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I. Introduction

Any dynamical system in equilibrium, when disturbed or perturbed, evolves in time
to its new equilibrium state according to the dynamical equations of motion.
After some typical time, characteristic of the system (of the order of the relaxation
time), ths system reaches its ne'w equilibrium. For example, consider an LCR circuit.
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This simple system involves only a few degrees of freedom. The evolution of
charge on the capacitor follows a precise equation of motion and the relaxation
behaviour and relaxation time is known exactly, solving the (first order) differential
equation of evolufion. For a thermodynamic or statistical system, which involves
many degjress of freedom, the equations of motion become coupled and the
dynamical evolution behaviour, of some macroscopic average thermodynamic
quantity, become nontrivial involving statistical averaging over various initial
conditions. The study of relaxation behaviour and the relaxation time of such
statistical or thermodynamical systems have attracted a lot of attention recently.
In particular, near some (cooperative) phase transition points of such many body
systems, the average macroscopic dynamics become extremely slow and also some
anomalous relaxation behaviour are seen.

In many-body systems involving interactions between the various degrees of
freedom, for example, in magnetic system with Heisenberg interaction between
spins, the system gets ordered at lowest temperature because of the cooperative
interactions and the order gradually disappears with increase in temperature (increa-
sing thermal noise). Finally at a transition point, the cooperative order disappears
(e.g. in the magnetic case the ferromagnetic order disappears at the Curie point above
which the spin system becomes paramagnetic) and the correlation length (denoted
by £), over which fluctuations are correlated, diverges at the transition point
(Stanley 1971). We will consider dynamics of average thermodynamic quantities
like magnetization etc., before the system reaches equilibrium corresponding to
various thermodynamic fields (temperature, external magnetic field etc.), in various
magnetic (spin glass etc.) systems. Similarly, we will consider the dynamics (of,
say, dispersive strain modes etc.) in purely statistical systems like percolating
systems. Such systems may be ideally defined on a lattice where randomly some
bonds are removed with a concentration ¢ (=1—p). Due to fluctuation, the various
kinds of vaccancy clusters will be formed and at a typical concentration c,(=1— Po),
called the percolation threshold, the occupied bonds cease to percolate : thereby
loosing macroscopic connection. The correlation length ¢, defined as the typical
cluster size, diverges at the percolation point (Stauffer 1985).

Normally, the relaxation behaviour in a thermodynamic system follows the
common Debye type form with a single relaxation time. The standard (Debye) form
for any response function »(t) is

7(t) ~ 7(o=)—A exp (—t/7) (1.1)
where 7 is the relaxation time, (o) denotes the new equilibrium value. A is a
constant. As the critical temperature is approached = shows a slowing down ;
7 diverges at T, :

T~ (T=T,) V%, (1.2)

where z is the dynamic exponent and v is the correlation length exponent (Stanley
1971). For parcolatioa madsl tha T will ba replaced by p (and T, by p,).
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Experimental observations suggest a completely different relaxation phenomena
in glasses. Glassy system under stress or any perturbation, relaxes to its
equilibrium value with an altogether different behaviour. In case of ordinary glasses
under (constant) stress, it is observed (Douglas 1965) that the growth of strain
«(t) is given by the form :

€(t) ~ e(oo)—Aexp [—(t/7)"] (1.3)
where the exponent « is less than 1. This form is commonly known as the
Kohirausch’s stretched exponential form. From now on, we will refer this form as

stretched exponential relaxation. The relaxftion time r also shows a completely
new behaviour known as the Vogel-Fulcher |a\§l (Vogel 1921 and Fulcher 1925) :

* ~ oxp [1/(T—To)] a (1.4)

where T, is a fitting parameter, and the ;‘elaxation time diverges usually at a
temperature T, different from T, the glass melting point (T, { T,).

Very recently, however, stretched expomential relaxation behaviour (« {1in
expression (1.3)) has been seen in pure magnetic (Takano et al 1988, Ogielski
1987, Ghosh and Chakrabarti 1990) or percolating systems (Ghosh et al 1989),
which are very precisely characterized by their respective (single) correlation length
¢, diverging near the respective critical points, with well-known power law
behaviour. Although, the stretched exponential behaviour is observed (as originally
observed in glasses), none of these systems show Vogel-Fulcher behaviour (expres-
sion (1.4) for 7), rather the normal critical slowing down (expressions (1.2) for r) is
observed. The same behaviour was observed (Ogielski 1985) earlier for spin
glasses or for magnetic alloys with random competing interactions (frustrations)
(Binder and Young 1986, Chowdhury 1986). These observations have recently
established that stretched exponential relaxation behaviour is not any characteristic
of glasses and that such behaviour are, in fact, quite common ; rather the Debye
relaxation behaviour (eq. (1.1)) is an exception for the response behaviour of
many-body systems. However, the Vogel-Fulcher behaviour for average relaxation
time remains still a characteristic of (some) glasses.

In the next section we will give some typical results of relaxation phenomena
observed experimentally (by experiment we mean both real experiments and computer
simulations) in various system. In Section 3 some models, which have been
proposed to explain such relaxation behaviour will be discussed.

2. Experimental results
2.1, Relaxation in magnetic systems :

Extensive studies on magnetic relaxations have been made using the Monte Carlo
computer simulation technique. In the single spin flip kinetic Ising model the
details of the Monte Carlo procedure (for studying the Glauber dynamics) are
as follows (see Binder 1978). One starts with an initial spin configuration
(usually the completely ordered ferromagnetic), selects a spin S; at random and
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determines the transition probability W(S; +—S;). Let E; be the energy of the
J-th spin due to the local (say, nearest neighbour) spin configuration. Then,
flipping the spin would need energy 4E=2E; and one can take the flipping
(transition) probability W for the S; spin as W=exp (—4E/KT)/(1+exp
(—4E/KT)), which gives the same Boltzmann equilibrium distribution. This spin
is then flipped if the random fraction between 0 and 1 exceeds normalised W. If
the spin is not flipped the old configuration is counted as anew configuration.
The process is repeated many times. Thus a sequence of new spin configuration is
generated, where the number of computer iteration steps correspond to the time
lapse. The system now relaxes to the thermal equilibrium configuration appropriate
to the chosen external variable (temperature, external field etc.). Equilibrium is
reached when the average macroscopic quantities saturate with time.

The critical dynamics of Ising systems was studied by Chakrabarti et al

(1981) in 3 and 4 dimension (Figure 1). The system sizes were up to 360° and
40*ind=3and 4, and they used multispin coding technique. They fitted their
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reciprocal slope (Ref. Chakrabarti et o/ 1981 ).

data to an exponential form (eq. (1.1)). There was infact some indications of a
systematic deviation in the relaxation data when fitted to the above form. These
deviations were, however, attributed as nonlinear relaxation. They observed the
relaxation time = to diverge with an exponent »z=1.06 + 0.04 in 3—d. Brower
et al (1988) have studied this same critical slowing down in microcanonical Ising
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dynamics in a three dimensional system (128 x 129 x 128 spins). Assuming again
the relaxation to be exponential, they obtained the value of dynamic exponent z to
be 2.26 + 0.05 in 3—d (vz =~ 1.42).

As mentioned before, very recently the failure of simple exponential relaxation
(Debye relaxation behaviour) has been observed for simple Ising dynamics.
Simulation by Takano et al (1988) suggests the magnetisation (Takano et al studied
the time development of autocorrelation function) at T { T, relaxes to its equilibrium
value, following a stretched exponential behaviour (eq. 1.3), with «~1,3 and 1,2
ind=2 and 3. Ogielski (1987) observed similar dynamics at T{T,and in the
short time scale (long time behaviour is observed to be normal Debye like). He
found <=0.33, 0.4, 0.6 for d=2,3 and 4 {Figure 2). Ghosh and Chakrabarti
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Figure 2. Numerical solutions for the autocorrelation function q(t); (a) d=- 2,
at temp. T- 2,15, 2,10 and 2.00; (b) d=3, T—4.45, 4.40, 4.30, 4.20 and 4.00;
(c) d=4, T-:6.60, 6.50, 6.40 and 6.30 from top to bottom. The critical tem-
peratures are T.-=-2.27, 4.51, 6.7 ford=2, 3 and 4 respectively (Ref. Oglelski

1987).

(1990) repeated the Ising dynamics study by Chakrabarti et al (1981) for 10002
and 100® spins (Figure 3). They observed in the para phase (T)T,), magnetic
relaxation have a Kohirausch-type behaviour (eq. (1.3)) for t{t,, where t, is a
typical crossover time dependent on the amount of disorders : t,—> oo as T—>T,
with «~0.33 and 0.4 for d=2and 3. «=1for t)t,. The average relaxation
time r diverges with an exponent »z~1.8 and 1.1 in 2and 3—d. [t may be
noticed that since r ~ 3 m(t) the stretched exponential behaviour does not affect
t

the dynamic exponent values ; z is identical in magnitude for both exponential and
stretched exponential relaxation regions (Chowdhury 1990).

2.2, Relaxation in spin glasses :

As mentioned before, spin glasses are random magnetic alloys with competing
(ferromagnetic as well as antiferromagnetic) interactions between the magnetic
moments. Infact, the magnetic interaction in metals can be oscillatory of the
RKKY type. In dilute magnetic alloys, therefore, the above random competition of
interactions occur. Such systems have got interesting (static) phase transition
behaviour due to microscopically degenerate ground states (Binder and Young 1986,
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Chowdhury 1986). We will discuss here some experimental details of the spin
glass relaxation behaviour. O

Let a field H be applied to a sample spin glass (1.0% Cu : Mn and 2.6%
Ag : Mn) in the paramagnetic phase 7 Tg- The sample then aquires a magnetisa-
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Figure 3. (a) Time development of magnetlsation M(1t) [MgO) for different tem-
peratures. T/T.=1.01, 1.03, 1.05, 1.07, 1.10, 1.20 and 1.3

respectlvels (from
top to bottom). Lattice size 10007, (b) A posslble fitting of M(t)/M(0) vs te
to an exponent value «==0.33 ind=2. (Ref. Ghosh and Chakrabarti 1990)

tion. The sample is then field cooled through the transition temperature Ty, and
the applied field H be removed. There appears, then, a field cooled remanent
magnetisation, called thermoremanent magnetisation, (o,). This was measured

0 0
' N
= :
] ' e
2-05l3 s
s 5 X
R 3
g |\ 2
c - R
- . 0 .. \
) \."‘ \—\
{ DAY N =N 9!
-1.5% 80 120 160 200 % 2 . 3 B
t(MCS) 106
(c) (d)
Figure 3. (c) Time development of magneﬂsatlon M(t {M(0) for difterent tem-
peratures. T/T,=1.005, 1.010, 1.030, 1 1,10 0, respectively (from top

to bottom). Lattice size 100' &d) A posslble ﬂning of M(t%M(O) vs t* to an
exponent value «=0.4 ind= ef. Ghosh and Chakrabarti 1990)

(Chamberlin et al 1984) as a function of time after the field is removed. The
measurement was made in the interval from 0.2 to 1000 seconds after removing H.
They found the time dependance of o, as

Oirm =0 OXP - C(t/ 7)°]
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The exponential factor (C) and relaxation time (7) can be chosen to be independent
of temperature throughout the spin-glass region, whereas the prefactor (¢,) and
time-stretched exponent («) are observed to become temperature-dependent cons-
tants. For T{0.76 T, «=1/3 independent of temperature and for T)0.75 T,, «
decreases while o, decreases more rapidly than at lower temperatures (See
however, Chamberlin and Haines 1990 for recent developments).

De Fotis et al (1988) studied the magnetic relaxation of the insulating spin
glass Co, _«Mn,Cl4.2H,0 for x=0.452. The thetmoremanent magnetisation exhibits
the features characteristic of spin glass i.e. a rather slow (viscous) decay extending
over a large time interval. Of several theore?cal decay expressions tested, they
found the stretched exponential with a power law prefactor to be the most
satisfactory : b

em=At"" exp [ (t/7)°] : (2.1)

The best fit gives x ~0.06 and « ~0.45.
Ogielski (1985) presented an extensive study of the dynamic behaviour of short
range lIsing spin glasses, as observed in stochastic (Monte Carlo) simulation.
The time dependence of the order parameter q(t)={(Sa(0)Ss(t)), and dynamic

correlation functions have been recorded. A wide range of temperature (0.7 <
kT/] <5.0) and lattice sizes (8%, 16%, 32%, 64°®) were investigated. He found that
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Figure 4. Stretched exponential exponent « for relaxation above T, in near-
neighbour 1 Ising spin glasses. Circles : data of Ogielski for d ==3. Crosses:
results from McMillan’s data. T3 and T§ are the ferromagnetic Curie tempera-
ture and spin-glass temperature for dimensjon d. Inset : the same results plotted
with the temperature scale going from T‘Z’ to T’: (Ref. Campbell et al 1988).

the emperical formula for q(t) to be similar to eq. (2.1) with temperature depem_:lent
exponents x(T) (approximate value 0.065) and «(t) (nearly 1 /3 as T— T,) describes
the decay very well at all temperatures above the spin glass transition. Infact, the
analysis by Campbell et al (1988) suggests that the effective (temperature depen-
dant) estimate of « approaches the terminal value «=1/3 as T approaches T,. They
analysed Ogielski's (1985) and McMillan’s (1983) data by fitting them to the
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Ogielski’s parametrization equation (Figure 4). In the spin glass phase, only the
algebric decay q(t)=At=* could be observed with different temperature dependence
of the exponent x(T). Power-law fits for #(T) are found. The fitting yields
2v=7.9 + 1.0. The estimated error for the exponents include the uncertainty of the
estimate of T,. Although many previous simulation studies indicated Vogel-Fulcher
type behaviour for the spin glass relaxation time variation with temperature,
extensive simulation study by Ogielski has ruled it out for spin glass. However, in
all cases for spin glass systems whare power laws are observed, the exponent vz
turns out to be usually large (Binder and Young 1986).

2.3. Relaxation in percolating systems :

The elastic behaviour obeying Hooke's law is an ideal case. In single crystals we
expect the strain to be a function of stress alone. In anelastic systems (Zener
1948, Balakrishnan 1985) such linearity is maintained but the strain is also a
function of time. K& (1947) observed the anelastic effects in polycrystalline
aluminium (Figure 5). The strain was measured in the sample under constant
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Figure 5. Creep under constant stress and recovery at 175°C in polycrystalline
aluminium (Ref. K& 1947).

stress. To measure the anelastic effects (see e.g. Dattagupta 1987), the applied
stress is made small enough so that the effects are recoverable and are linear.
Tha strain grows to a constant value (linearly proportional to ths stress ; Hooke's
law) exponentially and thus reaches its equilibrium. This is also known as creep
relaxation. The viscous slipping at grain boundaries are identified to be
responsible for the creep. As mentioned earlier, with random voids in a system,
the (material) connectivity is lost beyond the percolation threshold of void
concentration. At the threshold the system becomes marginally connected and
the structures of the network becomes scale invariant self similar fractals
(Stauffor 1985). Ghosh et al (1989) have investigated experimentally the
strain relaxation behaviour of two .dimensional random percolating networks.
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The samples were anelastic to start with and the growing (relaxing) strain
«(t) in time t was recorded in the linear region. The relaxation process
becomes extremely slo~ near the percolation point. The elongation was
measured (Benguigui 1984) with a displacement transducer (LVDT) and ths growth
of the strain under a coristant load was regorded by a chart recorder. Polycrys-
taltine aluminium foils of thickness 0.10 mm and copper foils of thickness 0.09 mm
were used. A sheet of 20x20 cm was used and holes were punched regularly on
it with diameter 0.8 cm on a square latticesof 1 cm unit cell. Defects were then
introduced by cutting inter-hole bonds at random with a concentration ¢ (=1-p)
(following a Monte Carlo generated random ; number sequence). For each sample
(configuration), loads were varied within elastic limit and the linearity and reversi-
bility of the growing strain e(t) was checked. The normalised strain, which was
found to be independent of load, was obtaineﬁ for different ¢ values (Figure 6). The

t (in minutes) [

(a) (b)
Figure 6. (a) [1-e(t)/e(®)] against t, showing the crossover from stretched-
exponential (for t <t.; t. indicated by vertical arrows). The insets show r~* and
t;* against ¢ in square lattice for copper. (b) A possible fitting to an exponent
value «=0.8 for the stretched-exponential region in square lattice for cooper

(Ref. Ghosh et a/ 1990a).

strain growth e(t) in time t was recorded in the linear region. A crossover from a
simple exponential behaviour to a stretched exponential behaviour was observed.

€(t): re(co)—Aexp [—(t/r)*] for t{t, «=0.8

and

€(t) ~ (o) —Aexp (—t/r) for tHte
t,=0 for the perfect network. Both the crossover time t, and the relaxation time
increases and tend to diverge near the percolation threshold (c,) of the dilution c.

€(c) and A are constants dependent on c.
2 |
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The molecular dynamics simulation (MDS) has recently been performed (Ghosh
and Ray 1990) solving dynamical equation in the difference form for all the lattice
sites in the system. The strain relaxation behaviour of a two dimensional (20 x20)
randomly diluted elastic network was studied which involves both central and
rotationally invariant bond-bending forces was studied. The potential energy of
the system is given by (Kantor and Webman 1984)

Va2 D (dry ) gus b2 (40,08 sEsn

<t §> <iik>

The first part is for bond stretching force as is considered in the central force
system ; each bond is replaced by a spring with force constant a. d4r,; is the
change in the bond-length between nearest neighbour sites { ij > and 40, 4 is the
change in the bond angle between two adjacent bonds (ijy and  jk >. The second
part represents the bond-bending force with force constants b. In the present simula-
tion b/a=0.1. g¢;=1 for the bond occupied with a probability (1—c) and g,;=0
otherwise. The network is subjected to a constant tensile force and Verlet's
algorithm (Dienes and Paskin 1983, Ray and Chakrabarti 1985) of MDS is used.
The dynamics minimizes the energy of the system and the system reaches
equilibrium whan the force on individual lattice site becomes balanced. The strain
is moasured after every 10 iterations and the process is continued till the strain
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Figure 7. (a) [1 -<(t)/«(w)] against tin a 20 x 20 square lattice for different c
values. ¢=0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35 (from bottom to top)

from the data obtained by molecular dynamics.

reaches its final value. The process is repeated for different dilution concentration ¢

They have determined «(t) for c=0.05 to 0.35. The «(t)/e(<) vs t (iteration steps;
plot shows that there is a significant increase in relaxation time = as ¢, is
approachad. Ths more the system is diluted the more slowly it reachas equilibrium
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value. The behaviour observed is similar to that observed experimentally but with
an exponant value «=0.65 + 0.02 (Figure 7). = was measured from the slope of
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Figure7. (b) A possible fitting to an exponent value <x=0.85 for the stretched-
exponential region in 20 x 20 square lattice (Ref. Ghosh and Ray 1990).

[In e(t)/e(e=)] vs t plot for t ) t,. It show a typical critical slowing down as ¢ = ¢,
with an exponent value 1.2 for z. Similar behaviour was observed for t, with exponent
~ 2.0. The Young's modulus shows a rapid fall as ¢ - ¢, with exponent 3.7.

2.4. Relaxation in polymers and glasses :

Recently, there has been a lot of studies on Ising dynamics on percolation cluster
(at the percolation point) and interesting non Debye relaxation behaviour are
observed (Jain 1986, for d=2 and Chowdhury and Stauffer 1986). However,
since non Debye relaxations are already observed in pure Ising systems (see
Section 2.1), the additional modifications in Ising relaxations on percolating need
further consideration. However, the change in dynamic exponent z on percolation
fractals can be straightforwardly identified as the percolation fractal effect,
since the non Debye relaxation observed in pure Ising system does not affect the
dynamic exponents (see Section 2.1). In the glassy systems only stretched
exponential functions were observed in 1966 by Douglas (1966), Scott (1925)
and Jones (1944) suggested that this creep data in inorganic glasses were
in accord with stretched exponential form (eq. (1.3)) with an temperature indepen-
dent exponent « ~0.5. There is also data for extensive study of creep in polymers.
A few examples analysed by Ngai (1987) are given here. Creep was studied in
polyvinylichioride. In fact, a decrease in « with increase in annealing time was
reported (Turner 1964). Chai and McCrum (1980) measured the creep in isotatic
polypropylene with different aging times. They found the similar stretched
exponential behaviour with < =~ 0.226, 0.180, 0.142 for annealing times 0.72, 11.5,
and 191 Ksec respectively. These observations indicate, although the exponent <
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is time dependent and varies as annealing or physical aging proceeds, relaxation
function in eq. (1.3) is still a good description.

For stress relaxation in ordinary (silica) glasses, the stretched exponential
behaviour, say, stress relaxation etc. has been observed and established long back.
Recently, in comparison with spin glass relaxation (see Section 2.2), the analysis
of Campbell et al (1988) for the relaxation data of glasses suggests « — 1/3 as
the temperature approaches the glass transition point. Lyons et al (1986) directly
observed fluctuating dipolar crystals KTa,.0.NDg.00005 (dipolar glass) KTag.es
using inelastic light scattering techniques for temperatures between 1.8 and 2.6 K
and for electric fields up to 2 KV,cm. By combining results of inelastic light scatter-
ing with earlier dielectric-relaxation data, they obtained a quantitative measure of
the dipolar dynamics spanning more than nine decades in frequency. They found
clear evidence for a cooperative dynamic regime, suggesting a transition at a finite
transition temperature to a glassy dipolar state. Their dielectric relaxation data
obey a Vogel-Fuicher relaxation model over the temperature range 6-15 K with an
extrapolated transition at 3.0 K to a glassy dipolar state

v r=wexp [—Ea/(T—T,)]
ris the average relaxation time, E, activation energy, » an attempt frequency, T,
the temperature where all relaxation times diverge.

Alder et al (1970) studied the hard sphere model system in its stable fluid

range and showed that the diffusivity

D=A(V/V,—1)
Woodcock and Angel (1981) extended the study using essentially the same
algorithm po®=0.95 to 1.08 in the metastable range. In this region the diffusion
coefficient behaves as in the laboratory fluids following the equation

D=A"exp [-B/(V—-V,)]
The diffusing, internally equilibrated, metastable fiuid can be arrested at different
densities by sudden quenching to obtain the glassy state. It is found that this
limit of amorphous-phase also gives the above equation.

2.5, Relaxation in sand-pile :

Very recently, there has been considerable upsurge of interest in the (statistical)
dynamics of granular systems like sand-piles. Many previous observations on sand-
pile instabilities by chemical engineers (Bagnold 1966) are being recently repeated
with a view to observe and establish the self-organised critical phenomena (Tang
and Bak 1988) in such systems.

Consider a pile of dry sand. If left to itself it can sustain, under the influence
of gravity, a finite ‘angle of repose’ 6, when additional sand grains are added.
This angle is the angle between the horizontal and the free surface of the sand-pile.
With addition of sand grains, this angle is restored after successive slides
(avalanches) and the pile is again brought to a metastable (self organised) state of
equilibrium slope. Obviously for 6 { 6, there will be no such fiow (avalanche).
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Bak et al (1987) introduced the idea of self-organised criticality. Their idea rests
on the assumption that 6, is the critical angle. If 6 is made greater than 6,
continuously, by adding more material to the top or tilting the base of the pile, the
pile will organise itself such that its average slope will be 6, (Figure 8(a)) by
unloading excess material through avalanches. Thus, suggested an analogy
between the dynamic behaviour of sand-pile and traditional critical phenomena
(power-law behaviour for 6 > 6y). In a celiglar automata model introduced by
Tang and Bak, the angle variable at any site can be bounded such that when, with
addition of grains, ‘height’ h; at any site i increaes beyond h,, then the additional
materials flows to and are uniformly shared by th® nearest neighbours i + & of i and
h¢ss increases to accommodate this flow. Further avalanche occurs if any of h,s
also exceeds h,. Power law behaviour for the gipwth of avalanche mass, similar
to critical phenomena, are observed in such automata models. The time trace of a
typical sequence of avalanches gives the relaxation behaviour in the sand-piles.
Thus a power law dependence for the relaxation from supercritical state 6 ) 6y,
back to the critical state 8=6,, is also expected in such models.

instability is introduced in a cohesionless granular material when submitted to
vertical vibrations (say by a loud-speaker) beyond a certain threshold ; the
horizontal free surface becomes unstable and exhibits a slope at an angle ;( { 6,)
with the horizontal. It simultaneously appears as a permanent flow of avalanches
on the free surface, and there is a convective transport of particles in the bulk from
the bottom to the top. Such a dynamic (liquid-like convective) equilibrium then
maintains the (solid-like) finite slope ¢, of the free surface with the horizontal, If
the amplitude and frequency of vibration of the platform is increased, 6, decreases
and the loss of extra mass through successive avalanches follow a typical relaxation
behaviour.

An experimental set-up to study such sand-pile behaviour is the following
(Evesque and Rajchenbach 1989). A parallelepipedic cell is partially filled-up
with very small glass spheres and the free surface is made horizontal. The box is
fixed on a loudspeaker so that the bead heap can be vertically shaken, in the range
of frequencies 10-1000 Hz. The exact displacement of the cell is precisely
evaluated by photoelectric measurements. At low amplitudes of vibrations, the
beads remain motionless in the box reference frame. Beyond a given threshold of
amplitude, which appears to depend on frequency, a relative motion of beads is
allowed which leads to internal convection transport together with a new stationary
profile (Figure 8(a)).

Jaeger et al (1989) have studied the nature of the particle flow by investigating
the dependence of the average slope on vibration intensity. Switching on the
vibrations is a way to prepare the system in a supercritical state, and one can then
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observe the relaxation to ths steady-state corresponding to the vibrations. Ina
supercritical state, the slope of a sand-pile decays as log (t) where vibrations waere
introduced (Figure 8(b)).
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Figure 8. (a) Beyond a certain threshold of amplitude of vibrations, the free
surface of a bead packing becomes inclined at ¢ to the horizontal. Simul-
taneously, there is a convective transport of matter from the bottom to the top
and a permanent current ], rolling down the surface (Ref. Evesque and Raj-

chenbach 1989). (b) The relaxation of ¢ in a stationary drum with glass
beads. Vibration intensities increase from top to bottom. Straight lines indicate

log (t) behaviour. de, is the steady state angle (Ref. Jaeger et al 1989).

2.6. Relaxation in neural network models :

Models of neural networks which exhibit features of associative memory have been
the subject of intense theoretical activity, starting with the Hopfield model of neural
network (see e.g. Amit 1989). In such a spin (glass) neural network model, each
neuron is modelled as a two state (Ising spin) unit representing the ‘active’ or
‘passive’ states of the neuron. Each recognisable pattern can be represented by a
set of values of each neuron or Ising spin (a network of N neurons or spins can
have 2¥ possible states), and each learned pattern of the network is represented in
such models of neural network as a local attractor state or metastable (degenerate)
ground state. Following Hopfield’s work, attentions were focussed on networks
that possess a global energy function. Assuming for simplicity a system of N two

state neurons, their energy function is given by
N

H=—12 2 Ji15:84
§,3=1
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here S;(=<=1) denotes the state of the i-th neuron, and J,; =], is the coupling
constant (synaptic efficacy) of the pair (i, j).

Information coded in the system as a set of patterns (or ‘memories’) which are
N-dimensional binary vectors. Storage of information is achieved by constructing
the J; ;s so that the stored patterns become the local (metastable) ground state.
Hopfield's model imply the Hebb’s rule. A set of p learned patterns are denoted by
;5‘:} =1, 2---N, u=1, 2---p where each E': takes the value +1or —1. Hopfield's
version of the Hebb’s rule then gives symmetric synaptic strengths :

Jeg=1N D80, 1]
[FY
After constructing the model (constructing 'the Jy;), following the above
procedure, for some random P=«N learned pattems, one can study the recall process.
Any arbitrary pattern, given by a set of N values of S,’s, then develop according to
the (zero temperature Monte Carlo) dynamics :

s‘(z+1)=sgn(’.§3‘f.-,-s,-(t))

Any ‘corrupted’ pattern will evolve following the above dynamics. If the initial
overlap, m*(0)=(1/N)X £;S(t), is within the domain of attraction of the learned
i
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Figure 9. Plot of average convergence time as a function of « for m(0) = 0.80
(circles) and m(0)=0.95 (squares) at N=16,000 and m(0)=0.95 (diamonds) at
N=1,000. The inset shows the best fit (Ref. Ghosh et a/ 1990b).

pattern i, then eithar the network recognises the stored pattern perfectly as the
dynarnics brings the corrupted pattern back to the learned pattern (for fine number of
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patterns : «=0) ; or it recognises the pattern somewhat imperfectly as the dynamics
brings it to a state with significant overlap with the stored pattern (for 0{«{0.14)
(Amit 1989). Ghosh et al (1990b) studied the retrieval time (number of itera-
tions required to reach from a ‘corrupted’ patterns with fixed distortion to the
corresponding learned pattern) near the phase transition point driven by the storage
capacity (the critical storage capacity «, is taken as 0.142). From their simulations
on fully connected networks of N upto 16,000 neurons they obtained that the
average relaxation time behaves like v ~ exp {—A(N)(x,—«)"?, with n of the order

of unity.

3. Theoretical models
3.1. Models for explaining stretched exponential relaxation behaviour :

There has been many attempts to explain the slow relaxation behaviour in disordered
solids or glasses. As discussed in Section 2, the stretched exponential behaviour
(eq. (1.3)) is very common in thermodynamic and statistical systems, and can be
explained in many ways, while the divergence of the relaxation time following a
Vogel-Fulcher like behaviour (eq. (1.4)), is rather rarely observed and also quite
difficult to explain. In fact the stretchad exponential relaxation behaviour, has
been explained using various models for the dynamics of microscopic variables ;

(a) Distribution of relaxation times :

It has been suggested (see e.g. Majumdar 1971) that this non Debye relaxation
can be implemented as an effect of a distribution of relaxation times.

In glass the stress field at any point can be decomposed into elementary stress
relaxation modes q. Each mode decays exponentially with a relaxation time 7(q).
The stretched exponential form (exp—(t/r)*) may be considered as the result of
many exponential decays :

exp—(t/7)* =S exp [—(t/7)If(r)dr, with Q) ~exp (—r~®) (3‘1)

The saddle point equation then gives «=x/(x+1). Majumdar justified the above
distribution, by considering diffusion of relaxation mode of Wwavelength A= 1/q ;
7~ Dq® ~Dx=* ; where D is the diffusion constant. For short time t <1, f(r) for a
mode A may be taken as (comparing with the decay of correlation functions near
the critical point) exp (—2A) ~exp (~7-/3) which leads to a value 1/3 for <. At
longer times, when regions already relaxed adjust mismatches by slipping along
surfaces, f(r) ~exp (—A*) which keeps «=1/2. Considering volume relaxation
le. f(r)=exp (—A*") one gets «=3/5, as t— = this become more and more relaxed
and only the longer mode contributes f(r)=8(q— 1/Ans) Which gives the normal
relaxation (expression (1.1)).

(b) Hierarchical models :

A number of recent thsoretical papers considered a model involving hierarchically
organised set of free energy barriers (Figure 10) to explain the anomalous dynamics,
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Consider the thermalisation of a building partitioned by thick walls, the large rooms
in term contain room partitioned by thinner ones. If an initial temperature gradiant
is established in the building, the approach to equilibrium through partitions with
different thermal conductivities will lead to diffusion coefficients whose actual
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Figure 10. (a) Hierarchical barrier structure. The height of a barrier is inversely
proportional to the transition rate. The largest rate (smallest barrier) is equal
to 1. The other rates are given by R* (0 < R< /) | integer (where | denotes
the leve! of the hierarchy, as illustrated. (b) A sketch of the hierarchical
structure with branching index 2 (Ref. Tietel et o/ 1987).

value depend on time. The process is reminiscent of the non-ergodic behaviour
established by system with a hierarchy of energy barriers, as in spin glass system
investigated by Palmer et al (1984). They considered hierarchically constrained
glassy dynamics. They gave tha idea that there is a distribution of relaxation
times but it is not parallel relaxation as in (a) but series relaxation in which slow
degrees of freedom can relax only after the faster processes have taken place.

Huberman and Kerszberg (1985) considered diffusion on a linear chain, with a
hierarchically assigned set of barriers (heights) between neighbouring sites. Low
temperature diffusion patterns were studied by Blumen et al (1986) and extension
to higher dimensions were done by Kumar and Shenoy (1986).
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(c) Droplet model :
As discussed in Section 3.1, even pure magnetic systems show stretched exponen-,
tial behaviour. Takano et al (1988) studied below T, the autocorrelation function
in the Kinetic Ising model. Huse and Fisher (1987) argued that in the para phase a
droplet of size r will relax as exp (—ré~1/KT), the barrier height being determined
by the surface area ~rd-1. However, as r grows with time in a random walk
fashion, r ~t*'2, This gives,

{5:(0)S4(t)>,~exp [—Dtd-12] (3.3)
As mentioned in Section 2.1, Ogielski’'s study of the correlation functions, using
computer simulation indicate such behaviour only in the pre-assymptotic region.

(d) Anomalous diffusive origin of the stretched exponential form :

The diffusion equation followed by the strain field (linear to the stress field) in
linear solid (metal and glass) is (Ghosh et al 1989)

de/dt=Dp2e (3.4)
The strain modes can be decomposed into elementary modes

ca®)=\) ¢r(t) exp (igr)dr

In Euclidean lattice eq. (3.4) can be solved to get
€q(t) ~ eg( o) —A exp (—Dgq*t),

where q Jt is the average Brownian spread of the diffusing mode q in time t and A
is constant. The solution can be generally written as

€q(t) ~ €g( =) —A exp [—B(t)q?],
where

B~ %6/04" lamp=\, €/(0Fdr = G(r2(1)) ; G D

{r%(t)) being the average end to end distance squarred of a random walker in
time t. Then the general solution of diffusion equation may be written as

€q(t) ~ eg( o) —A exp [— Gq® {r3(t))] (3.5)

where, in general, {r®(t)>~t*8,, in percolating fractals. d,, the walk dimension
has the value 3and 5 in two and three dimensions, respectively. But whel;
{r(t)) > £ the diffusion does not see the fractal and in that case ¢ r3(t) d~ ¢
(dy=2 for a regular lattice). Since ¢~ (p—pc)-Y. So for {r()) >¢, e

t4/%u) (p—po) ¥ Or at t) (p—p,) "%, We see the general solution takes the form
of normal relaxation (with single relaxation time) '

€q(t) ~ g o) — A exp [— Gq®t] (3.6a)
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but for {r(t)> (£ or for t {(p—p,)~*%w the general solution takes the non-Debye form

€q(t)~eq( o) —A oxp [ — Gq2t3/8y] (3.5b)
comparing with eq. (1.3) of text «=2/d,, and r ~ G-1/* ~ D-1, Putting the value
of d, one gets «=0.67 and 0.4 in tnvo dimensions, respectively, and the value of
crossover time t,={%,=(p—p,)~"%», d,=2 (for normal relaxation). A similar
solution for the dilute magnetic relaxation is expected. It may be noted that the
expression (3.5) is not the rigorous solution in a fractal, since the exact form of the
diffusion eq. (3.4) there is more complicated.

In an alternative formulation by Dhar {1987) a somewhat similar crossover
from the evolution of a master equation in one dimension was suggested. He
argued that exp (—t*) relaxation (0 {« { 1) encountered in many disordered material
may be understood in terms of the spectral density of the Lifshitz states near the
band edges. L

(e) Relaxation in sand heap :

de Gennes (Evesque and Rajchenbach 1989) had proposed a possible scenario to
account for the instability of sand heap based on a series of alternative passive and
active regimes.

(i) Passive regime—When the cell is raised up, the beads are compacted so
that no possible intergranular motion is allowed. The bead heap can be considered
as a solid.

(ii) Active regime—When the cell is carried down with an acceleration y of
the cell larger than the acceleration g of gravity, the system of beads is fluidised

(for y2 8).

During active regime beads are submitted to an apparent gravity y-g reversed
upward. The surface tension being zero, surface of the fluidised beads becomes
unstable and exhibits a viscous finguring. The excess of matter which has been
raised up on bumps during the active lapse of time will flow as avalanches
downwards during the passive regime. The model predicts the existence of a
permanent surface flow of particles as is observed experimentally.

According to such picture, the plausible relevant parameters are the amplitude a
and the frequency w of the alternative displacement of the cell, the relative size of
particles and the dimensions of the container. In the scheme of gravitational
instability of the free surface the important parameter is the acceleration y =aw?
of the cell compared to g. The model of self-organised criticality predicts a power
law dependence on t while their data cannot be fitted by a power law with
reasonable parameters over any wide interval of time. Instead the data for high
vibration intensity are consistent with a log t dependence over many decades
(see Section 2.5).

To explain such dependence, a different scenario was proposed (Jaeger et al
1989) where the vibration intensity (a?®*) plays the role of an effective temperature.
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The motion of particles is impeded by the barriers posed by neighbouring beads
and the corresponding random potential will be a complicated function of the local
configurations. However, we are interested in the average effective barrier height
U as the angle ¢ is varied. Assuming an effective temperature T given by T=a%w?
due to mechanical vibrations the rate of escape over barriers exponentially dependent
on the ratio exp (—U;T). This leads to

de/dt=—Ag exp [(0—6,)/a%w?] (3.6)
The equation can be solved analytically, and they get a logarithmic dependence
on amplitude and frequency as observed experimentally (Jaeger et al 1989). Note,
the change in the relavant variables (from y=aw? in de Gennes explaination (a) to
T=a%»* here).

3.2. Models for explaining Vogel-Fulcher behaviour :

(a) Model with random distribution of energy and coordination numbers :

Vilgis (1990), noted that two stochastic quantities in random systems, viz. the
energy and the coordination number are responsible for the appearance of the law,
which shows an unusual essential singularity. He considered both the energy and
coordination number to be random variables having a Gaussian distribution.

The characteristic time scale for the simple hopping of arbitrarily chosen test
particle of an energy valley with depth E is given by Arhenius law,

7(E) ~ exp (E/T)
E depends on the coordination number z. Thus, assuming a linear relationship
E(z)=2zE,

7(E) ~ exp (zE/T)
Considering a Gaussian distribution for both z and E, i.e.

P(E)=(1/E3)*'® exp (—E?/2E})
and

P(z)=(1/(42)*)*'* exp —[(z—-2,)?/2(42)%]
The characteristic time scale, which is relevant for macroscopic purpose is the
average

+(T)={ (z, E) >=& dP(z) S dP(E) exp (zE/T)
o<zg<8 - <B<®
which on simplification gives the Vogel-Fulcher law :
7(T)~exp [2,/2(42)*)/(1-To/T)]
where
To=4zE,
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(b) Random barrier heights and thermally activated hopping :

Ghosh and Chakrabarti (1990) argued that in glass, where the free energy has many
metastable (local) minima, thae relaxation time 7 ~ (hopping diffusion constant)-2,
comes from thermally activated hopping over ‘typical’ barrier heights h, [*~exp
(—ho/T)]. In cases where there is a thermodynamic rearrangement of the barrier
heights due to cooperative structural rearrangements, the typical barrier height may
diverge as ho~§' ~(T—T,)"Y' near the structurﬂ-rearrangement transition point T,.
This would give a Vogel-Fulcher-like relaxation behaviour (Edwards and Mehta
1989) (r~exp [A/(T—T,)"']). Observation of such behaviour (in standard glass,
for example) would then indicate the existence a;nd divergence of another correlation
length (with exponent v°) near the barrier-height tearrangement transition point.

4. Outlook

In Section 2 we have described some of the experiments which studied the relaxa-
tion phenomena in different many body systems near the critical point (thermal or
statistical). We find that the stretched exponential behaviour (eq. (1.3)) for the
relaxation of some average macroscopic variables of the many body system is quite
common and nothing unique of glass. Among the cases discussed above, except
for the cases of sand-pile and the neural-network (Sections 2.6 and 2.6) all show
stretched exponential behaviour. The relaxation time behaviour represented by
Vogel-Fulcher law seems to be a characteristic of (non-metallic) glass only. We
observe critical slowing down of the relaxation time as critical point is approached.
However, the exponent is found to be quite large in some cases (as in spin-glass
systems).

Two established different kinds of relaxation behaviours are thus observed
commonly in many body systems :

(a) Kohlrausch stretched exponential relaxation with critical slowing down :

n6(T) ~ exp —(t/7)* ; « {1and 7(T) ~ ¢* ~ (T—To)"**, « {1 and vz depending
on dimension and symmetry of order parameter. For Ising systems « ~ 0.33, 0.4.
0.5 for d=2, 3 and 4 respectively (Takano et al 1988, Ogielski 1987), with vz=2.0,
14 and 1.0 (exact) (Brower et al 1988). For percolating systems (Ghosh et al
1990a,) « ~ 0.6 and vz=4.0 for d=2. Above the lower critical dimensions,
«=1/3 and vz 7.9 and 8.54 for Ising spin glass and XY spin glass respectively
in d=3 (Ogielski 1985 and McMillan 1983).

(b) Kohlrausch stretched exponential relaxation Vogel-Fulcher behaviour for relaxation
time :

n(T) ~ exp —(t/7)*, « { 1 and #(T) ~ exp (1/(T—T,)). This type of behaviour
seems now to be ruled out for spin glass dynamics, although, for some dipolar
glass this Vogel-Fulcher like behaviour for = is traditionally being discussed (Lyons
et al 1986).
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In Section 3, some of the models have been reviewed to understand the
mechanisms, responsible for this anomalous behaviour of relaxation. As discussed
there, we believe, stretched-exponential behaviour essentially indicates a classical
localization or anomalous diffusion originating due to the appearance of fractals
(dynamic or otharwise) at length (tims2) scales lo'ver than the (percolation) correla-
tion lengths. For these time scales, the diffusion being anomalous, stretched-
exponential behaviour occurs, which crossovers to normal behaviour for large time
scales where the diffusion spread exceeds the correlation length size (see Section
3.1). We also believe thermally activated hopping over barrier heights, diverging
near some cooperative structural rearrangement point (see Section 3.2.b), seems to
be a plausible explanation of Vogel-Fulcher law.
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