The complete vibration spectra and the calculations with this model for other metals with the inclusion of long range forces are in progress.

Chevau L. 1968 Phys. Rev. 199, 496.
Cochran W. 1965 Proceedings of the Lnternational Confrence on Lattice Dynamics ed. R.F. Wallis (Now York, Pergamon Press), pp. 83.
Joshi S. K. \& Rajgopal A. K. 1968 Solid State Physics Vol. 22, ed. F. Seitz and D. Turnbull
(New York, Academic Press), pp. 159-312.
Krebs K. 1965 Phys. Rev. 188, A143.
Reffrenomis

Langer J. S. \& Vosko S. H. 1959 J. Phys. Chem. Solide 12, 196.
Lehman G. W., Wolfram T. \& Dewames R. E. 1962 Phys. Rev. 128, 1593.
Overtone W. C. \& Gaffney J. 1955 Phys. Rev. 98, 969.
Shukla M. M. \& Closs H. 1973 J. Phys. F. Metal Phys. 3, 1.
Svensson E. C., Brockhouse B. N. \& Rowe J. M. 1967 Phys. Rev. 155, 619.

Indian J. Phys. 48, 1149-1152 (1974)

Disorder in the crystal structures of some hexahydrated perchlorates

Minakshi Ghosh and Siddhartha Ray
Department of Magnetism, Indian Assooiation for the Cultivation of Soience, Calcutta 700032 .
(Received 5 September 1974)
Crystal struotures of a number of hexahydrated perohlorates with general formula $\mathrm{M}^{\prime \prime}\left(\mathrm{ClO}_{4}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{M}^{\prime \prime}=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}$ and Hg , were studied by West (1935), who discovered that as far as the dispositions of the ClO_{4} groups and $\mathrm{H}_{2} \mathrm{O}$ molecules are concerned, these structures totally resemble that of $\mathrm{LiClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The only difference observed in case of the hexahydrate structures is in the distribution of the divalent metal ions amongst the available sites. $\mathrm{LiClO}_{4} .3 \mathrm{H}_{2} \mathrm{O}$ crystals have space group $P 6_{8} m c$, with $a=7.71 \AA, c=5.42 \AA$ and $Z=2$ (West 1934). The metal atoms with coordinates $00 \frac{1}{4}$ and $00 \frac{3}{4}$ are at the centras of water octahedra, which form columns along the direction of the six-fold axis. Two neighbouring octahedra in a column share a sheat of three water molecules between them. The chlorine atoms, situated centrally in oxygen tetrahedra, lie on the three-fold axes. A group of four unit cells of this structure is shown in (001) projection in figure 1.

When a oompound $\mathrm{M}^{\prime \prime}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ orystallises with the above structure, the number of sitea (centres of water ootahedra) availabla for $\mathrm{M}^{\prime \prime}$ atoms is double
the number of such atoms present, and there are different possible way distributing the $M^{\prime \prime}$ atoms amongst the available sitas. West (19ab) deearibod: two such arrangements:

Fig. 1. Four unit cells of lithium perchlorate trihydrate structure, shown in (001) projection ; z-coordinates of the Li and Cl atoms are marked.
(1) All the metal atoms may occupy similar sites (say, those at $z=\frac{1}{4}$ level) in all the columns. In this case the cell dimensions remain unaltered but the symmetry reduoes to $\operatorname{P3ml}$. The Cd and Hg compounds are reported to have this etructure.
(2) The matal atoms mey cocupy the sites atiz $z=\frac{1}{4}$ and $z=\frac{8}{4}$ respeotively in alternate rows, paralled to any one of the three equivalent axial direations in the plaria perpendicular to the umique axis. Such an arrangement reduces the symmetry to $P_{m n} 2_{1}$, and the orthorhombic cell, of dimensions $a=a_{n}, b=\sqrt{8} a_{n}$
 in broken eutlines in figure 1 . Here the rows along whiok the metal stoms are at similar z-levels, are parallel to the X-axin. Evideatly there are three equelly probable orientations of this eell, with the a-axis ocipoiding reapeotively with the [100], [010] and [ii0] direotions of tha hexagonal will, Crystals of the Mg, Min, Fe, Co, NFi mat Zompounda, zoperted to have this struoture, grow

 boundaries being conly in the distribution of the netiot atemen. To mintimive

Fig. 2. First level Weissonherg photograph of zinc perchlorate hexahydrate crystal, taken about the c-axis,

Fig. 3. A portion of the hal level of the reciprocal lattice (idealised) derived from the photograph in figure 2.

In the X-ray photographs of the Zn conpound, however, West (1935) abserved some peouliarities. They displayod sh rp spots corresponding to a cell of dimensions similar to that of the Li compourh, and some weak diffuse spots corresponding to a doubling of cell-dimensions in the plane normal to the unique axis. In the basal Laue photographs, the diffise spots wore found to streak out into a continuous net of hexagons, each sugrounding a sharp spot. These observations suggest a disordered nature of th structure of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Preliminary results of our investigations on thi interesting structure are presented here.

Cell dimensions, determined from oscillation and Weissenberg photographs, are $a=15.43 \pm 0.02 \AA, c=5.22 \pm 0.01 \AA$. The vell volume is thus about four times that of $\mathrm{Li}\left(\mathrm{ClO}_{4}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and in this case $Z=4$. In the c-axis oscillation photographs while only the usual sharp spots appear in the even layer lines, there are some diffuse spots (streaking along the layer lines) along with the sharp ones in the odd layer lines. From such a disposition of the diffuse spots it is evident that there is some indefinitenass in the periodicities in the plane normal to the unique axis.

The even layer Weissenberg photographs about c-axis consist of sharp spote only, with both h and k even. Spots with either h or k or both h and k odd, appearing in the odd-layer photographs only, are diffuse, and streak out to form a hexagonal network (figure 2).

An $h k 0$ Patterson projection confirmed that the arrangement of the perchlorate tetrahedra and the water ootahedra was exactly similar to that in the lithium compound. To study the nature of disorder, the $h k l$ level of the reciprocal lattice was constructed from the first layer Weissenberg photograph (figure 3). Inspeotion of this diagram revealed that the directions of extension of spots with h odd, k odd and both h and. t odd are reciprocal respectively to the [120], [$\overline{2} \overline{1} 0]$ and [ī10] direotions in direot space. These three are the directions of the b-axes of the orthorhombio cells of three different orientations postulated by West. Thus, although the Zn -compound has a hermaphrodite orthorbombic structure similar to the Mg -compound, there is some indefiniteness in periodicity along the b-axes of all the three components. A quantitative study on the probability of mistakes oocurring along these directions is in progress.

Another nember of the series, $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{\mathbf{2}} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, is reported to undergo a reveraible phase transition at low temperature (Chowdhury \& Ghosh 1974). Preliminary examination of orystals of this compound prior to a low temperature atridy yielded some interesting results. It was found that even among the crybting thom the same orop, there were two varieties, one showing diffuse spots

1152

 M. Ghosh and B. Royindioating disordar, and the other showing.no suoh irregularities. While the ordered variety probably has a structure similar to that of the Mg compound, there are indications that the nature of the disordered structure may not be similar to that of the Zn -compound. In this case no mirror symmetry is observed perpendicular to the unique axis which may therefore have at best a three-fold symmetry. It is highly probable that the structuue of this variety of $\mathrm{Fe}(\mathrm{ClO} \text {. })_{2}$ $6 \mathrm{H}_{2} \mathrm{O}$ crystals is a disordered variant of the trigonal structure of the Cd and Hg compounds. Detailed study of both these varieties as well as the low temperature phase has boen taken up.

The authors take this oppertunity to express their sincere gratitude to Dr. R. K. Sen, Head of the Central Scientific Service, for several helpful discussions, and to Professor A. Bose, Head of the Department of Magnetism, for his kind interest in these investigations.

Reprbenoms

Chowdhury B. K. \& Ghosh D. 1974 Phyoica Stat. Solidi. 23a, 649.
West C. D. 1934 Z. Kristallogr. 88A, 188.
Weat C. D. 1935 Z. Kriotallogr. 99A, 480.

