Problem of the $\Lambda_{n p}$ system with the Hulthen Potential and the Faddeev equations: I

K. Bhadra, H. Roy Choudhury and V. P. Gautam
Indian Association for the Cultivation of Science, Calcutta 700032

(Received 23 February 1973)

Abstract

Making use of the Faddoev equations, the problem of one lambda hyperon and two nucleon three body system is worked out with the interactions botwoen each pair of particles dotermined by the local Hulthon Potential. The potentials between the pairs of particless are takon to be s-wave charge symmetric. The Hilbert-Schmidt separable expansion of the two body t-matrix projects the Faddeev equations in a set of one dimensional coupled integral equations. With this approach we have calculated the values of the binding energy of the Λ hyperon in ${ }_{\Lambda} H^{3}$ for different sets of the low-energy $\Lambda-N$ parameters.

1. Introduotion

The non-relativistic threo-body problem is widely invostigated with the application of Faddeev's (1961a, 1961h, 1963) sot of integral equations, which have uniquo mathematical solution. Lovelace (1964) reformulated these equations in such a way that they lead more directly to the t-matrix of the three body system. A practical solution is usually obtained for separable two particle potentials only.

In this paper we have made a study of the $\Lambda n p$ three body iso-spin zero system in doublet and quartet spin states when the two-particle forces are determined from the local Hulthen potential. A separablo form of the two particle t-matrix and consequently of the interactions is most desirable in the three-body theory, because it roduces two continuous integration variables to one. The problem is thus to have some sort of an optimal soparable representation for the local potential under consideration and to use it in the Faddeev equations. Recently some of the methods have been suggested by Gillespie (1967) and Efimov (1964) in which the two-body t-matrix is expanded in separable form. The method based on the Hilbert-Schmidt theorem (1931) wherein the expansion of the kernol of the Lippmann-Schwinger equation in terms of its eigen functions is used was developed by Weinberg $(1963,1964)$ to eliminate the divergenee of the Born series of the two-body t-matrix.

162

K. Bhadra, H. Roy Choudhury and V. P. Gautam

The problem of the $\Lambda n p$ system was investigated in the frame work of the Faddoev formalism and the binding energy calculations of ΔH^{3} were carried out by Hetherington et al (1965), Schick et al (1967), Roy Choudhury et al (1973), but the two-body potentials usod were the non-local soparable potentials of Yamaguchi form. Our rosults for the binding energy of ΛH^{3} with two body local Hulthen potential are compared in Section 4 with the results of Hetherington et al (1965) and Rov Choudhury et al (1973) who made use of the non-local separable potential of Yamaguchi type.

Each of the three particles in the hypertriton is a spin $\frac{1}{2}$ fermion and the two-body potentials between the pairs of the particles are taken to be s-wave spin dependent. So the spin of the three particle Aup system is oither ${\underset{2}{2}}_{\frac{1}{2} \text { or } 3 / 2 .}$ We neglect the neutron-proton mass difference and treat the $\mathrm{N}-\mathrm{N}$ and $\Lambda-\mathrm{N}$ potentials to be charge symmetric. Tn the calculations only three two-body states have beon considered. They are the $\mathbf{N}-\mathrm{N}$ in triplet spin state and the $\Lambda-\mathrm{N}$ in singlet and triplet spin states. The nucleons are labelled 1 and 3, the lambda particle is numbered 2 , the nucleons from the two dimensional roprosentation of $\mathrm{SU}(2)$ and Λ helongs to the singlet representation.

2. T'wo Body t-Matrix with Hulthen Potentials

The two-body potentials in all the threo chamels are chosen to be of Hulthen type which in the configuration space are of the form

$$
\begin{equation*}
V(r)=-V_{0} \Theta \operatorname{xp}(r / R-1)^{-1} \tag{1}
\end{equation*}
$$

where the parameters V_{0} and R are different for $N-N$ triplet, $1-\mathrm{N}$ singlet and A-N triplet interactions. In the momentum space the Fourior transform of $V(r)$ reads as

$$
V^{\prime}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)=\int \exp \left(i\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \cdot \boldsymbol{r}\right) V(r) \mathrm{d}^{3} r,
$$

Its l th partial wave projection is

$$
\begin{equation*}
V_{l}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right)=\int_{-1}^{1} \mathrm{~d} x l^{\prime}\left[\left(k^{2}+k^{\prime 2}-2 k k^{\prime} x\right)^{\frac{1}{2}}\right] P_{l}(x) \tag{3}
\end{equation*}
$$

This appears in the kernal of the general Lippmann-Schwinger oquation for the two body t-matrix off the energy shell

$$
\begin{equation*}
t_{l}\left(k, k^{\prime} ;-\frac{Q^{2}}{2 \mu}\right)-V_{l}\left(k, k^{\prime}\right)-\mu_{\infty} \int_{l}\left(k, q ;-\frac{Q^{2}}{2 \mu}\right) V_{0} \frac{\left(q^{2}+Q^{2}\right)}{} V_{l\left(q, k^{\prime}\right) q^{2} \mathrm{~d} q .} \tag{4}
\end{equation*}
$$

where μ is the reduced mass of the two interacting particles and as the two-body energy is always negative in our analysis we have defined it to be $-\left(Q^{2} / 2 \mu\right)$.

The relation of the partial on shell t-matrix to the corresponding phase shifts is the following one

$$
\begin{equation*}
-\frac{\mu}{2 \pi} t_{l}\left(k, k^{\prime} ; \frac{k^{2}}{2 \mu}\right)=\frac{1}{k} \sin \delta_{i}(k) \exp \left(i \delta_{l}(k)\right) \tag{5}
\end{equation*}
$$

As we are investigating the bound state problem of tho theee particles. the total enorgy E in the c.m.s. of the threo particles is negative. Thus the twobody sub-system can have only negative onergy. Further, suffix l will be suppressed because we have takon into account only s-wave two body interaction. As done by Kharchenko \& Petrov (1969) following the Hillert-flchmidt method (1931) the two-body t-matrix can be oxpanded in the following seties in separable form

$$
\begin{equation*}
t\left(k, k^{\prime} ;-\frac{Q^{2}}{2 \mu}\right)=-\sum_{n=1}^{\infty} \frac{1}{\eta_{n}{ }^{-1}(Q)^{-1}} g_{n}(k, Q) g_{n}\left(k^{\prime}, Q\right) \tag{6}
\end{equation*}
$$

The separable expansion of the two-body t-matrix is very useful for the threo-body calculations in Faddeev's formalism. Taking more number of terms in the series (eqn. 6), the number of eoupled integral equations for three-body t-matrix gets inereased which makes the numerical computations more cumbersome. Details related to eq. (6) appoar in the Appendix. The convergence of expansion (6) is discussed in detail by Kharchenko of al (1969).

The Hulthen potential parameters r and R for $A-N$ singlet and triplet channels ars evaluated from the respective seattering length and effective range by making use of the following relations of Kharehenko at al. (1969)

$$
\left.\begin{array}{c}
\|--2 X R{\underset{n i 1}{\infty}}_{\sum_{n=1}^{\infty}}\left[\left.n\left(n^{2}-X\right)\right|^{1}\right. \tag{7}\\
r-\frac{2}{3} a+\frac{16}{3} X R^{3}{n^{2}}_{n=1}^{\infty} \frac{3 n^{4}-3 n^{2} X-X^{2}}{n^{3}\left(n^{2}-X\right)^{3}}
\end{array}\right\}
$$

For lambda-nucleon seattering low-energy parametors a and r in singlet and triplet spin states, a number of sets are available in the literature on the basis of theoretical and experimental invostigations. For our analysis of hypertriton prohlem, the sets of Hotherington et al (1965), Alexander et al (1966, 1967, 1968), Harudon et al (1967), Beck et al (1965), Fast et al (1969), Diotrich of al (1964), Sechi-Zorn et al (1968), de Swart et al (1962) we have picked up. and the corrosponding Hulthen potential paramoters ohtained by us are given in table 3. For six sots of lambda-nucleon scattoring lengths and effective ranges the convergence of series (7) is shown in table 1 and table 2. Table 1 illustrate the convergence of the series R / a and table 2 that of r / R upto six terms. How the series for r / a converges with n and how it depends on the variation of $X\left(v R^{2}\right)$ cian be seen in figure 1 .

Fig. 1. r/a is plotied against $X\left(v R^{2}\right)$ for the Hulthen potential. The numbers marked on the corresponding curves indicate tho number of terms takon in eq. (7) to evaluate r / a. Two barriers T and S shown in the figure are for Herndon and Tang's Triplet and Singlet $\mathrm{A}-\mathrm{N}$ low enorgy parameters for Set \mathbf{I}.

3. Thref Body Equations and Method for Calculating Bi

In the set of three-body coupled integral equations we discuss in this section, the off-shell two body t-matrix appears in the kernel. Fven if wo put the twobody t-matrix in one term separable form we face three coupled integral equations. The number of coupled integral equations multiply further if we take into account more number of terms in the separable expansion (6) of the two body t-matrix. Presontly, we are doing the three-hody calculations with only the first term of eq. (6). The s-wave set of integral oquations for the $\Lambda n p$ three particle scaltering matrix obtained from the Faddeev type multiple scattoring analysis by Schick et al (1967) is as follows

$$
\begin{equation*}
R_{a \beta}\left(q, q^{\prime}\right)=K_{\lambda \beta}\left(q, q^{\prime}\right)+\sum_{\gamma \lambda} \int_{0}^{\infty} K_{\alpha \gamma}(q, k) \tau^{\gamma_{\lambda}}(k) R_{\lambda \beta}\left(k, q^{\prime}\right)(2 \pi)^{-2} k^{2} \mathrm{~d} k \tag{8}
\end{equation*}
$$

with

$$
\begin{align*}
K_{\alpha \beta}\left(q, q^{\prime}\right)=W_{\alpha \beta} N_{\alpha} N_{\beta} & {\left[\overline{\left(a_{\alpha \beta} B_{\alpha \beta}-b_{n \beta} A_{\alpha \beta}\right)\left(a_{\alpha \beta} \overline{C_{a \beta}}+c_{\alpha \beta} A_{\alpha \beta}\right)} \log \frac{a_{\alpha \beta}+a_{\alpha \beta}}{A_{\alpha \beta}-a_{\alpha \beta}}\right.} \\
& +\frac{b_{\alpha \beta}}{\left(b_{\alpha \beta} A_{\alpha \beta}-a_{\alpha \beta} B_{\alpha \beta}\right)\left(b_{\alpha \beta} C_{\alpha \beta}+c_{\alpha \beta} B_{\alpha \beta}\right)} \log \frac{B_{\alpha \beta}+b_{\alpha \beta}}{B_{\alpha \beta}-b_{\alpha \beta}} \\
& \left.\left.+\frac{c_{\alpha \beta}}{\left(a_{\alpha \beta} C_{\alpha \beta}+c_{\alpha \beta} A_{\alpha \beta}\right)\left(b_{\alpha \beta} C_{\alpha \beta}+c_{\alpha \beta} B_{\alpha \beta}\right)}\right] \log \frac{C_{\alpha \beta}+c_{\alpha \beta}}{C_{\alpha \beta}-c_{\alpha \beta}}\right] \tag{9}
\end{align*}
$$

where,

$$
\left.\begin{array}{ll}
A_{\alpha \beta}=q^{\prime 2}+\left(\frac{m_{\alpha}}{M_{\alpha}}\right)^{2} q^{2}+\beta^{2} & ; a_{\alpha \beta}=2 q q^{\prime} \frac{m_{\beta}}{M_{\alpha}} \\
B_{\alpha \beta}=q^{2}+\left(\frac{m_{\alpha}}{M_{\alpha}}\right)^{2} q^{\prime 2}+\beta_{\beta^{2}}^{2} & ; b_{\alpha \beta}=2 q q^{\prime} \frac{m_{\alpha}}{M_{\beta}} \tag{10}\\
C_{\alpha \beta}=E-\frac{M_{\beta}}{2 m_{\alpha} m_{\alpha \beta}} q^{2}-\frac{M_{\alpha}}{2 m_{\beta} m_{\alpha \beta}} q^{\prime 2} & ; c_{\alpha \beta}=q q^{\prime} \frac{1}{m_{\alpha \beta}} \quad \vdots
\end{array}\right\}
$$

and

$$
\left.\begin{array}{rl}
N_{\alpha} & =\frac{2}{\sqrt{\pi R^{3}}}(1+Q R)^{¥}(1+2 Q R), \tag{11}\\
\beta & =1+\frac{Q R}{R}
\end{array}\right\}
$$

where Q is connected with two body energy and Q for the two particles in α th channel is given by

$$
Q=\left[2 \mu_{x}\left(-E+\frac{1}{2} q^{\prime 2} \begin{array}{cc}
M \tag{12}\\
m_{x} M_{x}
\end{array}\right)\right]^{1}
$$

where q^{\prime} is the total momentum of the two partieles in α the channel in e.m.s. of the three particles.
m_{α} is the mass of the spectator particle in the α th two particle channol, M is the total mass of all three particles, $M_{\alpha}-M-m_{\alpha}$ and $m_{\alpha \beta}=M-m_{\alpha}-m_{\beta}$. The Greek indices in this paper run from 1 to 3 for $\Lambda-\mathbf{N}$ singlet. $\mathrm{N}-\mathrm{N}$ triplet and A-N triplot interactions respectively.

In eq. (8) the matrix $\tau^{\alpha \beta}$ is given by

$$
\tau^{\alpha \beta}=\left[\begin{array}{ccc}
\tau_{1} & 0 & 0 \tag{13}\\
0 & \tau_{2} & 0 \\
0 & 0 & \tau_{3}
\end{array}\right]
$$

where again subscripts $1,2,3$ refer to the respective two particle channels as indicated above. τ 's are related to the respective two-body t-matrices eq. (6) when it is truncated after first term. The t-matrix is written after dropping the suffix $n=1$ for the first torm as

$$
\begin{equation*}
t\left(k, k^{\prime} ;-\frac{Q^{2}}{2 \mu}\right)=g(k, Q) \tau g\left(k^{\prime}, Q\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau=-\frac{\pi^{2}}{\mu} \frac{1}{\eta^{-1}-1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
g(k, Q)=N(Q) /\left(k^{2}+\beta^{2}\right) \tag{16}
\end{equation*}
$$

The matrix $\left\lceil W_{\alpha \beta}\right\rceil$ for $\Lambda n p$ doublet spin state is

$$
\left|W_{\alpha B}\right|-\left[\begin{array}{ccc}
2 & \sqrt{3 / 2} & -\sqrt{3 / 2} \tag{17}\\
\sqrt{3 / 2} & 0 & -1 / \sqrt{2} \\
-\sqrt{3} / 2 & -1 / \sqrt{2} & -\frac{1}{2}
\end{array}\right]
$$

and that for quartet spin state is

$$
\left.\mid W_{\alpha R}\right\rceil=\left[\begin{array}{rrr}
0 & 0 & 0 \tag{18}\\
0 & 0 & \sqrt{ } 2 \\
0 & \sqrt{ } 2 & 1
\end{array}\right]
$$

To find out the binding energy B_{A} we ovaluate the Fredholm doterminant of the s-wave sot of integral eq. (8) for a given value of E and ropeat the calculations till we get the value of E say E_{0} for which the determinant becomes zero. For each set of low energy lambia-nucleon parameters the same procodure is followed and E_{0} is found out. Then to get B_{A}, the deateron binding onorgy is subtracted out of E_{0}. The $\mathrm{N}-\mathrm{N}$ triplet spin state Hulthen paramoters, wo have worked with are fittod to the deuteron binding energy, $2 \cdot 225 \mathrm{MoV}$ and the two nucleon triplet spin state scattering length, $5 \cdot 378 F$ and the values of those parameters are $r=1.8509 F^{-2}$ and $R \ldots 0.8708 F$.

4. Results and Discussion

Our results for the three body binding energy of the Anp system are recorded in table 3. This table contains twelve sets of low energy lambda-nucleon scattering parameters i.e., the scattering length and effective range. The Hulthen potential parameters v and R obtained by us are also appearing there. While reporting the valuos of B_{Δ} for ${ }_{\Lambda} I^{3}\left(J=\frac{1}{2}\right)$ from the present calculations with two-body local Hulthen potential in Table 3, we have also put the B_{A} values obtained when the two-body interaction is determined by the non-local separable potential of Yamaguchi form by Roy Choudhury et al (1973). As is evident from table 3 the general tendency of the local Hulthen potential calculations is to suppress the values of B_{Λ} as compared to their counterparts obtained from NLS potential calculations by Roy Choudhury ot al (1973). The possibility of the $\Lambda \operatorname{np}\left(J=\frac{1}{2}\right)$ bound state disappeared for the present calculation for the sets 7 to 12. Three values of B_{A} obtained in increasing order are $\cdot 000, .096$ and
Table 1. The values of R / a are given for $n=1, \ldots .6$. The convergence of the series R / a for the six sets of

Set	State	$\left(\begin{array}{c} a \\ (\mathbf{F}) \end{array}\right.$	$\stackrel{\boldsymbol{r}}{\mathbf{F})}$	$v R^{2}$	R/a					
					$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$
1^{a}	Singlet	-2.76	3.05	0.6649	-0.2520	-0.2399	-0.2369	-0.2357	-0.2351	-0.2348
	Triplet	-1.96	3.50	0.5806	-0.3613	-0.3404	-0.3351	-0.3330	-0.3320	-0.3314
2^{b}	Singlet	-3.30	1.83	0.7754	-0.1448	-0.1400	-0.1387	-0.1382	-0.1380	-0.1379
	Triplet	-0.64	3.70	0.3829	-0.8058	-0.7425	-0.7265	-0.7201	-0.7169	-0.7151
$3{ }^{\text {r }}$	Singlet	-4.60	1.70	0.8299	-0.1025	-0.0998	-0.0991	-0.0989	-0.0987	-0.0987
	Triplet	-0.53	3.88	0.3482	-0.9366	-0.8593	-0.8399	-0.8321	-0.8282	-0.8260
$4^{\text {d }}$	Singlet	-3.60	2.00	0.7751	-0.1451	-0.1402	-0.1390	-0.1385	-0.1382	-0.1381
	Triplet	-0.53	5.00	0.3134	-1.0954	-1.0021	-0.9785	-0.9690	-0.9643	-.0.9617
5	Singlet	-2.89	1.94	0.7467	-0.1696	-0.1633	-0.1617	-0.1610	-0.1607	-0.1605
	Triplet	-0.71	3.75	0.3967	-0.7604	-0. 7017	-0.6868	-0.6808	-0.6780	-0.6762
$6^{\boldsymbol{a}}$	Singlet	-2.40	2.00	0.7123	-0.2020	-0.1935	-0.1934	-0.1905	-0.1901	-0.1898
	Triplet	-0.52	4.00	0.3412	-0.9654	-0.8857	-0.8655	-0.8574	-0.8534	-0.8512

[^0]Table 2. For $n=1, \ldots, 6$, the values of $r \mid R$ are given here. The convergence of the series $r_{i} R$ for the six

Set	State	$\underset{(F)}{a}$	$\stackrel{r}{(F)}$	$r R^{2}$	$r!R$					
					$n=1$	$n=2$	$n=3$	$n=4$	$n=4$	$n=6$
			3.05	0.6649	6.0160	5.1021	4.8722	4.7800	4.7339	4.7075
$1{ }^{\text {a }}$	Singlet	-2.76							5. 4194	5. 3890
	Triplet	-1.96	3.50	0.5806	6.8900	5.8428	5.5785	5.4725		
$2^{\text {b }}$	Singlet	-3.30	1.83	0.7754	5. 1586	4.3642	4.1650	4.0852	4.0453	4.0225
						S. 8030	8.3847	8.2162	8.1318	8.0834
	Triplet	-0.64	3.70	0.3829	10.4466		3.8800	3.8043		3.7450
$3{ }^{\text {c }}$		-4.60	1.70	0.8299	4.8198	4.0680			3.7666	
			3.88	0.3482	11.4876	9.6615	9.1960	9.0085	8.9144	8.8605
$4^{\text {d }}$	Singlet Triplet	$\begin{aligned} & -3.60 \\ & -0.53 \end{aligned}$	2.00	0.7751	5.1606	4.3659	4.1667	4.0869 9.9757	$\begin{aligned} & 4.0469 \\ & 9.8697 \end{aligned}$	4.02419.8090
			5.00	0.3134	12.7632	10.7110	10.1870			
$5{ }^{\text {e }}$	Singlet Triplet	-2.89	1.94	0.7467	5.3569	4.5362	4.3302	$\begin{aligned} & 4.2477 \\ & 7.9389 \end{aligned}$	7.8578	4.1829
										7.8113
			3.75	0.3967	10.0832	8.5020	8.108			
$6^{\text {d }}$	Singlet Triplet	$\begin{aligned} & -2.40 \\ & -0.52 \end{aligned}$	2.00	0.7123	5.6156	$\begin{aligned} & 4.7593 \\ & 9.8556 \end{aligned}$	$\begin{aligned} & 4.5442 \\ & 9.3793 \end{aligned}$	4.4580	4.4480	9.0360
								9.1874	9.0911	
			4.00	0.3412						

-

Table 3. Binding energy B_{A} of the .1 hyperon in $\left(J=\frac{1}{2}\right) \operatorname{Inp}$ system for several sets of the low-energy $\Lambda-\mathbf{N}$ Hulthen Potential parameters. The N-N triplet spin state Hulthen Potential parameters
used here are $R=0.8708 F$ and $r=1.85199 F^{-2}$.

Set	$\mathrm{R} \circ \mathrm{f}$.	${ }^{\text {A }}$ - ${ }^{1} \mathrm{~S}_{0}$				$\underline{\lambda}-\mathrm{N}^{3} \mathrm{~S}_{1}$				$B_{1}(\mathrm{MeV})$		$\begin{aligned} & \text { Gound } \\ & \text { state } \\ & \text { spin of } \\ & \Lambda^{H^{3}} \end{aligned}$
		$\stackrel{a}{(\underset{F}{F})}$	$\stackrel{r}{F})$	$\left(\begin{array}{c} \text { "-2 } \\ \left({ }^{\prime \prime}\right. \end{array}\right.$	$\stackrel{R}{(F)}$	$\stackrel{a}{(F)}$	$\stackrel{r}{(\underset{F}{F})}$	$\stackrel{v}{\left(F^{-2}\right)}$	$\begin{gathered} R \\ (F) \end{gathered}$	Present C'alculations	NLS ${ }^{\text {k }}$	
1	a	-2.76	3.05	1.5839	0.6479	-1.96	3.50	1.3763	0.6495	0.096	0.625	1/2
\cdots	b	-3.30	1.83	3.7466	0.4549	-6. 64	3.70	1.8278	0.4577	0.310	1.195	1/2
3	c	-4.60	1.70	4.1836	0.4454	-11.53	3.88	1.8161	0.4378	0.738	1.941	1/2
4	d	-3.60	2.00	3.1377	0.4970	-0.53	500	1.2064	0.5097	0.236	1.010	1/2
J	e	-2.89	1.94	3.4713	0.4638	-0.71	3.75	1.7213	0.4801	0.163	0.900	1/2
6	${ }^{\text {d }}$	-2.40	2.00	34320	0.4556	-0.52	4.00	1.7412	0.4426	0.009	0.404	1/2
7	e	-2.46	3.87	10846	0.7457	-2.17	4.50	0.8842	0.7856	<0	0.203	1/2
s	f	-1.80	2.80	2.0651	0.5413	-1.60	3.30	1.6173	0.5858	<0	0.188	1/2
9	g	-1.70	2.50	25490	0.4912	-1.50	2.00	3.8749	0.4039	<0	0.302	3/2
10	h	-2.00	5.00	07485	0.8344	-2.20	3.50	1.3315	0.6719	<0	0.042	3/2
11	i	-1.36	3.06	1.9327	0.5284	-1.62	2.93	1.9715	0.3416	<0	0.016	3/2
12	j	-1.80	2.06	3.5042	0.4336	-0.40	4.00	1.9284	0.398:	<0	0.050	1/2

[^1]
170

K. Bhadra, H. Roy Choudhury and V. P. Gautam

- 163 MeV for the low-energy Λ-N parameters of de Swart and Dullemond (1962), Herndon and Tang (1967), and Herndon, Tang and Schmid (1965) respectively. The values of B corresponding to the sets 1 and 6 are within the limits of experimental value (.06土.06) MeV of Bhom et al (1968).

For $\Lambda n p$ system in $J=3 / 2$ state we searched for the bound states corresponding to all the twolve sets lut no evidence is found in favour of it. The bound state formation in $J=3 / 2$ state in feasible when the threstbody calculations are done with two terms in expansion (6) of the two-body t-matrix. Our results in casce of $J-3 / 2$ bound state matel with the remarks of Herndon \& Tang (1.68) and Keyes et a (1968).

Sets 9, 10, and 11 are to be discarded because they favour the Anp ground state in $J=3 / 2$ state in contradiction to the experimental findings which prodict $J=\frac{1}{2}$ as the spin of the ${ }_{A} I^{3}$ ground state (Rayet et al 1966). For these three sets, the attractive force due to NLS potential was of sufficiont strength to form the bound state of the Anp system in $J=3 / 2$ as well as in $J=\frac{1}{2}$ state. It is interesting to note that the force due to the Hulthen potential is weaker to the extent that for these sets it is not sufficient to form a bound state even in $J=3 / 2$ spin state.

Acknowledgements

We are grateful to Professor D. Basu, Director, Indian Association for the Cultivation of Science, and Professor N. C. Sil for their kind interest in this work. All numerical work were carried out on (DC: 3600 at the T.I.F.R., Bombay.

Appendix

Similar to the separable expansion of $t\left(k, k^{\prime}:-\frac{Q^{2}}{2 \mu}\right)^{\text {the }} V_{l}\left(k, k^{\prime}\right)$ of eq. (3) for $l=0$ can bo expanded in the separablo form

$$
\begin{equation*}
V\left(k, k^{\prime}\right)=-\sum_{n=1}^{\infty} \eta_{n}(Q) g_{n}(k, Q) g_{n}\left(k^{\prime}, Q\right) \tag{Al}
\end{equation*}
$$

where $g_{n}(k, Q)$ and $\eta_{n}(Q)$ are the eigenfunctions and eigenvalues as appearing in the equation

$$
\begin{equation*}
-\frac{1}{2 \pi^{2}} \int_{0}^{\infty} I^{\prime}(k, q)\left(q^{2}+Q^{2}\right)^{-1} g_{n}(q, Q) q^{2} \mathrm{~d} q=\eta_{n}(Q) g_{n}(k, Q) \tag{AI}
\end{equation*}
$$

The orthonormal property of the ligen functions is given by equation

$$
\begin{equation*}
\frac{1}{2 \pi^{2}} \int_{0}^{\infty} g_{n}(k, Q) g_{n}(k, Q)\left(k^{2}+Q^{2}\right)^{-1} k^{2} \mathrm{~d} k=\delta_{n}^{\prime} . \tag{A3}
\end{equation*}
$$

The series for t-matrix (6) and for kornel (A1) converges absolutely and uniformly with respect to both tho variables k and k^{\prime}, (Kharchenko et al 1969).

The explicit expressions for η_{n} and g_{n} are as follows

$$
\begin{align*}
& \eta_{n}(Q)=X[n(n+2 Q R)]^{1}, X=v R^{2} \text { and } v=\frac{2 \mu V_{0}}{\hbar^{2}} \\
& g_{n}(k, Q)=C_{n}(Q) \sum_{\nu=1}^{n} A_{n v}(Q) v \eta_{v}^{-1}(Q)\left[k^{2}+Q^{2}+v \eta_{v} v^{-1}(Q)\right\rceil^{-1}, \\
& A_{n v}(Q)-(-1)^{\cdot+1} \prod_{v=1}^{v} \frac{n-\sigma+1}{n+\sigma-1} \frac{\eta_{0}(Q)}{\eta_{\sigma+n \cdot 1}(Q)}, \tag{A4}\\
& C_{n}^{2}(Q)=\frac{\pi n X^{2 n-1} R}{\mu(n!)^{4}}\left[\eta_{2 n}(Q) \prod_{v=-1}^{n-v} \eta_{v}^{2}(Q)\right]^{1}, \\
& C_{1}^{2}(Q)-\frac{\pi}{\mu} \frac{X R}{\eta_{2}(Q)} .
\end{align*}
$$

Refrerences

Alexandar G., Banary O.. Karshon U., Shapira A.. Yakutiah (y., Engelmann B., Filthuth H.. Fridman A. \& Schiby B. 1966 Phys. Lett. 19, 715.
Aloxander G., Karshon U., Nhapira A., Yekutielı G.. Engelman R., Filthuth H. \& Lughofer W. 1968 Phys. Rer. 173. 145:.
tlevandor (x. \& Karshou C. 1967 Procomedings of Second Thternational C'onfemene on High Enorgy Physics and Nuclear Structure at the Weizmann Instatute of Seience. Rehovoth. Edited by Alexander G., North Holland Publishing C'ompany, Amsterdam. p. 36.
Beok F. \& Gutsch U. 1965 Phys. Lett. 14, 133.
Brohm G., Klabuhn J., Kmekor [T.. Wysotski F., Coremans (i., Gajewaki W., Mayeur C., Sacton J., Vilain P.. Wilquest G., O’Sullivan F., Stanely D., Davis D. H., Fletcher E. R., Lovell S. P.. Roy N. C'., Wickens J. H., Filipkowski A., Garbowska-l'niewska (i . Pnirwski T., Skrzypeazak E., Sobezik T., Allon J. E., Bull V. A., ('onwre A. P., Fishwick A. \& March P. V. 1968 Nucl. Phys. B4. 511.
('ourant R. \& Hilbert 1). 1931 Methoden der Mathematischen Physik Vol. 1. Berlin. Verlag von J. Springer.
DiAtrich K., Mang H. J. \& Fold R. 1964 Nucl Phys. 50, 177.
de Swart J. J. \& Dullemond C. 1962 Ann. Phys. (N.Y.) 19, 458.
Ebel G., Pilkuhn H. \& Steiner F. 1970 Nucl Phys. B17 1.
Efimov V. N. 1964 Compt Rend du Congr Intern de Physique Nucleaire, Paris, Vol. II, p. 258; Preprint JINR, 1966 p. 2546, p. 2890; Thesis JJNK. 1966.
Fuddeev L. D. 1961a Sov. Phys. JETP 12, 1014; 1961b Dokl. 6, 384, (1963), 7, 000.
Fast G. Helder J. C. \& de'Swart J. J. 1969 Phys. Rcr'. Lett. 22, 1453.
Qillespie J. 1967, Phys. Rev. 160, 1432.
Hernion R. C. \& Tang Y. C. 1965 Phys. Rev. 137, B294.
Herndon R. C. \& Tang Y. C. 1967 Phys. Rev. 159, 853.
Herndon R. C. \& Tang Y. C. 1968 Phys. Rev. 165, 1093,

172

K. Bhadra, H Roy Choudhury and V. P. Gautam

Hetheringtion J. H. \& Schick L. H. 1965 Phys. Rev. 339, B1 164.
Keyon G., Derrick M., Fields 'T., Hyman L. (i., Fotkovich J. B., Mekenizic J., Rilry B. \& Wang I. T. 1968 Phys. Rev. Lett. 20, \&19.
Kharchenko V. F. \& Petrov N. M. 1969 Nucl. Phys. A137, 417.
Lovolace C. 1964. Phys. Rev. 135. B1225,
Rayet M. \& Dalitz R. I. 1966 Ninovo. Cimento 46A, 786.
Roy Choudhury H. \& Gautam V. P. 1973 Phys. Kec. (i. 7. 74.
Scadron M. \& Weinherg S. 1964, Phys. Ren. 133, 1589.
Schick L. H. \& Hetherington J. H. 1967 Pinys. Rev. 156, 1602.
Socht Zorn B., Kahou B.. Twitty I. \& Burnstein R. A. 1968. Hhys. Kev. 175, 1735.
Sitenko A. G.. Kharrhenko V. F. \& J'etrov N. M. 1968, Phus. Let'. 28B, 308.
Weinberg S. 1963 Phys. Rer. 131. 411.

[^0]: a-Herndon et al (1967). b-Beck et al (1965). c-Dietrich et al (1964). d-de Swart et al (1962). e-Herndon et al (1965).

[^1]: l-Roy Choudhury et al (1973). k-See Roy Choudhury et al (1973) for sets 1 to 3 and 6 to 11 and j for sets 4.5 and 12.

