system

U, (% 5], 52. 53, 54) = 0, r = 2. 5,7,9,  (5) = 0

with 01 = «2, 02 = «S> 03 = «7, 04 = «9 

by applying Newton-Raphson itcractive process 
1) ^ 5(*) -  [ J yj, (5(*1)

where

j  (5̂ *̂ ) is the 4x4 Jacobian matrix whose element in the i-th row andy-th column is

(20)

(21)

(22)

In order to get the Jacobian we use the approximation

^  (5i...........Sj + SSj...........S4) -  01 (5}........... . 5 4 ) )  / SSj

i , j »  1,2,  3 . 4  (23)

i.e. we have to solve the system (16) five times, once with the current valires of the 
parameters Sy and once with each of the four parameters perturbed in turn.
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Note that the perturbations dSj must be larger than the local truncation error allowed 
in the integration method used in solving the system; otherwise the truncation errors will 
dominate in (23).

In our case we take dSj = 107*

(5) S e t k - k + 1  and to step (2) and repeal|^eprocess until 

II -  5̂ *̂  II < £ (we take e = lO"̂ ).

(6) In this case we integrate (16) forward  ̂ ith the full set of initial values and prim the 
solution values at the required intermediate po&Ls.

(7) Repeat the process from (2) to (6) by iicreasing the value of rjf in small steps until 
we notice that no significant changes have o|curred to the solution from one step to the 
next. Then we accept this value of rjfas our pn |ctical infinity.

In our case it is acceptable to take I.

4 . Results and discussion

Eqs. (11-14) with boundary conditions (15) are solved numerically using shooting method 
with Runge-Kutta Merson with automatic error control as an initial value solver. Numerical 
calculations are carried out for fluids having different Prandtl numbers of the second phase 
and constant Prandtl number of the first phase with various values of A. Temperature 
profiles 0^ O2 were obtained for = 0.72, P̂  ̂= 0 .01 , 1, 3, 10 an 100 with A ranging

Figure 1. Tcmpcraiurc profiJes for Z’,. j “  0.72 i

between -3 and 3. Plots for the various parameter ombinaiions ate shown in Figures 1 aind 2. 
BoA parameters are seen to have a significant effect on the lempemture profiles 6\ with A



and $ 2  with The icmpcraiure Q2 is slightly affected by the different values of A, 
temperature Q\ is not affected by the change of For given values of Pr  ̂ and ihe
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Figure 2. Temperature profiles for P^  ̂  valuCS.

temperature increases as the temperature parameters decrease. Further thermal boundary layer 
thickness increases when A decreases. For a given A and Pry the smaller the Pr  ̂ the larger
the thermal boundary layer thickness. To discuss the effect of A, it is helpful to examine 
Tables 1,2 which give a tabulation of the wall temperature gradient 0'i(o), From

Tabic 1. Wall temperature gradient of the first phase d\ (o) values for Prandil number  ̂ = 
0.72 and values of temperature parameter A and Prandtl number of the second phase Pr

C.Ol 1 3 10 too

- 3 0.7076 0.7076 0.7076 0.7076 0.7076
- 2 0.2519 0.2519 0.2519 0.2519 .2519
- 1 -.1185 -.1185 -.1185 -.1185 -.1185
0 -.4306 -.4306 -.4306 -.4306 -.4306

1 -.7009 -.7009 -.7009 -.7009 -.7009
2 -.94 -9 4 -.94 -.94 -.94
3 -1.155 -1.155 -1.155 -1.155 -1.155

Table 1, for A > -  1 the wall temperature gradient is negative and heat flows from the 
continuous surface to the ambient. The magnitude of the wall temperature gradient increases 
with decreasing A and no significant effect with different values of P, 2 observed. For 
A < -  1, the sign of the temperature gradient changes and heat flows into the continuous 
surface from the ambient fluid. From Table 2, we find that the magnitude of the wall 
temperature gradient increases with decreasing A. For A > -  1, the wall temperature gradient 
is negative and heat flows from the continuous surface to the ambient. When A = -  1, Pr2 ” 
3, 10 and 100, there is no heat transfer between the continuous surface and the ambient 
fluid.
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T a b k  2. WaU icmperaiure gradicni of ihc second phase ff (o) values for Prandil number of the 
first phase  ̂ = 0.72) and various values of temperature parameter Pw and Prandtl number of the

second phase 2'

0.01 I 10 100

-3
-2
-1

-.2354
-.2413
-.2471

1.967̂
0.69^
-.554

69.86 
2.504 
-.7263(10)-3

-7.758
8.447
-.1541(10)'

-5.364
85.85

-  1935(10)'
0 -.2529 -.585® -1.172 -2.378 -8.132
1 -.2587 - .9 9 l | -1.961 -3.8600 -12.9
2 -.2645 ~1.33» -2.578 -4.9930 -16.5
3 -.2702 -1.6311 -3.094 -5.9380 -19.49

fFor A = -  2,  ̂ 1 and  ̂= -  3, Pr^- 1, 3 the sign of the temperature gradient
changes and heat flows into the continuous Surface from the ambient fluid. For A = -  3, 
P̂  ̂= 0 .01 , 10 and 100 the sign of the temp^ature gradient changes again and the heat is
directed from the continuous surface to the free stream. Temperature distributions for the 
above A and ^^2  values are found to have regions of temperature less than that of the
ambient fluid. The velocity profiles F'\, F'l and the shear stresses are not affected by the 
variation of A and Pr-

Appendix
Nomenclature

C = Con slum.
A = Con slant.

-  Dimen.sionlcss stream functions.
P̂  P̂  2 ” Prandil number of ihc first and second fluids.
Uj, = VclocUy components tn the x-dircciion of the first and seaind fluids,
vj, V2 = Velocity components in the y-direction of the first and second fluids.
X =■ Coordinate measuring distance m the direction of surface motion. 
y = Coordinate measuring distance normal to surface.

02 = Tbermal diffusiviiics of the first and second fluid.s.
X = Temperature parameter.
77 = Dimensionless similarity variable
0j, ^2 = Dimensionless icinjxjraiures of the first and second fluids, 
yj, 72 = Kinematic viscosity ol the first and second fluids.
P\, p2 = ITic densities of the (trsi and second fluids 

¥2  = Stream functions of the first and second fluids. 
f h f l  = volume fractions of the first and second fluids.
K = 'fhe Rakhmaiulin coefficient. 
a = Constant.
h = Constant, inicraciion between two phases.

Subscrip ts

1,2 = Correspond to the first and second fluids.
W = Continuous surface conditions.

A m b ie n t  c o n d ilu m s .
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