Indian J. Phys. 47, 567-569 (1973)

Unit cell and space group of L-serine dimorph

B. KHAWAS

Division of Agricultural Physics, Indian Agricultural Research Institute, New Delhi-12.

(Received 4 December 1972, revised 24 January 1973)

Although Shoemaker et al (1953) reported the crystal structure of DL-serine, no work has yet been reported on the crystal structure of L-serine. Crystals of L-serine $CH_2(OH)CH(NH_2)COOH$ were grown by slow evaporation of aqueous solution of pure sample obtained from British Drug House Ltd., U.K., at room temperature. Rhombic needle shaped single crystals and microcrystals were obtained. Dimorphism was detected from powder photography. The needle axis of the single crystals, which are uniaxial, are parallel to c-axis. Normal beam Weissenberg technique was used to record intensities on layers kh0 and hk1. A good powder pattern of the microcrystals was recorded on a powder camera of radius 57.4 mm. using CuK_e radiation. This has been indexed. Both crystal forms have orthorhombic symmetry.

Coll dimensions as revealed by Weissenberg and rotation photographs were refined from powder data (Table 1). Constants of analysis for α -L serine were $\sin^2 \theta_{100} = 68 \times 10^{-4}$, $\sin^2 \theta_{010} = 80.1 \times 10^{-4}$ and $\sin^2 \theta_{001} = 190.6 \times 10^{-4}$. $\sin^2 \theta$ values were observed within an accuracy of 4×10^{-4} near $2\theta = 62^{\circ}$, and the axial lengths so obtained are $\cdot a = 9.349 \pm 0.006$ Å, $b = 8.614 \pm 0.006$ Å and $c = 5.59 \pm 0.004$ Å. Density of these crystals $\rho = 1.54$ g cm⁻³, measured by flotation method agrees with the calculated density $\rho = 1.552$ g cm⁻³ for Z = 4. The conditions limiting possible reflections are : h00, h = 2n+1 and l00, l = 2n+1. The probable space group is therefore $P2_122_1$ for an optically active molecule.

Powder data of β -L serine (Table 1) has been analysed by Lipson's (1949) unethod Constants of analysis were found the same as for α -L serine except $\sin^2\theta_{100} = 17 \times 10^{-4}$. The unit cell 1.as $a = 18.689 \pm 0.012$ Å, $b = 8.614 \pm 0.006$ Å, and $c = 5.59 \pm 0.004$ Å. Crystalline density as determined by a small specific gravity bottle is 1.54(5) g cm⁻³ and Z = 8. Indices for each line were given within a discrepancy of $\sin^2\theta_{obs} \sim \sin^2\theta_{calc} = 5 \times 10^{-4}$ and the conditions limiting Possible reflections are nil. The probable space group for an optically active molecule is therefore P222. Determination of the crystal structure is in progress.

B. Khawas

Table 1

	$\alpha - \mathbf{L}$ serine $10^4 \times \sin^2 \theta$			β -L serine $10^4 \times \sin^2 \theta$	
Indices	Observed (Calculated	Indices	Observed	Calculated
			300	157	153
			001	190	191
			310	230	233
101	254	259	201	254	259
011	272	271	011	272	271
200		272]	400		272 ∫
		0.34	111	293	288
020	323	320 388	020 220	323 389	320 388
120	389	300	311	425	424)
			500	440	425
201	463	463	401	463	463
021	506	511	510	506	5051
041	000	011	021	000	511 }
211	543	543	411	543	543
121	574	579			
220	593	592	420	593	592
310	694	692	610	694	692
002	762	762	002	762	762
102	826	830	202	826	830
		613	330	870	874
031	909	911	031, 212	909	911
131	983	980	402	1030	1034
202	1030	1034	331	1063	1034
400	1090	1088	800	1005	1088
122	1147	1151	222	1147	1151
122	1147	1101	431	1184	1184
401	1282	ך 1279 ב	801	1282	12791
040		1282	040		1282
140	1350	1350 1	240	1350	1350 1
222	1300	1355	422	1300	1355
420	1403	1408	820	1403	1408
041	1471	1472			
141	1543	1540	241	1543	1540
421	1602	1599	821	1602	1599
322	1691	1695			
232	1752	1755	432	1752	1755
013	1796	1796			
340	1899	1894	640	1899	1894
~	1050	1071	541 10, 11	1970	1897 ∫ 1971
511	1970	1971	10, 20, 150	2018	2020
332	2093	2095	632	2018	2020
422	2168	2171	822	2168	2171
422	2108	2171	912	2217	22201
			513		2221
223	2310	2308	423	2310	2308
530	2421	2421	10. 30	2421	2421
512	2546	2543	10, 12	2546	2543
233	2705	2708	433	2705	2708
620	2770	2768	12, 20	2770	2768
060, 413	2885	2884	060, 813	2885	2884
540	2985	2982	10, 40	2985	2982
333	3053	3048 2	633	3053	3048
004		3050	004	0105	3050
630	3167	3169^{-1}	12, 30	3167	3169-

The author is grateful to Dr. S B. Bhattacharya, Reader, Department of Pure Physics, Calcutta University for his guidance in this work

References

Lapson H. 1949 Acta Cryst. 2, 43. Shoomaker D. P. Barton R. E. Donohue J. & Lu C S 1953 J. Amer. Chem. Soc., 6, 241.

Indian J. Phys. 47, 569-571 (1973)

Thermoluminescence and isothermal annealing kinetics of the F-centres in X irradiated KCl and KCl:KNO₃

M. L. MUKHERJEE

Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur-2.

(Received 23 December 1972, revised 3 February 1973)

In recent years several papers (Jain & Mahendra 1965, Partridge & May 1969) have been published for and against the view that direct correlation exists between F-centre bleaching and thermoluminescence in alkali halidos, especially KCI, pure and doped This note, which reports the annealing characteristics of F centre in KCl and KCl : KNO₃ single crystals and the accompanying thermal glow, strikingly supports the view that no connection exists between the F-centre decay and thermoluminescence (Partridge & May 1969).

Single crystals of KCl and KCl doped with KNO_3 (1.8×10^{-2} mole; determined by infrared absorption technique (Wardzynski 1958)) were grown in our laboratory from analar BDH salts and then cleaved to proper size for optical absorption measurements with a Beekman DU spectrophotometer. Thermoluminescence of these samples were measured with the help of a photomultiplier and a quick response optical recorder described elsewhere (Multherjee 1968). For the production of F-centres a Philips sealed X-ray tube (Cu-target) was employed.

The concentration of F-centres with the same dose of X-ray irradiation at 28° C (room temperature) are found to be higher for KCl : KNO₃ than that for pure KCl (Mukherjee & Bose 1966). When the doped crystal is irradiated and stored in the dark at room temperature the F-centre concentration decreases with time over a long period (~200 minutes). For the pure crystal there is very little docay of the centres with time and the concentration seems to attain a stable value withun a few minutes. It has been further observed that room temperature bleaching of F-centres in pure KCl is accompanied by a detectable afterglow; in the case