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1. Introduction

Following the work of Weaver er al [1] regarding the relativistic wave equation for particles
of arbitrary spin, Mathews [2] obtained two Hamuiltonians of the form,

s s
Hy = YEC,unh2u8+p Y EB,scch2ub (1.1)
1
w-3 o
s 5
Hy= Y EC,coth2ud+f ¥ EC,cosech2u8 (1.2)
‘130 }l=0
tanh 8 = piL.

Of the above two, former is quantizable for half-integer spins and the latter is
quantizable for inter spins. The intcger Spin Hamiltonian is rather peculiar [3].

The matrix C, occurring 1n //; 1s a null matrix.

This can be secn from the relation,

Cu=Au—Ay (1.3)
14
B, = A+ A, (1.4)
where A, is a certain projection opcrator posscssing the property,
A Ay = Ay Suv. (1.5)

By virtue of the above relation, we gel
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CuCy = (AL AL)(A,-AL) = B, duvy, (1.52)
CuBy = (Ay-A YA+ A ) = Cyéuv, (1.5b)
ByB, = (Au+ A PA,+ A = B, ouv. (1.5¢c)

For ¢ = 0, we have from cqs. (1.3-1.5)
C‘U = 0
The occurrence of C, in the RHS of cqg. (1.2), makes the first term in the cxpansion i.c.
E C, CothO indeterminate since C, = 0 and CothO — ee.

In this paper, an attcmpt has been made to modify the Hamiltonian H, and other
relevant operators tn such a way that they do not contain the matrix C, and consequéntly the
above menuioned indeterminate term. This elimination of C, gives us a new rcprcs‘ ntation
which we call the modified Mathews representation (MMR). The MMR has one distinct
advantage. The cxtreme relativistic representation which one obtains from MMR s free
from the null matrix C,. Earlier work regarding the extreme relativistic rcprcscnlalibn 14)
contained the matrix C, and its presence was considered to be an unhappy fcature of the
waork.

The broad outline of the paper 1s as follows :

The operator (S) linking the Hamiltonian //, and the Hamilionian H, = BE is available [5].
(Here C stands for Canonical representation). Taking this operator S and climinating the
matrix C, from this opcrator, a new opcrator R is constructcd. By using the operator K, a
Hamiltonian #, is obtained from //, by a similarity transformation. The Hamiltonian #/
thus obtaincd, remains free (rom the matnix C,,. Relevant expressions for the position, spin
and boost operators are obtaincd. Finally, the extreme rclativistic limit of the Hamiltonian

1, is obtaincd.
2. Operator § linking H, and H,

The Operator § linking the Hamiltonian £/, and /1, is of the form
S

S= 2 [89 U+ PBu+ oy 80ut+pC,] @1
i=0
B
s'= 20[ B, 1+ B) B, + 0, B )# (I + B) C”],whcre 2.2
I‘ =
8 = 8D m o (B4 p) * [(E + p)™ £ m™,] @3)
B = &2m)"m (E+ p* [(E + p)* £ m™, ] (2.4)
0B+ Poy = I, &= F =1. (2.42)

Eliminating the matrix C,, from the above cxpression, let us define operators R and R
such that
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S
R = “2,,1[ 5(”” I+ ﬁ) Bl‘ + O, 5(_)” 0+ ﬁ) Cp] + kB, (2.5
)
R = ‘;1[ B U+ BYB,+ 0y B, U+ P Cu] + kaBo. (2.6)

The consistance of eq. (2.5) with cq. (2.6) dcmands that k,k, = 1. Of the many possibilities,
we choose the simplest one, that is, k) = k, = 1. Accordingly we get,

A
R = u}:l[ 8, U+ BB+ 0,8, (+ ) Cu]+ Ba 2.7
N
R = uzl[ B U+ BB+ 0y B U+ B c,,] +B,. (2.8)

Let us define a wave-[unction y such that

Y =Ry (2.9)
where the wave funcuion satisfics the Schrodinger equation
Y.
i e pey. 2.10)

If G, represents a poincarc group generator relevant for the representation provided by ye,
the corresponding gencrator G lor the wave funcuon y' is given by the similarity
transformation,

G’ = RG.R". (2.11)
Replacing G, by H, = BE, we obtam the Hamuilionian /1, by the relation
I, = RBER™. (2.12)
By virtuc of cq. (2.7) and (2.8) we get
¥ A
1, = Y EC,coth2u6+ , EC,, coscch 210 + O,E B, (2.13)
uo=1 u=1

As desired, The Hamiltonian //°, docs not contair the null matrix C,. It may be noted herc
that 1n eq. (2.13) the summation runs from g = 1 and not from g = 0 as in eq. (1.2)

3. Lorentz invariant scalar product and observable in MMR

In the y, representation, the Lorentz invariant scalar product 1s of the form

(Ve Vo) = I V.o v dx. G.1)

Transforming the above cquation Lo Y’ represcntation we have
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. v) =_fv*M'w'd’x

where

M = R oR

= (12mo) IBH', + H Bl + 04 B,,. (3.2)
The expectation valuc of an opcrator O in the state is defined as

<0> = Iw" M Oy dx (3.3)

for O to be real, we should have
MO = O'M”, . (3.4)

The conventional position operator x and the spin opcrator S do not satisfy th¢ above
requirement. However, by exploiting the eq. (2.11), suitable well behaving expressions for
position and spin observables can bc obtained. Replacing G, by x and S in the eq.'(2.11)

we get
x=RyR" (3.5)
S'=RSR" (3.6)

Since x and § are observables in the y, rcprescntation x' and §' are observables in
the y’ represention. By replacing R and R ! by their cquivalent cxpressions, the night hand
sidcs of the eq. (3.5) and (3.6) can be evaluated. For spin 1, they are of the form,

X = x+ (mg+2E - 2m.E)'?)/8m.E)'"* (I + B) B,os Tp
+ (m/8E)'” (1 + B) 03 Tlp - B, 03 Tlp
~i(I-B)C, M2p +i(ayp?) (mE/R)'” (I + B) B, A
+ 0y (I + P) C, 03 12mE)'” - i p B,/p* + iB B, p(m,” + E?) | 2p°E~. (3.7)
S =85-Cioy(Sxp)lp-B,S+(m8E)* (I +P)B,S
+i [(2p” moE) Ip(8m.E)'*) (1 - B) B, (S x p) Ip
~ (moE8p") i (1 - B) (S xp) Ip
+(ERmY)'"* (1 +B)Ciioy (S xp)lp. } (3.8)
Here, T=(Axp)/pand A=0;S.

4. Boost operator

A representation is said to be completcly defined only when we have determined expressions
for all the operators of Poincare group in the representation. The Poincare group operators
are : Hamiltonian (/), momentum (p), the angular momentum (J) and the boost operator

().
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For the modificd Mathews representation, the Hamiltonion is given in the equation
(2.13). The angular momentum J is given as J = (@ x p) + S,

where § in the Spin operator.

To complete the description of the representation, the expression for the operator k
is to be determined. The boost opcrator k links the wave functions ¢’ and y in two different
inertial frames, If ¢” is the wave function at a spacc-time point in one frame, the wave
function y in another Lorentz frame is given as

v = (+idvk)¢. @.1)
Here, dv is the infinitcsimal relative velocity between the two frames. An expression for
the Boost operator can be obtained from the similarity transformation

k'

Rk.R". 4.2)

where

ke = tp-3 @H +1,x)+ BSXPIE+m)

1s the boost operator in the y, representation. For the Spin 1 case, K” is of the form,

K = 1p- ‘5 & 1y + 155 + 11'5(S % pY/E (E + my).

5. Extreme relativistic representation
A representation suitable for describing Dirac particles with extreme relativistic energics
was first studied by Mendlowitz [6] and later by Cini and Touschck [7). The Cini-Touschek

representation given for Spir - % was gencrahsed by onc of us [4) for arbitrary Spin. For

any Spin-S; the extreme relativistic Hamiltonian is of the form

Hy= Y EC, (5.1)
pu=0o0r1/2

For integer spin case, the Hamiltonian //; contains the null matrix C, and thus exhibits a
drawback.

In this section, we obtain an cxtreme rclativistic Hamiltonian H'g by projecting the
MMR to the extreme relativistic limit. For the integer Spin case, this Hamiltonian H'g
does not contain the matrix C, and hence is a betier candidate than the one obtained carlier

by one of us.
To project the Hamiltonian H’; to the extreme relativistic limit, we recall the
similarity transformation 2.12)

H, = RBER". (5.2)

In the extreme relativistic limit, the ratio mo/p — 0. Injecting this high momentum
. . -1 .
approximation into the operators R and R~ we have



68 G Alagar Ramanujam and K § Balasubramaniam
Rimfp >0 =T = 3 8, ([+P)Bu+03U+B)Cu) +B, (53)
He=]

§
Rmp > 0T = 3 By (U +5)Bu+ 03+ B)Cu) +Bo(5.4)

8, = (mo/8p)'® 2pimoY*; By = (pI2mo)'" (mo/2pY.

The extreme relativistic Hamiltonian can now be obtained as,
Hg=TBET' = Y E (C,) + 03B, E. (5.5)
Mo=1

Other operators (G’g) relevant for this extreme relativistic represcentation can be okilaincd

from the similanty wransformation. ‘

6. Conclusion .

The rcpresentation given by Mathews o describe particles of integer spins has been
modified, in such a way that the Hamiltonian docs not contamn the null matrix C,. By
projecting the modificd Hamiltonian (o the extreme relativistic limit, we have obtained an
extreme relativistic representation. Now it remains 1o be secn whether or not the modified
Hamiltonian (f1) is quantizablc. Work in this direction is in progress and will be reported
in a future publication. .
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