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On the theory of torsional wave propagation in a solid
elastic cylinder
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A now t)i.oory han boon dovoloped for t]io torsional wavo propagation in a 
.solid clastic cylindor. The method consiste of an ox})ansion of the 
displacomont fumition in terms of Huital>le orthogonal polynomial.
Tiio boundary cMmdition yields the frequency equation which reproduc(^s 
tJû  multimode system to a rcmarkal>le accuracy. Some mnnerical 
evaluations of the first few modes of the dispersion system and of tlû  
consecutive ciit-c)ff froqucncios arc also pro(luc()d. Tlû  present work 
has be<ui successfully utilized in solving an inl\omog(uieous elastic wave­
guide problem.

1. Introduction

l^xtra(5tion of information from tlie PocliJiainmer (equation for tjû  dispersion of 
tor.sional w ave propagat ion in a solid elastic cylindor wa.s aceomplislu^l by Owen 
(1950) and Davis (1956). IMie cliaractoristic equation is simple in appearan<;o 
but. its traiisccmdental nature liinders oui’ inquisitions in a number of ways. More­
over in some cases tliis equation becomes too much cumbersome  ̂ to deal with. 
Ĵ 'or instance, inliomogcmeous wavi^-guide problems hav<̂  remained unsolved or 
atleast partly solv<xl oven for the simplest of case.s. UnfortunatiJy no tht^ory is 
available in the literature whicli can replace the above one in dealing with a number 
of modes of this type of wave propagation in cylinders.

The method of expansion of displacement functions devised by Mindlin & 
ills co-workers (1951, 1960) is taken help of and utilizing tlû  proper boundary 
cojidition for the ease Tinder study new equations have been arrived at. The 
s(̂ arcli for a suitable orthogonal polynomial which resembles actual displacement 
distrij)ution profiles over the wave-guide cross section is however a labourious 
job and moreover is not often met with success. Jacobi polynomial has been 
found suitable for the present case by the author. The case of torsional wavo 
propagation in an inhomogeneous solid cylinder would subsequently be solved 
with Iielp of the above analysis.
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2. T h e o r y

I. Homogeneous cylinder case
Tho theory developed here consists of an expansion of the displacement func­

tions in terms of the Jacobi polynomial in the radial coordinate, the choice being 
limited by the need for a close representation of the actual displacements upto a 
fairly high modal number. The cylinder is assumed to be bounded by the surface 
at r =  a in the cylindrical coordinate system r, 0, z the axis of the cylinder being 
coincident with the Z direction of the coordinate system. In coaonance with 
tlio typo of propagation under study tho radial and the axial displacements are 
limited by the need for a close representation of the actual displacements upto 
a fairly high modal number. The cylinder is assumed to be bounded by the surface 
at r ^  a in the cylinderical coordinate system r, 0,z by the axis of the cylinder 
being coindicont with the Z direction of the coordinate system. In consonance 
with the typo of propagation under study the radial and the axial displacements 
are assumed to be zero. The circumferential component of the displacenuuil s 
is thu>s expressed assuming 0 symmetry

Un S Un(oc)u {̂z, t),
u

(1)

where a == r/u

and is the Jacobi polynomial. The general term of the polynomial is
expressed as

r/„(a) -  S (-
k̂ \ ( * + ! ) !

(2)

where n{n—l)(n—2)...{n—k + l)
jfc!

1

It has got the orthogonal property

4(»H-1)® J Utn{ix)U„{a)ada =  0, m ^  n 
0

— I, m =  n

Tho stress equation of motion under assumed condition is

.. . (3)
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TJio other equations of motion are automatically satisfied. The surviving 
stress equation of motion is written in the integrated form

iOTr$ , 1 <^T0z.2Tre
i  ( ' 
0 \

____  ____  ___
dr ^  r do ^  dz ‘ r dt̂  / rdrSu == 0. (5)

Substituting eq. (1) in eq. (5) and utilizing the boundary condition Tre =  b 
ill r ^  a and finally equating the coefiicients of Sû  both sides, the rod stress 
equation of motion is obtained as

l l n  _  _  __ P _
dz 4{n+l)^ dt̂  ’

where

and

=  i  T„U^{ct)adct

The components of the rod strain can thus bo expressed as

ê z =  i7n dz

a  ̂ I d(X ” a J

The usual stress displacement relations then take the forms

ro 'Wn(a) „  t »̂(a)Wn 1 
dx ~ “ » a

Thus the rod stresses are expressed as
1
/
0

i ’„ =  /t /  i/n®(a) ada.dz

The first few terms of the above series are given below

Po =  0jp _
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Tho general equation of motion thus can be written as

1 dhi^
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dî  ' (11)

where (n 0, I, 2 ...) is a sot of constants d<'>pendent on tlie mode mmibor 
and on th<̂  radius of cross-section of the cylinder. First few members of tlio sol 
ai*e given IxJow

M, ^  0
... (12)

Assuming a solution of the form (^xp{iaii—ik̂ ẑ) the required disporsioii rela­
tion is obtained as,

tu2 ^
1. ... (13)

Tlxe first mode predicted by tJû  above theory gives dispersionless propaga­
tion with a velocity where This is in exact agroeinont with tlû
results obtained from the previous analysis. 2\11 the higher modes are dispersive 
and the agreement with tlxo Owen’s results is again close. The first tlue>e modes 
of the dispersion family prcidieted by tho above theory are shown in figures 1.

Fig. 1. Phase velocity dispersion curves for torsional waves in cylinder.—author's 
curve,---------- Owen’s curve.

For the sake of comparison Owen’s curves are also drawn alongside. With a 
Mindlin-Herrmann typo constant adjustment process, however, the present curves 
can be made exactly identical in all respects to the curves obtained from the 
Bossel function distribution.
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2. Inhovwgeneous cylinder case

Lot tho elastic inhomogenoity of the material of the cylinder be wholly axial 
and bo assumed after Dutta (1956) as

II = (14)

Tt can bo shown easily that with the usual assumptions for torsional waves 
lor tho present study the form of inhomogoneity of the other elastic Lame constant 
does not affect tlû  results of the analysis, two equations of motion being auto­
matically satisfied in an identical manner. Tho remaining equation of motion 
as deduced earlier and expressed in oq. (6) will remain valid for the inhomogeneous 
case but the values of the rod stresses and are to be calculated afresh taking 
(;aro of (̂ q. (14). On assuming the displacement of the form

.= i/.i(:j)exp(?ctiO, (lb)

and a little more calculation give>s tlio displacement equation of motion as,

, dUn f y 1 __ 0 (16)

wixore

and

For the hrst branch 
can be brought to the form

“  0, and with the substitution ?/ ~  (1®)

dy  ̂ 7/ dy
(17)

The above equation is the well known BeSvSel differential of zeroth order. 
Hence the solution is written as

Wo =  AJQ(ri)+BY^{y). (18)

where Jq(^) and Fq(V) Bessel functions of zero order and of first and second
kind respectively and A and B  are two constants to be evaluated from the 
boundary conditions,

fh
For all the higher branches K „ ^ 0  and with the substitutions Ui{z) =

and  ̂=  —^j2K„i the following equation can be obtained from the eq. (16)

d y .
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The solution of the above equation can be obtained in terms of Whittekar 
funotions (Whittekar & Watson 1962) as

whore K  =

and AI and are constants.

Thus the expression for can be written as

(20)

(2 1 )

Now the frequency equation of the system under different boundary conditions 
at the ends. For a free-free bar the end conditions are

du^
dz

duj,
dz

=  0
2—0

0
2̂ 1

The frequency equation of the system is thus easily obtained as,

♦21

♦12

♦ 22
0

where

(22)

(23)

a, =  — '~~'2-K̂ nVo)_  ^~*ol—2^

”  “  SKnifto+kl)^* ~

whore dashes denote differentiation with respect to z.

5. Discussions

The present theory gives some more insight into the role of the separate stress 
components in the processes of dispersion of torsional waves in homogeneous
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isotropic cylinder. The most important achievement of the proposed theory 
lies in the complete removal of the transcendental nature from the frequency 
eqiiation of torsional waves in homogeneous cylinders. Another triumphant 
feature of the theory for the homogeneous cylinder lies in the complete identity 
of the eq. (11) with a corresponding equation deduced by Jones (1959) though 
tlie method of approach was completely different from the present one.

The equation for the homogeneous cylinder #lso predicts separate cut-off 
frequencies for the higher order modes liko the existing theory does. The values 
of Uicsc cut-off froqueneios are given by the gcnoml expression

We,

ulioro tlvo values of arc e ja  and for w -  1 and n — 2 corres-
jHuiding to the two lower order modes just above the lowest order mode.

For the inliomogoneous cylinder problem Bessel functions are found not 
sufficient to describe the displacement functions. The general frequency equa­
tion involving Whittekar functions can, however, be sliown to bo breaking 
down to equation consisting of only Bessel functions for the lowest order mode.
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