Letters to the Editor

Indian J. Phys. 48. 98t-285(1974)

A preliminary analysis on the $\phi(1020)$ meson*

P N. LPabliyay**

(Received 5 March 1973)
An aceount is prescuted of a missing mass comenter experiment performed to study the produetion and the deeay of the ϕ meson producorl in interation

$$
\pi p \rightarrow \phi \|
$$

at the beam momenta near its production the theold.
The missing mass of the ϕ meson was calculated hy measuring the incident pion momentum and the nucleon time-of-flight. A beam of pion was transported hy a quadrupoles and dipoles to a liguid hydrogen target which was 29.4 cm long and 6 cm in diameter. The meutrons were detected by a ring of six identical seintillation counters λ_{1-6} placed 6.1% meter downstream of the target. The time-of-flight and henee its four-momentum transfer, t was measured by measuring the neutron time-of-flight between a timing counter placed just upstream of the hydrogen target and the counters N_{1} a The time-of-tlight zero reference called the fast peak was ohtained by the beam pions seattered through small angle in the target. The number of charged particles and the gamma-rays in the final state was determined by an array of counters which sumpounded the target. The apparatus and method of operation have been described by Binnie el al (1971).

The number of nemtron wents produced for a fixed number of pion in a specified time-of-flight region called gate is said to be piedd. The curve obtained by plotting the vield in a gate as a function of the incident pion momentum is callexl the yield curve. Just near the production throsholl, nentrons go forward in a narrow sone. Hence, the neutrons were detected at laboratory angle noar 2.8. In order to achieve a good mass resolution and maximum collection efficiency of the apparatus which were only obtainable at the incident beam momentum just near the production threshold, a gate of 14 to 17 nsee. after the fast-peak corresponding to $0.18 \leqslant|t| \leqslant 0.22$ ((ieV $/ / \mathrm{e})^{2}$ was considered.

The yiold curve (without any dreay mode selection) has incidated an onhancement near mass $1020 \mathrm{MeV} / \mathrm{c}^{2}$ which is identified as the ϕ meson (figure 1).

[^0]The estimated mass of the ϕ meson is in good agreoment with previous experiments (Bertanza et al 1962, Bellini et al 1969, Hyams et al 1970). An enhancement in the $\phi \rightarrow \pi^{1} \pi \pi^{\circ}$ decay mode n as also observed in the yield curve of the some gate (figure 2). No onhancement for the $\pi^{\prime} \pi^{-}$(events in this mass region was observed.

Fig. 1. The yield curve of the neatron events in the gate 14 to 14 nsec. after the fast-peak.

Fig. 2. The yield curve of the π ' $\pi \gamma \gamma$ events in the gate 14 to 17 nsec. after the fast-peak.

The ϕ meson is well established. Its quantum numbers were determined idependently (Connolly at al 1963, Schlein et al 1963). The prominent decay modes of the ϕ mosom were found to be $K_{1}{ }_{1} K_{2}$ " and $K \cdot K$ but not $K_{1}{ }^{\prime \prime} K_{6},{ }^{\prime}$. The $\phi \rightarrow \boldsymbol{K}_{\mathbf{1}}{ }^{0} K_{\mathbf{2}}{ }^{0}$ deeay mode allows odd spin (J), negative parity (P) and nogative ('-parity and its (i-parity is odd. Absence of an onhancement in $\pi^{\prime} \pi$ decay mode in ϕ region agreos with its $(i$-parity assignment.

Refermenes

Bortanza L. et al 1962 Phys. Rev. Lett. 9, 180.
Binnie D. M. et al 1971 Phys. Lett. 36B, 257.
Bollini D. et al 1969 Nu. Cem. 60, 541.
Connolly P. L. et al 1963, Phys. Rev. Lett. 10, 371.
Hyams B. D. et al 1970, Nucl. Phys. 22, 189.
Schlein P. et al 1963, Phys. Rev. Lett. 10. 368,

[^0]: * Work done at the Rutherford Laboratory, Chilton. Dideot, Berkshirc. IT.K.
 ** Prosent addreas : Gaya College, Gaya, Bihar.

