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The study of interaction and second quantization of electromagnetic fields
for non-zero mass system has been undertaken in angular momentum
basis and the selection rules for emission and absorpfion of a magsive
particle are derived. Reducton of real transverse electromagnetic
vector potential for non-zero mass system has been derived in terms of
irreducible representations of proper, ortho-chronous, inhomogeneous
Lorentz group in angular momentum basis

1. INTRODUCTION

In the present paper we have undertaken the study of interaction of electro-
magnetic fields for non-zero mass system in angular momentum basis. For
this purpose the transverse roduced expansion of real electromagnetic vector
potential for non-zero mass system in linear momentum basis derived by Parkash
ot al (1974) (henceforth to be referred to as T) has been transformed to that in
angular momentum basis in terms of vector spherical harmonics. Replacing the
amplitude corresponding to particle wave-function and their complex conjugate
in this reduced expansion in angular momentum basis by annihilation and creation
operators respectively, the second quantization of rcal eloctromagnetic vector
potential has been carried out in angular momentum basis and the commutation
rules for thege operators have been derived. Using the second quantized reduced
expansion of real oloctromagnetic vector potential, the oxpression for field-
Hamiltonian is derived in terms of particle number operators quanta in angular
momentum basis, which correspond to circularly polarized field states.

Second quantized relativistic reduced expansions of purely transverse real
electromagnetic vector potential operator in angular momentum basis has been
used to derive the transition probability for emission and absorption of a massive
particle in the interaction of massive electromagnetic fields with an atomic system
and it has been shown that the probability of spontaneous emission in this case
also, like that in linear momentum basis for non-zero mass system given in I
and that in linear and angular momentum basis for zero mass system (Rajput
1970, 1971) is non-vanishing. Moreover it is shown that the probability of transi-
tion in both the cases (emission and absorption) is proportional to the magnitude
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of linear momentum of the field. The seloction rules for the emission and ab-
sorption of a particle in this interaction are similar to those derived in the inter-
action of electromagnetic field for zero-mass system with an atom (Rajput 1971).

2. REDUCED EXPANSION OF ELECTROMAGNETIC VECTOR POTENTIAL
iN LiNgar MoMENTUM Basis

Reduced expansion of real transverse olectromagnetic vector potential derived
in I for non-zero mass system in lincar momentum basis may also be written as
follows for the general case

A(x) = A*(x)+ A (), e (1)

where
A*@) = e | (p,f(p)axp[z{p x—w(p)t}]
= L [ e f(p. 1)+€ fip. 2)-F €af(p. 3)] 0xp [i{p.2x— w(P}], ... (2)
—4;,3;1];@,-)61 (P> o f(p. 2)-+€&f(p. pli{p.x— w(P)t}], ...

where €,. €,, €; are the unit vectors along first, second, and third axes respective-
lv. Let us define now the functions

f(pry) = ;/l—grf(p, 1)-+ivf(p, 2)] 3

where vy = 41

and
flp, 3) = flp, 0), e (4)
and the corresponding unit vectors €, €_, and €, as
€,—1€
€,y = ’_1\/2 2
¢1+1G,
€, = V2
€ = €3. e (8)

Substituting eqgs. (3) (4) and (6) in eq. (2) we get

A*@) = o | SEseuflp, +1)+efip, —1)+euflp, O)]

X exp[i{p.x— w(p)}). e (8)
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3. REDUCTION IN ANGULAR MOMENTUM Basis

In angular momentum basis a wave function for non-zero mass system depends
on the energy E, total angular momentum quantum number j, quantum number
m of j (z2—component of angular momentum operator), and on the variable «
(the absolute value « of which is identified with the spin of the particle). Thus
the wave-function in this case is represented as F(E, j, m, &) which is related to
the components of corresponding wave-function in linear mémontum basis by the
following eq. (Moses 1967b)

¥
1/ 4n 1 x { A —a
fon=-(%5) 5 £ I (—imr-1p

Rem—1 =1 m=—
XY ™0, )Y, 0, $)F(E, j, m, ). ' e (D

where y = 41, 0, —1, designates the components of the wavefunction, and
Ym0, ¢) and Y,”**(@, 0) are the generalized spherical harmonics of ¢ and ¢
which are the polar angles of vector p and vary from 0 to 7 and from 0 to 27 res-
pectively, p = p(sin # cos ¢, sin 0 sin ¢, cos 8), p = (E2—pu2)i. The well known
expansion for exp (ip.x) in this basis is given by

oxplip.x) = 4n3 T (FJul(Bi—ptr]
k=1 m=—f
x Ym0, ) Yem'* (6, ). e ()
where r = | x|, Ji[(£2—u2)ir] is the spherical Bessel’s funotion of order k, and
# and :ﬁ are the polar angles which describe the direction of x.
Substituting eqs. (8) and (7) in eq. (6), we get
2 1 L) 1

oo k
Adwy)=73 L I I T X (mivei-h

D a=—1 j=a meo-f kel m'=-k
x [dg T d@sin0 [ dE Ji[(E2—p2yr] Ym0, )
0 0

X Yym2(0,¢) Y, *0,¢) Y™, %0, 9)

x F(E,j, m, a)exp(—iEt). .. (9)
This reduced expansion in angular momentum basis is used for calculating the
field Hamiltonian in the next section. However, for the compact form of reduced
expansion which may be conveniently used for the study of interaction, the fol-
lowing properties of generalized spherical harmonics are used (Moses 1967);

kX1 3 941!

J:lk-—-—ll( 411 2J+l)

X(k,m', 1, y|k 1, J, m' +y)k,0,1,a|k,1,J, )
X YJ”’+”.‘(0, ¢)’ - (10)

Yy %0, 9) Y * (0,¢) =
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which may be readily derived from the well-known relation
%, | eilp—p’)-x)dx = S(p—p’);
and
1

(_2%, [ || @B B sin 6 dbag— im X . (22)

which is angular momentum analogue of the similar approximation

1 . e .
(51-;),[ dp = VE)II: f in linear momentum basis.

Similarly the volume integral of second term of H+*(x) given by eq. (19) is
obtained as

A

1 . dE s o\
By = 3 I3 [ -

X F*(E, k, m, o) F(E, k, m, a), .. (23)

where in addition to relations (21) and (22) we have used the following woll
known relations also (Edmonds 1957)

1
o [ (2) (5-1)
k

. Yrd k1
X JE =Y g a0 D)+ ( gy ) (F+ o ) B =]

X Y, kgm0, $)1, (24)

L 1 (B =) = & (B W) (B g (B pr)

k;:'-—l""[w”‘!")"]+(E’—#’)‘Jk-1[(E’—ﬂ’)‘f] (26)
and
! diof d0sin 8 Yie',m(B, ) Y* ot m' (6, $) = Br,2'0mom (26)

Y k,k'm(G: ¢3 are the usual vector spherical harmonics. The volume integration
of third term in H*(x) is

By = %zk 55 | 2 Tl FHE e m QR b ma). .. @)
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('ombining relations (20), (23) and (27) we get

Ar=1sssx L

Tn a similar manner one can calculate the contribution of quantized operator
A+*(z,y) to the field Hamiltonian.

Thus
d-lsss B _igpeE, b, m a)F®, k ma)
2k ' (Ez__'ug)* y Wy M, s Ry, My
+F(E, k, m, x)F*(E, k, m, a)). . (29)

Using the commutation relation given by eq. (16) and drapping the zero-point
energy, we get

H=XZ 2 dEF(Ekma)F(Ekm,a) . (30)

Em a! (Ez
Lot us now define new annihilation and creation operators as

b(s, @) = [1/(E*—p*)41F(s, )

b*(s, @) = TEE= ! 2)1/4F (s, @), .. (31)

where s collectively denotes the variables E, k, m. These operators satisfy the
following commutation relations

[b(s, @), b(s’, a’)] = [b¥(s, @), b*¥(s’, «")] = O, . (82)
[b(ss “)) b"‘(s', d')] = 6(8—8')8,‘¢',

where
8(8—8') = 8(E—.E’)8k,k’8m,m'.

In terms of these operators the field Hamiltonian becomes
A =3 T 3 [ dE Eb%(s, a)b(s, @)
kE ma

= % 5 { dE E[R(s, +1)+N(s, —1)+N(s, 0)], e (33)
where
N, +1), N(s, —1) and N(s, 0)
are threa different particle number operators given by
Nis, a) = b*(s, @) b(s, @)

1
= T F*(s, a)F(s, a), e (34)
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which commute with each other and have the independent positive integer eigen
values (s, a). Thus the energy of the field is

E =2k3 Z [ EdE[n(s, +1)+n(s, —1)+n(s, 0)]. (35)

m

Let us assume that all the quanta of this real field are aligned and move along
the third axes (i.e., z-direction). p = (0,0, p). Then f(p,0) = 0 due to condi-
tion* (2) and hence N(s,0) =0
Then
§ dEE[N(s, —1)+N(s, +1)]

pAD]
k m

=3 X | dE Eb*(s, «) b(s, &)
k m

=Z3 % [dF EN(s, ), . (36)

where ﬁ(a, +1) and ﬁ(s, —1) are the number operators for the particles with
helicity 41 and —1 respectively. The quanta of particle number operators

N (8, @) correspond to two circularly polarized field states (Part I).

The base vector which spans the Hilbert space can be chosen to contain
these circularly polarized partjcles of mass x and spin 1. Let us define the state
which contains n-particles (each of mass x) with variables s;,s,,.,.,s, and
helicities «,, a,, ..., &y, 88

|n > =‘ﬁ1 b*(s4, a4) |0 > e (37)

where | 0> designates the vacuum state. If all these n- particles correspond
to a well defined quantum state i.e.,

31=3s="'=3n=3:“1=“2= =a”=a

then

|n> = |n(s, 1)> = b*n(s, a)| 0>. ... (38)

1
Vn(s, @)
Annihilation and creation operators act upon these basis vectors in the following
manner

b*(s, a) | n(s. 2)> = [n(s, &)+11|n(s, )+1 > . (39)
b(s, @) | n(s, @) > = [n(s, @)Jt]| n(s, x)—1 > ... (40)

* Using reduced expansion (12) one can prove that div A is zero in angular momentum
basis also.
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In terms of operators b(s, ) and b*(s, ), the reducod expansion for the opoerator
A+(z), transforms to.

Atz) = T ey A%(z,7)
Yeut1
BRI T T > (iye=m+Y [ JE(E—ptyihe
Tt amtl gl pegv=zl

X [exp(—iEt) b(s, @) ey {z[ -2—@%’3_—1)—]'

~

X (b1, m—y, 1,y b1, 1, b, m) e ol (B2 (8,9)
+

1 k+1 7
—i [ 2—(2—,;—1)] (k—1, m—y, 1, y| k—1, 1, k, m)Jg_,[(B2—p2)ir]

m—Y0 A A 1
xY (@, ¢)—'W a(k, m—y, 1,71k, 1, k, m)J [ (E*—p2)ir)

xY 0, 5).}] : . (41)

k

Substituting the vector spherical harmonics

M—Y,0 o A
Ye' .m(0, @) =§ (i)“’&ka, @, )k, m—y, 1, y|¥, 1, k,m) .. (42)
where
kK =k—1,k k+1,
we got
gy = L = 2% (ipem [ dE@E 20, 0)

T am g1 k=1 me—k

x| [2———(210’11) ] Tl (B i) Vb (0, 9)

- l —2("’201%3")' | Teol B =g 1) Vgm0, 9)
"715 @ Tu{(B*— g Vs 0, ) | e (43)

Roduced expansion of operator A(z) may be readily derived by using the relation

A@@) = A*@)+ A (). . (44)
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5. INTERACTION

In the angular momentum base, the transition probabilities of emission and
absorption in the interaction of electromagnetic fields for non-zero mass case with
an atomic system may be calculated in the manner similar to that for linear mo-
mentum basis given in I. For emission, the initial state before interaction con-
sists of field state containing n (s, ) particles and atomic state with quantum
numbers k&, m and m for angular momentum, z-component of angular momentum
and parity. The final state in emission consists of field state with (n(s, )41
particles and atomic state with quantum numbers ks, my, 7;. The matrix element
of interaction Hamiltonian for emission is thus given below

<yYr|Ax,0).0|¥1 > = <¢y| <8[A4+*¥(x,0) . 0| V> | Yi>.

— (‘%)‘ (—i)k—ﬂl(Ez_'uB)I/‘(n(s, a)—*—l]i

x| =i( gy ) TealE—pin)

X < Yyl Prrgaam O $)o|va> +i (g ) Teal(B—pin)

x < yrl Y*k.kﬂ.m(o: @) |lo| e > —adi(BE2  p?)ir

X < Yl Ym0, @) .0 ¥ > ], (45)
where we have used egs. (39) and (44) from which it is clear that only A+*(x,0)
part of A(x, 0) contributes to the interaction Hamiltonian for emission, while the

other part i.e., A+(x, 0) contributes to the Hamiltonian for absorption. The matrix
element given by eq. (48) consists of the torms like

< ]/jf‘ Y‘k)k'am(oa ¢) -vl"/f >, (k’ = k+l, IC)
which can be written in terms of quantum numbers of the initial and final states
as follows

< kymgmy| Y% ' m(0, §) - 0| kymgmry >, (46)

where Y*p,x',m(0, ). v is an irreducible tensor of rank k. Applying Winger-Echart
theorem, it follows that only those matrix element like (49) are non-vanishing for
which, the following selection rules are satisfied.

ki = kp+-k, k,+k—1, ase I kf—-—kl s 47
my = mp-t+-m. (48)

The probability for the emission per unit time in transition from y; to yp is pro-
portional to the square of matrix element (48). Henoe it is proportional to [(£*
—p3)in(s, «)+1], which is non-vanishing even for n(s, «) = 0.
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In the absorption the initial state is the same as that of emission while the
final field state consists of (n(s, «)—1] particle. The matrix element of interest
in this case is < Yy A*(z, 0). vYy>

= gy [nle, @ A — Ay

g ok
§ ['( 2k+T ) Jenl(B—p)r]<yy| Yaram(6, ) . 0] s>
]
~i( ;E—E:]i- ) Jk—l[(Ez—ﬂz)ir]

X < Yr| Yikyml@, @) . ©| Yy > —adil(B2—p?)ir]
X < ’ﬁfl Y*k’kam(ev ¢) . vl'/'l >]

In the similar manner as discussed for emission we get the following selection
rulos for absorption,

kf = ky+-k, ke+-k—1 ... I’G{—kl .. (49)

my = mg+m. ... (60)
The probability for abosrption is proportional to the number of particles of a
given kind in the initial state i.e., [(#2—u?)in(s, @)]. The ratio of the probability
of omission to that of absorption is proportional to [n(s, a)+1]/n(s, @).

The selection rules for emission and ahsorption of a particle in this case are
similar to those obtained in the interaction of electromagnotic fields for zero mass
systom with an atom. Transitions can take place between those atomic states
quantum number of which, satisfy the conditions (50) and (51) for omission and
(62) and (53) for absorption. The interaction consists of transition of the atomic
systom from one quantum state to another. This transition results into an
omission or absorption of a particle (which is assumed to have the same mass u,
energy E, angular momentum number k, z-component of quantum number m
helicity a).
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