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The $tudy of interaction and second quantization of electromagnotic fields 
for non-zero mass system has boon imdortaken in angular momentum 
basis and the selection rules for omission and absorption of a massive 
particle are derived. Reducton of real transverse electromagnetic 
vector potentia] for non-zero mass system has been dearived in terms of 
irreducible representations of prope r̂, ortho-chronous, inhomogeneous 
Lorentz group in angular momentum basis

1, I n tr o d u c tio n

In the present paper we have undertaken tlû  study of interaction of electro­
magnetic fields for non-zero mass system in angular momentum basis. For 
ll\is purpose the transverse reduced expansion of real electromagnetic ve(?tor 
potential for non-zero mass system in linear momentum basis derived by Parkash 
ot al (1974) (henceforth to be referred to as T) has been transformed to that in 
angular momentum basis in terms of vector spherical harmonics. Replacing the 
amplitude corresponding to particle wave-function and their complex conjugate 
in this reduced expansion in angular momentum basis by annihilation and creation 
operators respectively, the second quantization of real electromagnetic vector 
potential has been carried out in angular momentum basis and the commutation 
rules for these operators have been derived. Using the second quantized reduced 
expansion of real electromagnetic vector potential, the expression for field- 
Hamiltonian is derived in terms of particle number operators quanta in angular 
momentum basis, which correspond to circularly polarized field states.

Second quantized relativistic reduced expansions of purely transverse real 
electromagnetic vector potential operator in angular momentum basis has been 
used to derive tho transition probability for emission and absorption of a massive 
particle in the inter6w?tion of massive electromagnetic fields with an atomic system 
and it has been shown that the probability of spontaneous emission in this ca«e 
also, like that in linear momentum basis for non-zero mass system given in I 
and that in linear and angular momentum basis for zero mass system (Rajput 
i970,1971) is non-vanishing. Moreover it is shown that the probability of transi­
tion in both the oases (emission and absorption) is proportional to the magnitude
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of linear momentiun of the field. The selection rules for the emission and ab­
sorption of a particle in this interaction are similar to those derived in the inter­
action of electromagnetic field for zero-mass system with an atom (Rajput 1971).

2. R educkd E x p a n s io n  o f  E le ctro m a g n etic  V ector  P o t e n t ia l  
IN L in e a r  M o m entum  B asis

Reduced expansion of real transverse electromagnetic vector potential derived 
in I for non-zero mass system in linear momentum basis may also be written as 
follows for the general case

A ( x )  = ( 1 )

where

=  4 ^ 7 * j ; ^ [ 6 i / ( p . l ) + « * / ( p - 2 ) + e J ( p , 3 ) l e x p [ i { p . x - a . ( 4 > ) t } ] .  .. .  (2)

where Cj, Cg* the unit vectors along first, second, and third axes respective-
Iv. Let us define now the functions

/(P . 7)  =  i ) + ^ r / ( p . 2)1

where 7 "= ± 1 

and

/ ( p . 3 ) = / ( p .  0),

and the corresponding unit vectors 64.̂ , e_j and Cg as

(3)

(4)

-te.
‘•+1 y/2

-  _  +
~  V 2

* 0  =  *» •

Substituting eqs. (3), (4) and (6) in eq. (2) we get

I ;^ r « ^ i / (P ’ + l)+ «-x /(P . -l)+ «o /(p .O )]

Xexp[i{p.*—o»(j>)«}].

(8)

... (6)



3. Rbdfotion in Angular Momentum Basis

In angular momentum basis a wave function for non-zero mass system depends 
on the energy E, total angular momentum quantum number j, quantum number 
m of j  (2—component of angular momentum operator), and on the variable a 
(the absolute value a of which is identified with the spin of the particle). Thus 
the wave-function in this case is represented as F(E ,j, m, a) which is related to 
the components of corresponding wave-function in linear m<^montum basis by tlxe 
following eq. (Moses 1967b)
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p \ S / a „ _ i  y.i

<1>)F{EJ, m, a). ... (7)
whore y =  -(-1, 0, —1, designates the components of the wavefunction, and 

0) and 0) are the generalized spherical harmonics of 0 and <j>
which are the polar angles of vector p and vary from 0 to n and from 0 to 2tt res­
pectively, p — p(sin S cos 0, sin 0 sin 0, cos 0), p =  (E^—/jfi)K The well known
expansion for exp (ip.x) in this basis is given by

exp(ip.x*) =  47t S S
it-i

y  ( e j l  ... (8)
where r =  \x\, t/jt[(JŜ —/̂ ®)*r] is the spherical Bessel’s function of order k, and 

and (f> are the polar angles which describe the direction of x*
Substituting eqs. (8) and (7) in eq. (6), we get

2 1 oo j ao k
A '(x ,y )^  „ Y. Y Y Y Y {i)k-m+y+2- 2.

X idif, i  d e fin e  i  dE Jk[(E^-p^MYjt^\^(e, (!>)
0 0

X y iV *(» ,0 )  Yk^\^*(0,<f>)

X F { E y j j m , o c . ) e x p { - - i E t ) .  ••• (0)

This reduced expansion in angular momentum basis is used for calculating the 
field Hamiltonian in the next section. However, for the compact form of reduced 
expansion which may be conveniently used for the study of interaction, the fol­
lowing properties of generalized spherical harmonics are used (Moses 1967);

/ 3 2A?-f 1 \
47t 2 «/+ 1 /i: -

r = | jfc - i| \

X(fc,m', l . y l i ,  1, J, m '+y)(k, o,\,a.\k,\, J ,a)
(IQ)



which may be readily derived from the well-known relation 

~ / et(p—p').x)dx =  (̂p—p').

and

( 4  i n  EBinddSdil>-¥ l i m S  ... (22)

which is aogalar momentum analogue of the similar approximation

f dp = lim S in linear momentum baeis.(2nfJ p
Similarly the volume integral of second term of B+(x) given by eq. (19) is 
obtained as
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S s  S I ^  (£;*-;»*)*4 t ffl at J a

X F*(E, h, m, a) F{E, k, m, a). ... (23)

where in addition to relations (2 1 ) and (2 2) we have used the following well 
known relations also (Edmonds 1957)

1:4-1 \ */ d k
~  [ - ( s t T r )  i z r - f )

*"-^Vt[(E«-/t*)*r]4-(^?*-y»*)V*_i[(^-/t«)*r]

and

/d f/d d sin ^ r*.* ' >m0> <5) =
0 0

flliS

(24)

(25)

(26)

7ic,ic>m("> 0) the usual vector spherical haxmonios. The volume integration 
of third term in H+(x) is

== - i s  S S J ^  «*. « ) W  «)• -  (27)
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Combining relations (20), (23) and (27) we get

S S j  k, m, a)F(E, k, m, a). ... (28)

Tn a similar maimer one can calculate the contribution of quantized operator 
A+ *(x, y) to the field Hamiltonian.

Thus

^ = i  S S L dE{F*(E, k, m, ol)F{E, k, m,a)
 ̂k m a /t*)»

-\-F{E, k, m, a)F*{E, k, m, a)]. (29)

U.sing the commutation relation given by eq. (16) and dropping the zero-point 
energy, we get

E
... (30)H = S S S I F*{E, k, m, a)F(E, k, m, a).

l/)t us now define new annihilation and creation operators as 
b(8, a) =  [ll{Ê -fî Y'*]F{s, a)

b*{s, a) =  (jg2_r̂ 2ji74 “ )>

w)iere s collectively denotes the variables E, k, m. These operators satisfy the 
following commutation relations

(31)

[6(5, a), 6(5'. a')] =  [6*(5, a), 6*(5', a')] =  0, 

[6(5, a), b*{a', a')] = 5(5—s')^,,',

(32)

where
5(5—s') =  5(2?—E')Sic,ie’Stntm' •

In terms of those operators the field Hamiltonian becomes 

#  =  S S S / <2.® Eb*{s, a)b(s, a)
t  m Cl

= S SfdE E[ (̂s, - fl)+ 2̂ (5, -l)+ .^ (a, 0)],
k m

whore

.̂ (5, + 1 ), ^(s, - 1 ) and i^(s,0 ) 
we three different particle number operatm-s given by

E(s, a) =  b*(s, a) b(s, a)
1

(33)

(E » -^ ‘ )*F*(s, a)F(a, a), (34)
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which commute with each other and have the independent positive integer eigen 
values »(«, a). Thiis the energy of the field is

15 = S S J EdE[n(8, +l)+n(«, —l)+n(«, 0)].
k m

(35)

Let us assume that all the quanta of this real field are aligned and move along 
the third axes (i.e., z-direction). p =  (0, 0, p). Then /(p, 0) =  0 due to condi­
tion*** (2) and hence {̂s, 0) = 0

Then

H =  S S J dE E [N {8 ,-l)+N {s, + 1 )] 
k m

=  S S  S i  dEEb*(s,a)b(s,a)
k in «-±l

=  S S S i dE EI}{8, a).
k m « -± i

(36)

where N[s, +1) and N{a, —1) are the nttmber operators for the particles with 
helicity + 1  and —I respectively. The quanta of particle number operators
N{s, a) correspond to two circularly polarized field states (Part I).

The base vector which spans the Hilbert space can be chosen to contain 
these circularly polarized particles of mass /i and spin 1. Let us define the state 
which contains n-particles (each of mass /t) with variables ŝ , s ,̂. , .  ,s„ and 
helicities aj..... a„, as

|n > =  n  6*(s«,Oi)j0 > (37)

where |0> designates the vacuum state. If all these n- particles correspond 
to a weU defined quantum state i.e.,

«i =  «« = «„ = «, = a* = = a, =  a
then

n >  — I«(«, 1 )>  =  7=-Vn{8, a) 6*»(«,a)10>. ... (38)

Aimihilation and creation operators act upon these basis vectors in the following 
manner

b*(a, a) 1«(«. a)> = [»(«, a)4-l]*|«(«t «)+l >  

b{8, «) I n{a, a) > =  [»(«, a)]» | n(a, a)— 1 >

... (39) 

... (40)

* Using leduoed expansion (12) one oon prove that div A is zero in angnlar momentum 
basis also.



In terns of operators 6(s, a) and h*{s, a), the reduced expansion for the operator 
A+(x), transforms to.

!+ (* ) =  J: By A+(x, y)
7-±l

S I  2 *)XM
jr* «= ±i | , _ i
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X ^exp(— 6(«, a) &y M  2(2Jb+l) ]2(2Jb+l)

m-7»o K ^
X (* + l ,m —7, l ,y \ k + l , l ,k ,m )  Jjc+Ji(E^—fi )̂h'\Y

Ar+1

~ 4 2 (2)H I) ]* 1 > Vl *>—1 » *'> /t*)‘r]

m-yiO  ̂ A. 1
X T (&, ----- j s  a.{k, m—y, 1, y j i ,  1, fc, m)Jk[{E^—fî )̂ r'\

ifc-l V  ^

« l-7 > 0  A ^ 1 1
x 7  {&,</>).]].

Substituting the vector spherical harmonics

where

W ( i  g o t

m-7,0 >v
F»,t',in((9, )̂ == 2  (t)% r (0, ̂ )(k', m—y, 1 , y 1 1 , k, m)y Jt'

k' ~ k—ly k, k-\-1 ,

i* (x )=  \ 2 S I  (i)*-™;  a)
11= ± 1  fc- 1  m—Jkx {  i [2(2] ^ )

-*  [ 2| S t ) 1‘

(41)

(42)

(43)

Reduced expansion of operator A(x) may be readily derived by using the relation

Ji(*) =  A+(»)+A+*(*)« ••• (44),



5. Intbbaotion

In the angular momentum base, the transition probabiUties of emission and 
absorption in the interaction of electromagnetic fields for non-zero mass ease with 
an atomic system may be calculated in the manner similar to that for linear mo­
mentum basis given in I. For emission, the initial state before interaoti<m ocux- 
sists of field state containing n {a, a) particles and atomic state with quantum 
numbers k , m and n for angular momentum, z-component of angular momentum 
and parity. The final state in emission consists of field state with (n(«, a)-|-l] 
particles and atomic state with qusmtum numbers kf, mj, n/. The matrix element 
of interaction Hamiltonian for emission is thus given below

0) .»|^7 > =  <^f\ <SI.4+*(jc,0) .o l V> 1 

1
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(2n)i a )-f 1]*

4  - ' (

X <  ft\  >  -i-t ("2^1^, )

X <^/\  ij>).\v \^t >  -a J * (F *

X <  v̂ /1 4>).v\fi> ], (46)

where wo have used eqs. (39) and (44) from which it is clear that only 0)
part of A{x, 0) contributes to the interaction Hamiltonian for emission, while the 
other part i.e., A+(x, 0) contributes to the Hamiltonian for absorption. The matrix 
element given by eq. (48) consists of the terms like

<  f f  \ Y*k,k'<m{9, 4>)‘ V\rlr>, (fc' =  k+l, k)
which can be written in terms of quantum numbers of the initial and final states 
as follows

<  k/mfjtf 1 F%,!,'„(<?, ^ ) . i; I hitHm > , (46)

where Y*ic,k',m(9,0). v is an irreducible tensor of rank k. Applying Winger-Echart 
theorem, it follows that only those matrix element like (49) are non-vanishing for 
which, the following selection rules are satisfied.

k̂  — kf'^k) ••• I ,
=  mf+m.

(47)
(48)

The probability far the emission x>er unit time in transition from to is pro- 
porticmal to the square of matrix element (48). Hence it is proportional to [{Ê  
—/t*)*n(«, a)+ l], which is non-vanishing oven for n(e,tt.) =  0 .



In the abBorpti(m the initial state is the same as that of emission while the 
final field state consists of (n(«, a)—1] particle. The matrix element of interest 
in this case is <  i/rf>A+(x, 0). v^t>

1

Second quantization  fa r  non-zero m ass system  519

(2n)i

X [ » ( 4>) • O'! f i >

I t t  )
X <  <i>) ■v\t/rf>  —aJ*[(jS*—

X < ^ f\  Y*je,ic,m( ,̂ <f>) •v\^i >]•
Fn tho similar maimer as discussed for emission we get the following selection 
rules for absorption,

kf =  k t+ k ,k i+ lc --l ... \ki--k\ ... (49)
nif ™ ... (50)

Tlie probability for abosrption is proportional to the number of particles of a 
givoii kind in the initial state i.e., [{E^—‘/î )̂ n(s, a)]. The ratio of the probability 
of omission to that of absorption is proportional to [w(«, a)+l]/n(5, a).

The selection rules for emission and absorption of a particle in this case are 
similar to those obtained in the interaction of electromagnetic fields for zero mass 
system with an atom. Transitions can take place between those atomic states 
(luantum number of which satisfy the conditions (50) and (51) for omission and 
(52) and (53) for absorption. The interaction consists of transition of the atomic 
system from one quantum state to another. This transition results into an 
omission or absorption of a particle (which is assumed to have the same mass /̂ , 
oiicjgy E, angular momentiun number fc, ^-component o f quantum number m 
Uolicity a).
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