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PU© dispersion relation for tlx© waves,' ’̂hich. propagate through, a non- 
uniform plasma has been dodiieed. main purpose of this is to find 
the effect of density gradient on tJio wave j>ropagaiiou. It is found 
that density gradient may give lise to instal)ility of longitudinal 
and transverse waves, provided the stream (or thermal) velocity is 
present. The dependencje of instability facdor on the density gradient 
has been discussed in some details. "The instabilities of the waves 
(longitudinal and transv('rs(0 du(5 to density gradient have been found 
to be significant in the rarified medium having large density gradient. 
Some hints of the possible applications to th(5 j)resont analysis have 
also been discusso(l.

Indian J. Phya. 48, 987-1001 (1974)

1. Introduction

The small density gradient in a plasma medium may play an important role in 
the phenomenon like coupling betv^ ôn longitudinal plasma waves and transvê rse 
electromagnetic waves (Chakraborty 1970, 1971, 1973). Application of the 
theory o f coupling in the absence or presence of streams to explain the solar 
bicrsts have been made by many authors (Field 1956, Ginzburg & Zheleznya- 
kov 1964, Yip 1970). The problem of stream instabilities has been discussed 
by some authors (Clommow & DouglvTiy 1969). In an earlier paper (Paul 
& Bandyopadltaya 1972) we studied tlie wave propagation in a plasma medium 
having density gradient without consisting of streams. We calculated there 
the amount of density variation due to electromagnet ic wave propagation. Here 
we propose to study the wave propagation in a plasma having small density 
gradient in the presence of electron and ion streams. The medium, however, 
has been assumed not to have any temperature gradient. This, however, has 
been considered in a different paper (Bandyopadhaya & Paul 1973).

The mathematical technique of this investigation is a usual one (Tenen- 
baum 1967, Bondyopadhaya & Paul 1973). However, after finding out the 
dispersion relation we have considered the particular cases of it. Some important 
results concerning the rate of density gradient in the instability phenomenon 
of longitudinal as well as transverse wave in the presence of stieamirig (or thermal) 
/motipn of constituent particles, have been discussed.

987

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IACS Institutional Repository

https://core.ac.uk/display/93520077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


988 S. N . P au l a n d  R .  B on d y o p a d h a y a

2. Assumptions aku Basic Equations

We consider a fully ionised plasma having small density gradient, and con 
slating of electron and ion streams, under the influence of static and spatiall>- 
uniform magnetic field Hq- We assume that,

i) before pertiu'bation the medium was at equilibrium,
ii) gravitational force, viscous force, and force due to collision are negligibly 

small compared with other forces present,
iii) motions of the particles are non-relativistic,
iv) temperature is uniform throughout the medium,
v) the variables in the medium are perturbed as

E ^  0+E> H ^  Hq+H, tt 1/+U, n N+n
where the first and second terms in r.h s. are respectively unperturbed 
and perturbed values,

vii) the space variation of the perturbed quantities are proplitional to 
exp{iKz), where K is the wave number.

viii) the time variation of the perturbed quantities are proportional to 
exp.(—i /<«*(#), where o> (the wave frequency) is a function of time 
(vide appendix),

ix) the phase velocity (o»/Jl) is much greater than the microscopic velocity 
(«)•

x) the perturbed quantities are much smaller than the unperttubed 
quantities,

xi) the unperturbed velocity (i.e., stream velocity U) is constiuit in space 
and time,

xii) the unperturbed density [N) has gradient in the direction of wave 
propagation.

All these assumptions are usually made for the study of linear wave pro
pagation in plasma. The basic linearised equations which govern this wave 
propagation are (Zheleznyakov 1970)

»W iu '-< firF .* (« .W ,+ (g ./m .){E + c-H tf,x « ]+ c -i[u .x | # 3 < ,} =  0. ... (D
«  (N M (K - iK ^ y u „ ,  ... (2)

[VX «] =  (rHa£/dt)+4irc-V, (3)
[Vx£] »  -e-HdHIdt), ... (4)
{V.£)=«4»^, ... (5)
(V - W -O ,  ... (8)



where Q ^  irh-n^)e; j  ^  {(N ,„,+n,U t)-{N ,u,+n,U ,)}e; V , ^ V x T ] ^ ,  the 
thermal velocity {x being Boltzmann ccmstant), w/ is the unit
vector along z-axis, 5  =  1, for ion component, .S =  2, for electron component, 

(say) =  constant, where ^  L~\ L being the characteris- 
ticB length o f basic density variation and the other terms have their usual 
meaning.

3. Dispersion E eeations (D.R.)

The equations from which dispcrsicn relations can i>e obtained are,

{K*c^— o>^-ido>ldt)E-KH^Ezl^-4me[]lf^(ia-iKoUig)ui-N^(bi-iK^U^)Ui]

—*ne(K—iKo)[(Nil<^\^){d(^ldt)UjzUi—{NJ<^\ }̂{d<i,ldt)u^Ui] -- 0 ... (7)
and

io>8U$— iK V g ^ lw 9 ' ) (K — iK .JUgzIg+(qslm 8){E— (ilc i ) [U s  X [V X E]]+c~i[u8 X H q] }
- 0 .  ... (8)

Eq. (7) has been obtained from eqs. (3) and (4) with the help of continuity eq. (2). 
Eq. (8) has been obtained from eqs. (1) with the help of oqs. (2) and (4).

It is observed from oqs. (7) and (8) that the components of magnetic field 
« 0  and stream velocity (J, w] îch arc perpendicular to the wave propagation, 
are responsible for coupling between longitudinal and transverse waves. We, 
however, are interested in the uncoupk^ wave propagation. For this reason, 
let us take

l/g -  (0, 0 ,1/,),

i.e., both the stream velocity and magnetic field have component only in the 
direction o f wave propagation. Under these circumstances E  and lA eliminant 
of eqs. (7) and (8) leads to the following dispersion relations

[w7 - A : ( A - 2 iA„)Ki“J
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u>n»K(o>-iK„U^){w^'+{K-iKo)U^g} ±  ^  0
._P«------------ ------------------[l,’,^-K{K-2iKo)V^^]

and
±  i(KJ2)((opiUit+*apa^nf)

«-»iT«tr„)(u>,' ±  Qi* L =  0 ...

(9)

(10)



for longitudinal and transverse wave respectively, where we have used,
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aT ± (wPi+topj) ± 1 dN ̂ cujt>a 1 ^^2
N\' W  '^df

I vide Appendix].

o>p̂ 2 =  wp2̂  ^

Qi eHJmiC^ î 2 eHolmoC.

and wp.. being the plasma frequencies, and i'lo being the gyrofreqnencies 
of the ion and electron components respectively, fn tl\is connection it may Ik5 
pointed out that D.R. (9) and (10) do not hold if {cj — KUs)̂ — -= 0 and 
(u)—KVt) =  0 (for all S) rosjiectively, b(̂ eaiis(3 under the abovc  ̂ conditions tlû  
solution for ub ean not be obtained from eq. (8).

4. Discussion

It is easy to see from D.R. (9) and (10) tl\at deasity gradient, is capable to 
affect the propagation of longitudinal and transverse waves. Let us di*scuss 
nature of propagation of the waves, under different conditions.

A. Iiist(d>ility of Longitvdirml Wave

(i) Instability of cold non-uniform plasma in the presence of streams : l^ t us 
suppose that the plasma is cold (i.o., T\ Fg =  0) and the stream velocities of 
ions and electrons have the same magnitude i.o., ~  V (say). Thererforo,
the longitudinal D.R. reduces to

±  K^{K^iKo)UHo>p,^+wp./)l2{w^KU)^ -  0. .. (11)

This expression shows the unstable nature of longitudinal ŵ avo due to non- 
uniformity (in density). To have a clear picture of this instability let us impose 
some restrictions on the values of K  and as

(i) i /r i  »  \iK„\

(ii) jiiri ~  itXoi

i.e., A < <  L, 

i.e., A L,

where A and L  are respectively the wave length of the propagating wave and 
the characteristic length of density variation. The other case, namely 
I jK I <  <  I iKf, 1 i.o., A > > 2/ will not be considered, because in this case Foujior 
analysis will be invalid. However, we shell consider the spatial instability 
problem only.



Let » »  ooneider the cm- (.) A «  i ,  t i„  foe K  (obt.i,«l from
oq. (11)) IS given by
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KU

KuL’
[ - : -  “ >̂ 1 j ] ,  „ 2 ,

where we have assumed

I f o) and (co—KU) cô io.

ITrom eq. (12) it is observed that tlû  ijnyBtability factor (iniaginary part of K) 
involves density g,radieut. And, furtiior tju'. iiLstability factor must vanish 
with the vanishing of the stream>s and the density gradient. Thus we are led 
to conclude tliat if Ui,ero cxijsls any instability in cold plasma it must bo duo to 
simultaneous presence of stn^am and non-unifonnity of the medhiin.

However, to understand tiio instability more clearly wo write the instability 
factor as

/J =  ±{2eic)(^7Tlmi+^7Tlm^)\AN\I^N. ... (13)
assuming

(a) C> >• j> , 6>|)2

i.e., the frequency of tJxc pro})agating wav<̂  is much greato than the plasma 
frequency. This is a rt̂ as()nabJ<̂  condition for the propagating wave
and

(b) Aj -  Aa -- A.

i.e., at equilibrium the number densities of ion and electron components are 
identical. This is quite reasoiia])le for th(‘* initial equilibrium state of the 
ionised medium.

Expression (13) allows that tJie instability will be very much significant in 
the medium having Uw density Imt high density gradient.

Let us see how the instability varies with the density and the characteristic 
length of density variation. Wo write

I vA IIVN  == Ao (say),
then

Let uft draw the graph showing qualitative nature of (figure 1). This figure 
oleaily shows the variation of with both the basic density and the oharactens- 
tic length of variation of basic density. The interesting nature which is worth
while to  m ention is that as the density increases the differenedes between the
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instability curves for different characteristic length increase. This meaxis that 
the variation of characteristic length is capable to produce more effect on the 
instability in the medium of high density than in the medium of low density. 
It is also observed from the figure that the slope of the curve for small characteris
tic length is greater than that for the large characteristic length. This indicates 
that the rate of change of instability for small characteristic length is higher than 
that for the large characteristic length.

— --------------------

Fig. 1

We now consider less important case (ii) A ^  The solution for K  obtained 
from eq. (11) is

KU
r=  La>- 2«» }]
±  i  [ <“**>̂ *+“ * *̂1 i r , i r | ] ... ( U)

asBomiag
I jo*I >  I *.K ô£7(<«>j^+Oj )̂j.

Tbe abore solution shows ihst in this case also 1j]ie instability arises only due to 
ffimultaiueouB presenoe of the non-unifonnity and the stream. Here the instability 
factor reads

(16)
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assuming ca > >  wp, (justified for a propagating wave) and Ni =  N2 =  
(justified for the equilibrium state of the ionised medium). Therefore, the longi* 
tudinal wave of wave-length L will be h%hly unstable in the medium having 
laige density gradient.

Let us now write,
[ vJ\T I =  NjL =  (saj), therefore

%
This shows that for a fixed characteristic lo<tgth the instability of longitudinal 
wave is more significant in the denser medium than in the rarificd medium. 
However, comparison with previous case reil»eals that the instability of waves 
A ~  L is more sensitive to density than thit of the waves with wave length 
X << . L. The qualitatvo nature of for different values of number densi
ties and characteristic lengths is however, understood clearly from figure 2.

Fig. 2
(ii) InstabUiiy of hot non-uniform plasma in the absence of streams : In 

this section we shall consider the effect of non-uniformity on the instability of 
longitudinal wav© propagating through hot plasma. We shall suppose that th© 
streams are absent (i.e., =  0) so that D.R. (9) reduces to

1 «  ~ «3,i (16)

rroxn eq. (16) it is observed in general, that in a streamless hot medium the 
longitudinal plasma wave may suffer from instability due to the ĵ^ ênoe of den
sity gradient. To have a bettor insight, similar to cold plasma we oonsider two 
oases namely (i) lJ E :i» lt ir , l  i.e., A «  £  and (ii) 1^1 ~  It^ol ie-.

6
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Now it can be observed directly from eq. (16) that the longitudinal wave 
of wave length much less than the characteristic length (i.e., A < <  L) will be 
affected by thermal velocity and not by the density gradient. If the wave length 
is twice of the characteristic length (i.c., A =  2L), then both the effects of positive 
density giadient and the thermal velocity are insignificant. But both effects 
could be much important as soon as the density gradient becomes negative.

But without imposing any restriction on K  and K q it is also possible to 
see interesting features of instability of the longitudinal wave. Let us con
sider one component plasma, then eq. (16) yields

== 0,

where, either S =  1, for ion component
or S == 2, for electron compoxxcnt.

From eq. (17) the spatial instability factor becomes

(17)

where we have assumed

0) >  (a>p/fA7IV)5.

... (18)

From the above expression it may be observed that the instability in hot plasma 
deserves much importance inside the medium of less density but high density 
gradient. Qualitatively, this result is almost same as that for cold streaming 
plasma (eq. (13)).

Now to know clearly the nature of the instability for different values of 
density and the characteristic length of density variation, wo wrote,

\^jN\IN= l/Z, =  (say), i.o., cc/i\.

This shows that the instability is affected by the characteristic length of density 
variation, not by the number density. Since the role of characteristic length is 
important in above instability, we draw a graph of against different charac
teristic lengths (figure 3). It is observed from figure (3) that the rate of 
increase of instability is very much higher at small characteristic length than 
that at large characteristic length-

B. Instability of Transverse Wave

I^t us consider the effect of magnetio field, and non-uniformity on the 
instability of trtmsverse wave. We can write D.R. (10) as

JT*c* • l «*— i ( “ ^ )  {{«w*+«»M*) T  ]>

... (10.1)



when the magnetic field is so weak that il, < <  {m—Klh)' Or, we can write 
eq. (10) as

=  [a>* ±  (o-iS:f7)(6>pi*/12i |-<op//a,)l ±  i(K^VI2){<^pi+iap )̂, ... (l»-2)
when the magnetic field is so strong that Q, >  >  {w—KUs) and Q« > >  «*?>»•
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Fig. H

In eqs. (19.1) and (19.2) we have assumed that ion and electron stream have 
the same magnitude (i.e., =  f/). Expressions (19.1) and (19.2) show
that similar to the instability of longitudinal wave the insteability of transverse 
wave arises only due to the simultaneous presence of stream and the density 
gradient o f the particles. The instability factor in both cases is given by

A =  ±
eU r 'n  j  J   ̂ \

V n

0})2> ■̂ 1 ”  '^2 ~

... (20)

assuming
](ol >  \iKoU\, w > > o > p i ,

It is observed from eq. (20) that the instaWlity of the transverse wave is much 
prominent in a rarified medium, having large density gradient. This behaviour 
is similar to that of longitudinal wave (cq. (13)). Therefore, in this case â so, 
the nature of dependence of instability factor on the bams density and the 
characteristic length of densty variation will be same as that shown m figure 1.

From expression (20) it is to be mentioned that once the magnetdo field 
reaches the domain of very low value or very l^ge vahre, the 
verse wave beeome independent of magnetic field. In other words the field
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able to produce the effect on the instability of transverse wave only for certain 
reasonable condition like Qs ^  (ia— KUs). But, in general, it is difficult to find 
the instability factor for such cases because D,R. in that case would involve 
fourth degree equation in K  and fifth degree equation in w. Hence we leave 
this consideration for a separate paper.

5. Phase Velocity

(A) Longitvdinal wave in cold Streaming plasma 
In general the phase velocity is given by

Vph =  (ojReaiK.

Therefore under the conditions (i) A < <  L and (ii) A L the phase velocities 
of the longitudinal wave in cold plasma become (from eqs. (12) and (14))

Vph —

and

P̂h
>U

... (21)

... (22)

respectively.

It is observed from eqs. (21) and (22) that phase velocity is affected by the 
stream and non-uniformity. Actual role of these two factors on the phase 
velocity is that for one mode phase velocity increases, but for the other mode 
phase velocity decreases. Moreover, we know, usually there does not occur 
any resonance for the wave having frequency much greater than plasma fre
quency. But we find from eqs. (21) and (22) that even for the wave having 
jfrequency o > > >  copj, e>2>2 for one mode the presence of stream and density 
gradient is unable to give rise to the resonance phenomeon, but the other mode, 
however, may have the resonance frequency,

i S n '  \ " (  Z.  ^  JL  fnr > «  L.

OireBOnance
-p 7 T

___  ___  1/4 1/8

(B) Longitudinal Wave in Hot StreamUee plasma
Now let us oousidor tlie situation where the medium is hot hut. does not

9<mtam way stream. I® this oase, it is observed fifwm «q. (17) that the phase



velocity 18 unaffected due to non-uniformity, when the wavelength i8 much 
smaller than the characteristic length of density variation (i.e., A < <  L).

However, in general, for one component plasma we have (from oq. (17))
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[(«=*-O p ? )- ... (23)

which shows that due to the presence of nto-uniformity the phase velocity of 
the longitudinal wave in hot medium is alw^s increased. Jdoreover, the reson
ance frequency is given by

J V l M l i i *r̂esonance — j copŝ JSf2

which reveals that due to iion-uixiformity and thermal velocity, the resonance 
will occur at higher frequency than plasma frequency (coj,«).

(C) Transverse Wa/ve

Let us now investigate ŵ lxat will he the effect of density gradient on the 
phase velocity of the transverse wave. For this, we look at expressions (19.1) 
and (19.2). It is observed that there is no contribution of density gradient to 
the real part of K, Therefore we can conclude that density gradient is incapable 
to affect the phase velocity for very ŵ eak or strong »static magnetic field in the 
direction of ŵ avo propagation.

fi. Possible Applications

The density wave is purely longitudinal, and electromagnetic wav(5 is trans
verse in a nature. Therefore, the above discussions may bo useful for the density 
wave theory and electromagnetic wave theory.

In the present section w-e shall not discuss in detail the applications of the 
analysis made above. Nevertheless, it appears that the present analysis could 
be important to a number of important astrophysical contexts.

(1) It is known that damping (Barnes 1969, Bondyopadhaya 1972) of 
waves in plasma are important regarding heating of astrophysical bodies. There
fore, the effect o f non-uniformity of density distribution (which could produce 
the instability o f longitudinal and transverse waves) may be incorporated in 
those contexts.

(2) The basic density distribution in the ionosphere above the earth is known. 
The gradient of this distribution may produce the density variation there 
(Paul & Bondyopadhaya 1972). Therefore, the ionospheric instabilities may be 
affected by the density gradient.
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(3) Tho density distribution of the ionised particles above the solar photo- 
Bphero is also found to have some gradient (Zholoznyakov 1964). Thus, t)j,o 
present theory may be considered to be worthwhile for the solar atmospheric 
phenomena.

(4) The density of the particles of Galactic disk is found to have large spatial 
gradient (Schmidt 1965, Bondyopadhaya 1974). The constituents of the materials 
consist of neutral as well as ionised particle (Pratap 1968). Therefore, the 
present analysis may be relevant to many of the Galactic instability problems. 
In particulars, in the central region a radial floŵ  of ionised gases is found. This 
flow may be characterised by the stream velocity (U as in the present analysis) 
(Bondyopadhaya 1974). Thus discussions 4-A and 4-B, in particular, will be 
relevant to the Galactic problems associated with the radial flow from the 
central region of the Galaxy.

7. R emabks

1) Tt is to be remembered that the presence of non-uniformity and stream 
of the constituent particles forcibly disturb the constancy of the basic density 
with time. To account for this effect we have considered the time variation 
of the perturbed quantities to bo proportional to exp.( — i J wd/) instead of 
usual one namely exp.(icuf). (vide appendix). But we observe from our D.R. 
that if the perturbed solution is assumed to be exp.(—ico#), then the insta
bility of transverse wave due to non-uniformity vanishes, but th(̂  instability 
of longitudinal wave particularly in cold plasma pĉ rsists. In this regard, it is 
worthwhile to note that the qualitative nature of instability of longitudnal 
wave in cold plasma remains unchanged whether w is dependent with time or 
not. In othej*words it can be said that the variation of basic density wdth time 
does not affect the instability of longitudinal wave in the presence of non
uniformity and stream. Moreover discussion in Sec. 4-A-(ii) shows that the 
perturbed solution of the form exp.(—iwdO (variation of basic density with 
time due to presence of non-uniformity and stream) contributes nothing to the 
instability of hot streamless plasma. Any way, from table 1, we can have a clear 
picture about the role of non-uniformity in the instability of longitudinal and 
transverse waves under different conditions.

2 ) The present paper actually deals with the physios of the wave propaga
tion and not the physical applications which, in turn, deserves separate fall length 
discussions. However, these discussions have already been prepared and would 
be communicated shortly.

' 3) It is important to note that the density gradient has not been taken as 
rapidly varying quantity. Therefore, when we shall apply the present analysis 
we must be carefal about this restriction.
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Appendix

From th<̂  unperturbed eontinuiiy equation, we li,ave

(it + V s
ON,
~dz

or
1

Ns
ON,
(It

0,

u . ( ON, \ 
N, \ d z i

ON,

This shows that so lojig as stream velocity is present- th(̂  equilibrium itself is 
evolving on a time scale comparable to tĵ e growth rate of the instability. Thertj- 
foro, we require to perform a W.K.B. aulalysis in time i.e., the time variation 
of the perturbed quantities is required to assue as proportional to exp.[—/Jeud̂ J 
instead of exp.l—ica/), w being the wavt̂  frequency which is a function of time. 
Thus for example, the perturbed density

u (X exp.[—?Jo;d/|

— —icotl

That is,
dn
dt

and
dhi
dt̂

. do) 
dt n—6)%.
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