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The heat encrgy equation has been solved when a non-Newtonian
liquid flows past a porous infinite wall. Tho suction volocity normal
to the plate oscillates in magnitude but not in direction about u non-zero
moan and the free stream veloeity oscillatos in time about a constunt
moan but not in direction. The liquid is taken to be slightly non-
Noewtonian. The heat flow phenomenon has been characterized by the
parameters such as non-Newtonian parametor R, frequency parameter
w, variable suction paramoter 4, Eckert number E, and Prandtl number
o and the effects of these parameters on tho temperature distribution and
its fluctuating parts have boen studied and the results have been pre-
sented by several graphs.

1. INTRODUCTION

Lighthill (1954) ini#iated an important class of two dimensional time dependent
flow problems dealing with the response of the boundary layor to external un-
steady fluctuations of the frec stream velocity about a mean value. Stuart
(1935) studied the oscillating flow over an infinite flat plate with constant suction.
Messiha (1966) cxamined Stuart’s problem for the case of variable suction at tho
plate. Kaloni (1967) and Soundalgekar & Puri (1969) studied the probloms
of Stuart and Messiha respectively replacing a viscous liquid by an elastico-
viscous liquid. In asubsequent paper Soundalgekar (1972) solved the hoat transfor
part by the fluctuating flow of an clastico-viscous liquid. But in his work tho
onergy dissipation term sooms to be incorroct. So tho same problom has boen
solved by Mishra & Acharya (1973) and they have made elaborate discussions
of the heat flow characteristics.
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The aim of this papor is to solve the heat onergy equation when a non-Now-
tonian liquid flows past a porous infinite wall. In an earlier paper the present
authors (1974) have obtained the oxpression for the velocity distribution due to
the fluctuating flow of a non-Newtonian fluid past a porous flat plate with timo-
varying suction and the same cxpression for the velocity ficld has heen used in
the heat energy oquation of this papor. The non-Newtonian liquid model has
hoen deseribed in the same paper in detail and thorefore, we do not repeat the
same here.

2. MATHEMATICAL ANALYSIS

In this problem X'-axis is chosen along the two-dimensional infinite wall and
¥'-axis perpendicular to it. Under these conditions, the flow is indepondent of
r’. Hence the oquations of heat energy can bo written as

oT’ oT’ ] % 2T’
po [+ 5 | =¥ e, e ()

where T" is the tomperature, ¢’ and k' are respectively the specific hoat and thermal
conductivity. ¢’ is the dissipation funetion given by

du’ \2
‘= - 2
o =u ) @)
But from continuity condition
v = —v,(1+€e4 exp(in't’)), . (3)
In the liquid considered in this paper
ou' ]
”= ‘u"[l——a oy ] (4)
With the transformations
_uw e w ]
= b= 4v’w_'v’02’ “= Uy’
2aU,v T'—T k' -
R = , T = ";117; 3/\'—p11’ e (5)
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We get from eq. (1).
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where
u = fi(n)+ € oxp(iwt)fy(n), v ()
Ji(n) = (1—exp(n){1+3R oxp(—n)}+O0(R?), . (8)
fan) = 1—8 exp(—hy)—(1—8) exp(—7)
+ R[3(1— S)(exp(—1)—oxp(—hy)}+ P(exp(—hy) — exp(—21))
+Q(exp(—ky)—oxp(—(1+h)7))]+0(R?), e (9)

S§=1-"=h=j1+1+iw)],

poAT20=8) g_  hSA+E) a0

e ey p 1
2 7 h24-h g @ J
and o, E are resepetively the Prandtl number and Eckert number. It is assumod

that there is no heat transfor between the fluid and the wall, which lead to the
following boundary conditions

z%,:Oatn_——()ande—-Oatn:oo. e (1)
Wo take
Ty, t) = Tyn)-+e exp (fwt)Ty(n). .o (12)

For the heat transfer problem we take the terms up to first power of R in ¢q.(7).
Substituting cqs. (7) and (12) into eq. (6) and comparing harmonic terms and
neglecting coefficients of ¢2, we obtain

Ty 40T, = —B(f*~§Rf,) o (1)
T+ 0(7'1"*'A77‘)')*1f:, oTy = —cB@f/fy -3 R [;,"fy). oo (14)

Boundary conditions (11) now reduce to

T,)=0 at =0
n>0 ... (15)

T,=0 as g=o
Solutions of eqgs. (13) and (14) subject to boundary conditions (15) are

(20+0R—0)E ck

Ty= — 2o—2)(—3) exp(—on)+ To—2)—3) [(0—3)(1—R exp (—27)

+(0—2)R exp(—37)]. v (16)
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24i0(2 R—o)E
T, = ;,iqg(}%%%“ [o exp(—m,n)—m, exp(—o7)]— Qﬁﬁ:o;‘)%:‘;) X

2(c—3)(1—R -
[27=3C=R) 3 exp (—myn)—my exp (—21)+ 272 (3 exp(—my)
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-

—my oxp(—31)) |

E [201—8)(1—R —_
+ 2 (=B @ oxpl—min)—my oxp—2m)+ F (4P+257)

(3 oxp (— myn)—m, exp(—31) |

2 (250~ R)+ RA—2P—2Q)H{(1 +H) oxp (—my1)—my oxp(—1-+hyr}

B Sh
+z/7{ 204+-mQ+ }{(2~+-h)e)q)(-—ml17)—-m1 oxp (—(@+h)}], . (7)
where
£ —4—20— 11‘”: ;L= 9_30___'iwg_’

Two

A = (14hp—o(l4+h)— "~ ,

v = @+hp—o@d 2T,

=0 {1+(1+2)") 5wy = {1+ (14 55)'}.

We can now write
T = Ty+eexpiwt)(Tyr+:T4), ... (18)

where T, and T,; are the real and imaginary parts of 7;. The numerical com-
putation has been made to draw the graphs for 7,,, T';.

3. DiIscussION

Figure 1 shows that the non-Newtonian parameter R decroases the tempera-
ture at any point. In a thin liquid layer near the plate the temperature increases
very rapidly and then asymptotically falls.

Figure 2 shows that for low values of w, the temperature becomes negative
hear the plate and very sharply increases in a very thin liquid layer and beyond,
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this layer the temperature also sharply falls. As w gradually increases, the
temperature attaing the maximum value at the plate and then decreases to zero
asymptotically. But it is interesting to note that for all values of w, tho curvoes
coincide and then asymptotically falls to zero.

Fig. 1. Temperature distribution for different values of the non-Newtonian jarametor
A=06 o0=10, w=10
E=2 owt=mn2, ¢=02

\

ot ¥ — e X}

Fig. 2. Temporature distribution for different values of the frequency paramoies
wt=mn(2, R=1005 ¢=02
0=10, E=2 A4=00
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In figure 3 it is noted that beyond a thin liquid layor, the curves for tem-
perature profile for different values of the suction parameter 4 coincide and thon
tond to zero asymptotically. But within this layer, the temperature at any point
decroases as A incroases. For large values of A4, the temperature at the plate
hecomos negative and then very sharply increases.

A<0.0
1.0p
A+0.5
T
A=1.0
0 s ¥ 15— 29 7538
-2} 1

Jig. 3. Temperature distribution for differont values of the variable suction paramete:
€=02, w=10, ot=mn2
R=000FE = 2,0 = 10

Fig. 4. Temperature distribution for Different values of Eckert numbers
R=10.05 A4=005 wt=mnl2
c=10 w=10, ¢=0.2
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Figure 4 shows that the temperature at any point in the liquid increases as
E increases. TFor large values of E, the increase of the temperature in & thin
liquid layer at the plate very sharply increases and then asymptotically falls.

Figure 5 shows that for higher values of the Prandtl number, in a thin liquid
layer near the plate, the temperature is negative and then very steeply increasos
to a maximum value whoroafter, slowly falls to zero. The temperaturc at any
point decreases with the increase in the value of o.

"OT 6+30.0
6=20.0
T
0 05 10 13 %0
-1.0

Fig. 6. Tempeorature distribution for different values of Prandtl number
R=1005 A4=05¢=02 =10
wt =ml2, E =2

I-S&
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Fig. 6. Fluctuating part of the temperature profile
E = 2.0, o = 10.0
w=10.0, 4 =05
R =000——— R=006———————.
R=010 —— — ===~ — . —

Figures 6 and 7 are the fluctuating parts Ty, T'y; of the temperature. Near
the plate 7', increases as the non-Newtonian parameter increases, but beyond
a certain liquid layer the non-Newtonian parameter decreases the value of Ty
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at any point. It becomes negative at certain stage and then becomes zero. The
behaviour of 7'y is almost the same as 7', excepting the fact that it falls very
steeply in a liquid layer near the plate.

3r
\‘\
l“\
2l
fl
g
1 -
i 05 1,0 15 3P
_1.0 -

Fig. Fluctuating part of the temperature profile
E=20, 0=100 w=10, 4 =05
R = 0.00 R =005 ————-
R=010 —— — = — .~ —.—

4. CONCLUSIONS

The conclusions in the problem can be summarised as follows
(i) Non-Newtonian nature of the fluid decreasos the temperature at any
point in tho fluid.
(ii) Temperature at a point near the wall increases with frequency of fluc-
tuation of the liquid.

(iii) The variable suction parameter decreases the temperature at any point.

(iv) The temperature at any point increases with the Eckert number.

(v) The effect of the Prandtl number is to decreaso the temperature at any
point.

(vi) The non-Newtonian parameter incroases the values of the fluctuating

parts in a thin liquid layer at the plate and then an opposite effect
takes place.
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