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A now theory has been doveloped for the torgional wave propagation in a
solid olastic cylinder. The method consists of an expansion of tho
digplacoment function in terms of suitable orthogonal polynomial.
Tho boundary condition yields the frequoncy equation which reproduces
the multimode systom to a remarkable accuracy. Some numerical
ovaluations of the first fow modos of the dispersion system and of thoe
consecutive cut-off frequencies are also produced. The present work
has boen suceessfully utilized in solving an inhomogeneous elastic wave-
guide problem.

1. INTRODUCTION

Extraction of information from the Pochhammer equation for the dispersion of
torsional wave propagation in a solid elastic eylinder was accomplished hy Owen
(1950) and Davis (1956). The characteristic equation is simple in appearance
but its transcondontal nature hinders our inquisitions in a number of ways. More-
over in some cages this equation becomes too much cumbersome to doal with.
For instance, inhomogeneous wave-guide probloms have remained unsolved or
atloast partly solved oven for the simplest of cases. Unfortunately no theory is
availablo in the literature which can replace the above one in doaling with a number
of modes of this type of wave propagation in cylinders.

The method of expansion of displacement functions devised by Mindlin &
his co-workers (1951, 1960) is taken help of and utilizing tho proper boundary
condition for the case under study new cquations have boen arrived at. The
search for a suitable orthogonal polynomial which resembles actual displacement
distribution profiles over the wave-guide cross section is howover a labourious
job and moreover is not often mot with success. Jacobi polynomial has been
found suitable for tho present case by tho author. The case of torsional wavo
propagation in an inhomogeneous solid cylinder would subsequently be solved
with help of the above analysis.
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2. THEORY

1. Homogeneous cylinder case

The theory developed here consists of an expansion of the displacement func-
tions in torms of the Jacobi polynomial in the radial coordinate, the choice being
limited by the need for a close representation of the actual displacements upto a
fairly high modal number. The cylinder is assumed to be bounded by the surfaco
at r = a in the cylindrical coordinate system 7, 8, z the axis of the cylinder being
coincident with the Z direction of the coordinate system. In cosonance with
tho typo of propagation under study the radial and the axial displacements are
limited by the need for a close representation of the actual displacements upto
a fairly high modalnumber. The eylinder is assumed to be bounded by the surface
at r = a in the cylinderical coordinate system r, 8,z by the axis of the eylinder
being coindicont with the Z direction of the coordinate system. 1In consonancoe
with the type of propagation under study the radial and the axial displacementx
are assumed to be zero. The circumferential component of tho displacements
is thus oxpressed agsuming # symmetry

Uy = ;J U (a)u,(z, 1), .. (D

where a=rla

and U,(a) is tho Jacobi polynomial. The general term of the polynomial ix
expressed as

Unla) = a:—{— (—l)k < ) 2:1-?))1 alkdl O

( n ) _ nn—=1)(n—2)...(n—k+1)

where ¥ Bl

(B = B(A+1)...(A+k—1)
ﬂo =1
Tt has got the orthogonal property

4(n+l)3§ Unla)U J(a)ado = 0, m = n
== l, m="n oo (3)

The stress equation of motion under assumed condition is

0Ty | 1 3Ty
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Tho other equations of motion are automatically satisfied. The surviving
stross oquation of motion is written in the integrated form

{ OT,,, 44 2Tf0 ?.;':;) rdréu = 0. (5)

(dlro+l_ Q_@oo_*_

Substituting eq. (1) in eq. (5) and utilizing the boundary condition Ty = 0
at r = a and finally equating the coefficients of du, both sidos, the rod stross
oquation of motion is obtained as

oF, P, P o,

9z a  4(n+1) o ©6)
whero Fp = § TouU(2)ode
1 U
and P, = b[ Trp [ a v—a'iai —U, () ] dec. (7

The components of the rod strain can thus bo exprossed as

€oz = 2‘ Un az

€rg = E [()U‘;:fa) Up— U"‘(:)u'i ]

(8)

Tho usual stross displacement relations then take the forms

N

9)
To=p Z U (a) au,,
Thus the rod stresses are expressed as
1 du
= 3(g) ZUn
= | Un¥(a) "0 ade,
_ & F[oU(a)_ Uga) ]
2 [ ) 282 | uada (10)
The first few terms of the above series are given below
b U =
Fo= 4 0z Po=0
— A oy 3 puy
h=%% hi=3%
p_ Oy — 16 pu,
o' 168 & Pi=% %
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The goneral vquation of motion thus can be writton as

1 0%u,

0%u,, -
n 022 atz “oe

M2
G2 M. 2u

(11)
whero M, (n == 0,1,2...) is & sot of constants depondent on the mode numbor
and on the radius of cross-soction of the eylinder. First few membors of the sot
are given below

M,=0

M, = 4.3%a e (12)

M, = 8.3"%[a

Assuming a solution of tho form exp(iw!—ik,z) the required dispersion rela-
tion is obtained as,

w? M,2

= ”
622].‘:0‘3 k02

1. . (13)

The first mode predicted by the above theory gives disporsionless propaga-
tion with a veloeity ¢, where ¢, = (u/p)t. This is in exact agroement with tho
rosults obtained from the previous analysis. All the highor modes are dispersive
and the agreemont with the Owen’s results is again close. Tho first three modes
of the disporsion family predicted by tho above theory arc shown in figure 1.
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Fig. 1. Thase velocity dispersion curves for torsional waves in cyiinder.—author's
curve, — — — Owen’s curve.

For the sake of comparison Owen’s curves are also drawn alongside. With &
Mindlin-Herrmann type constant adjustment process, however, the present ourves
can be made exactly identical in all respects to the curves obtained from the
Besasel function distribution.
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2. Inhomogeneous cylinder case

Lot tho elastic inhomogenocity of the material of the cylinder he wholly axial
and be assumed after Dutta (1956) as

W= pot pg? (14)

Tt can be shown easily that with tho usual assumptions for torsional waves
for tho present study the form of inhomogeneity of the other elastic Lame constant
does not affect the rosults of the analysis, two equations of motion being auto-
matically satisfied in an identical manner. The remaining equation of motion
as deduced carlier and expressed in eq. (6) will remain valid for the inhomogeneous
case but the values of the rod stresges F, and P, are to be calculated afresh taking
care of eq. (14). On assuming the displacement of the form

Un(2,t) = uy(z)exp(iwt), ... (18)

and a little more caleulation gives the displacement cquation of motion as,

gd;é"'!._{_ ‘ZZ" -&—u,,[;):-—]{,,g’] =0 ... (16)
where = pyt+pz
x*=utlp
and K, = MJ2/u?

For the first branch K, = 0, and with the substitution 5 = 2ws/{x eq. (16)
can bo brought to the form
d*uy 1 du,

it dy +ug=0 e (17)

The above equation is the well known Bessel differential of zeroth order.
Hence the solution is written as

uy = AJo(n)+BY (7). e (18)

where J(5) and ¥ (y) are the Bessel functions of zero order and of first and second
kind respectively and A4 and B are two constants to be evaluated from the
boundary conditions.

For all the higher branches K, # 0 and with, the substitutions u,(z) = 4%1-(%-
n

and § = —¢/2K 4 the following equation can be obtained from the eq. (16)

d%p 1 w? 17 _
a4 g +ogepe 5] =© - 0
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The solution of the above equation can bo obtained in terms of Whittekar
funotions (Whittekar & Watson 1962) as

¢1(§) = Alwko(f)'f‘B]W—ko(—f) < (20)
where K = »*2xK ;}
and A, and B, are constants.

Thus the oxpression for %,({) can be written as
un(§) = [A;Wio(2K 38) + B, Wio(—2K 3)1/4K {3 e (21)

Now the frequency equation of the system undor different boundary conditions
at the ends. For a free-froe bar the end conditions are

du
@ =
|20
(22)
du, N
| =0
2=l
The frequency equation of the system is thus easily obtained as,
LT ot .
=0 . (23)
@2 Agp

where

Eko@&%)_ _/‘1Wl_¢9@n‘/‘o)

ay =

4K, p,1? T 8K ugtt
@y = Wi —2Kdte) _ iy W—ro(—2K n¥phy),
z 4K puqt 8K 3/
gy = W'-ko{ - 2K‘n*(ll’0+ll’ll )} — gu‘l W—k_o_{— 2K"j_(_lf'oi/_l!l)_}-
4K (po+ ) 8K (pg+ p,l P72
0y = T eo2E o+ ml)} i Weol2K b +p0)}

4K p(pro+ml) 8K n(po+p,1)¥2
where dashes denote differentiation with respect to z.
5. DiscussioNs

The present theory gives some more insight into the role of the separate stress
components in the processes of dispersion of torsional waves in homogeneous



Theory of torsional wave propagation 427

isotropic cylinder. The most important achievement of the proposed thoory
lies in the complete removal of the transcendental nature from the frequency
equation of torsional waves in homogeneous cylinders. Another triumphant
feature of the theory for the homogeneous cylinder lies in the complete identity
of the eq. (11) with a corresponding equation deduced by Jones (1959) though
the method of approach was completely different from the present one.

The equation for the homogeneous cylinder slso predicts separate cut-off
froquencies for the higher order modes liko the existing theory does. The values
of theso cut-off froequencios are given by the general expression

Wen = ﬂn

whore the values of 8, arc 4/48 c,a and 4/198¢,/a for n =1 and n = 2 corres-
ponding to the two lowor order modes just ahove the lowest order mode.

For the inhomogoneous cylinder problem Bessel functions are found not
sufficient: to deseribe tho displacement functions. The general frequency equa-
tion involving Whittekar functions can, however, be shown to be breaking
down to equation consisting of only Bessel functions for the lowest order mode.
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