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1. Introduction

Following the work of Weaver et al\1\ regarding the relativistic wave equation for particles 
of arbitrary spin, Mathews [2] obtained two Hamiltonians of the form,

s s
//, = E lan/i 2jj.9 + /3 8  ̂ scc/i 2ji9

/i-  2 =

s s
//2 = 'Z E  C„ colh 2 n 0 +  ( i  I ,  E C .  coscch 2^  9

/ i-o   ̂ - 0

(1.1)

( 1.2)

lan/i 6  = pi E.

Of ihc above iwo, former is quanlizablc for half-inieger spiris and ihc laiier is 
quantizable for inter spins. The integer Spin Hamiltonian is rather peculiar [3).

The matrix Cq occurring in II2 is a null matrix.

This can be seen from the relation,
C^ A—fi

where is a certain projection operator possessing the property, 

A^A„ = A^S^iv.

By virtue of the above relation, we get

(1.3)

(1.4)

(1.5) 
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C^C„ = = B^Snv, (1.5a)

Cf, = {A ^ -A  ^ (/\„  + y\ „) = Suv, (1.5b)

= (/\^+/l_^)(/l„ + /!-„) = B ^S^v. (1.5c)

For /7 = 0, wc have from cqs. (1.3-1.5)

C. = 0
The occurrence of Co in iJie RHS of eq. (1.2), makes ihe firsl term in the expansion i.c. 
E Co CoihO indeterminate since C„ = 0 and ColhO —>

In this paper* an attempt has been made to modify the Hamiltonian H2 and other 
relevant operators in such a way tliat they do not contain the matrix Cq and consequently the 
above mentioned indeterminate term. This elimination of Co gives us a new representation 
which we call the modified Mathews representation (MMR). The MMR has one distinct 
advantage. I ’hc extreme relativistic representation which one obtains from MMR is free 
from the null matrix Ĉ ,. Earlier work regarding the extreme relativistic representation [4) 
contained the matrix Co and its presence was considered to be an unhappy feature of the 
work.

The broad outline of the paper is as follows ;

The operator (5) linking the Hamiltonian H2 and the Hamiltonian = j9C is available [5|. 
(Here C stands for Canonical representation). Taking this operator S and eliminating the 
matrix C„ from this operator, a new operator R is constructed. By using the operator R, a 
Hamiltonian //^ is obtained from H, by a similarity transformation. The Hamiltonian H2 

thus obtained, remains free from the matrix Co- Relevant expressions for the position, spin 
and boo.st operators are obtained. Finally, the extreme relativistic limit of the Hamiltonian 
II2 is obtained,

2 . O perator S linking Hi and

The Operator S linking the Hamiltonian /A and //, is of the form
.V

= Z  [ U + P)B^ + a , U + /J) C ^]M- 0

S

' = X j  (I + + <73 \  (/ + p) C ^ ]. where

m ^„(E + p) ^ j^(£ + ±

Pf^\, = (£ + p f  [ (£  + p f ^  ±

(y,p+p<7i = If- = i f  = 1 .

(2.1)

(2.2)

(2.3)

(2.4) 

(2.4a)

Eliminating ihc matrix C„ from the above expression, let us define operators R and R ' 
such that
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s
/? = X j  0  + j9) B/i + (/ + /J) C p] + kiB , (2.5)

(2.6)

The consistance of eq. (2.5) with cq, (2.6) demands that kik2 = 1. Of the many possibilities, 
we choose the simplest one, that is, k\= k2 = 1. Accordingly we get,

B = Z  [ 0  + /? )« , + (Tt \  (/ + P) C J  + B„

s
R ' = Z  I u  + P) B„ + CT, /)' \  {f + P) C J  + fl„.

^ ~ I*"

Lcl us define a wavc-Iunclion y/such thai

\f/ = r y ,

where the wave function satisfies the Schrodmger ccjuation

(2.7)

(2.8)

(2.9)

(2. 10)

If Gc represents a poincarc group generator relevant for the representation provided by vt. 
the corresponding generator G' lor the wave I unction y/' is given by the similarity 
transformation,

G' = RGcR '■ (2.11)

Replacing G, by = PR, we obtain the Hamiltonian //'t by the relation

U \  = RpER '\ (2.12)

By virtue of eq. (2.7) and (2.8) wc gel

V
n \  =  X  E C ^  c o t / i  2 / J 6 +  P  I  ECf,  c o s c c / i  2^^^ + a^E  B „ . (2 .1 3 )

= 1 >1 = 1

As desired. The Hamiltonian ll'^ docs not contain the null matrix It may be noted here 
that in eq. (2.13) the summation runs Irom jj. = 1 and not from /i = 0 as in eq. (1.2)

3 . Lorentz invariant scalar product and observable in IMMR 

In the representation, the Lorentz inviiriant scalar product is of the form

iVc-Vc) = (31)

Transforming the above equation to Y  representation wc have
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where
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(V̂ . vO = y/' d \

M' = (/?■')* '

= il/2m ,)[pjr2 + H'2p] + a,B ,.

The expectation value of an operator O in the state is defined as 

< 0 >  =  jy/'* M'O y / ' d \

for O to be real, we should have 

M'O =

(3.2)

(3.3)

(3.4)

The conventional position operator x and the spin operator S do not satisfy thfc above 
requirement. However, by exploiting the eq. (2.11), suitable well behaving expressions for 
position and spin observables can be obtained. Replacing Gc by x  and S in the eq. (2.11) 
we get

x = R x B ' .  (3.5)

S' = R S R \  (3.6)

Since x and S arc observables in ihc y/̂  representation x' and S' are observables in 
the \j/' represention. By replacing R and R ' by their equivalent expressions, the right hand 
sides of the eq. (3.5) and (3.6) can be evaluated. For spin 1, they are of the Torm,

X’ = x+lrrio + 2 E -  (2m„£)'^)/(8m,^)‘'  ̂{I + p) B.c^ 'dp 

+ + p)<y-i tip -  B„ CTj T/p

- i ( I - p ) C , m p  + i {a-dp^) (m„£/8)''^ +

Here,

+  < j j{ /  +  p ) C i  O i  -  i p  B d p ^  +  i p B x  p { m ^  + E ^ )  / I p ^ E ^ .

S' = S -  Cl i Oj {S X p )  / p  -  B„S + (mJ&E)''^ {I + p) B ^S  

+ i [ [ 2 p ^  m „ E ) / p ( P m o E ) ' ' ^ ]  (/ -  /J) fl, (S x p )  I p  

-  i Q - p )  (S X p )  I p

+ ( £ / 2 m {I+ P) Cl i cT3 (5 x p) I p .

T = {Xxp)  Ip and A = (73 5.

(3.7)

(3.8)

4 . Boost operator

A representation is said to be completely defined only when we have determined expressions 
for all the operators of Poincare group in the representation. The Poincare group operators 
are : Hamiltonian (//), momentum (p), the angular momentum (/) and the boost operator 

(*).



For the modified Mathews rcprcsenuition, the Hamiltonion is given in the equation 
(2.13). The angular momentum J is given t \ s J ^ ( a x p )  + S,

where S in the Spin operator.

To complete the description of the representation, the expression for the operator k 
is to be determined. The boost operator k links the wave functions 0' and \ /  in two different 
inertial frames. If 0' is the wave function at a space-time point in one frame, the wave 
function i// in another Lorentz frame is given as

y/ = (f-^ichv.k^)(l>\ (4.1)

Here, dv is the infinitesimal relative velocity between the two frames. An expression for 
the Boost operator can be obtained from the similarity transformation

k' = R k ,R  \
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(4.2)

where

= i p - ^ ( x U ,  + II, x) + [i (S X p)/(E + m„)

IS the boost operator in the \j/c rcprcscnuition. For the Spin 1 case, K' is of the form, 

k' " tp ~ ~  (x' H ’2 ^ P)!^ + '”□)■

5 . Extreme relativistic representation

A representation suitable for describing Dirac particles with extreme relativistic energies 
was first studied by Mendlowitz f6| and later by Cini and louschek f7J. The Cini-Touschek

representation given for Spin - ^ was generalised by one of us [4] for arbitrary Spii). For 

any Spin-S; the extreme relativistic Hamiltonian is of the form

-  Yj E C
^ ^OoT \ 12

(5.1)

For integer spin case, the Hamiltonian ///. contains the null matrix and thus exhibits a 

drawback.
In this section, we obtain an cxU’cmc relativistic Hamiltonian II e l̂ y projecting the 

MMR to the extreme relativistic limit. For the integer Spin case, this Hamiltonian H e 
does not contain the matrix C„ and hence is a better candidate than the one obtained earlier

by one of us.
To project the Hamiltonian //'z to the extreme relativistic limit, we recall the 

similarity transformation (2.12)

H \ = R ^ E R ' \

In the extreme relativistic limit, the ratio m j p  -» 0. Injecting this high momentum 
approximation into the operators R and R wc have
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R (m jp  -» 0) -> r  = Sft [{I + P) B^ + O'i {I + P) Cf i )  + Bo (5.3)
M - I

R ‘ {mjp  -» 0) -» 7̂ ' = P^ [(I + P) Bn + a-i (! + P) Cft ) ■¥ fl„(5.4)
ft - 1

5ft = (mj%p)'^ (2plmof \ P,t =  (p/2m„)''^ (mo/2p)". 

The extreme relativistic Hamiltonian can now be obtained as,

H’e = T p E T '  = I  £ [ CA  + a ^ B o E . (5.5)

Other operators (C/^) relevant for this extreme relativistic representation can be obtained
from the similarity transformation.

6 . C onclusion

\

The representation given by Mathews to describe particles of integer spins has been 
modified, in such a way that the Hamiltonian docs noi contain the null matrix Cq. By 
projecting the modified Hamiltonian to the extreme relativistic limit, we have obtained an 
extreme relativistic representation. Now it remains to be seen whether or not the modified 
Hamiltonian is quanti/able. Work in this direction is in progress and will be reported 
in a future publication. »
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