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An analysis of mhd channol flow with hoat transfer under tho influence
of the crossed fields, buoyancy forces and variable viscosity iy carried
out. Solutions for the velocity, curront density, magnotic ficld tem-
perature aro derived and are shown graphically. The numerical values of
tho skin-friction and the Nusselt numbers are ontered in tables. It
is observed that in constant viscosity caso, the skin-friction and Nu
incroases with more heating of the channel platos and docreases with
more heating of the channel plates and doecreases with more coolng of
the channoel plates. In case of variable viscosity, with more cooling of
the plates. there is a tendency of separation at the lowor plato. [n thoe
prosence of houyancy forces, the skin-friction decreases. In a mhd
genorator, an increase in the loading parameter or due to more heating
of the plates, the skin-friction increases.

1. INTRODUCTION

MHD channol flows have been discussed oxtensively in recent years for their
wido applications in technology. The hoat transfor aspoct of such flows has also
bocn studied in case of fully doveloped flows by Siobel (1958), Gershuni &
Zukhovitskii (1958), Sutton and Shorman (1965), Soundalgekar (1968), wheroas
Nigam & Singh (1960), Porlmutter & Siegol (1961), Erickson efal (1966) hava
discussed it in tho entrance region of channel flow. Tn all these invostigations,
duo to hori-zontal flow, tho offects of the buoyancy forcos have not beon takon

into acenont.

This is due to the assumption that tho buoyancy forces are quite negligible
in horizontal flows. This is not always true. It was shown by Sparrow el al
(1957) that in case of horizontal flows of low Prandtl number fluids, the buoyancy
forees cannot be negloctod as thoy significantly affoct tho flow field. Tndopen-
dently, it was also shown by Gill and Casal (1962) that tho offects of the buoyancy
forces aro significantly important in case of the horizontal flows of the low Prandtl
number fluids. Gill & Casal also discussed the effects of the variable viscosity
on the horizontal channol flow between two parallel infinite plates.
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All the low Prandtl number fluids are electrically conducting and henco thoeir
flow is affoctod by transvorsly applied magnetic field. This property has hoen
utilised profitably in magnotohydrodynamic channel flows. But all attempts
to analyse the mhd flows wero without considering the buoyancy forces. This
lod Gupta (1969) to investigato the offects of the gravitational field on tho hori-
zontal mhd channel flow of clectrically conducting, viscous incompressiblo {luid
for opon circuit case. Gupta, howover, assumed the viscosity to be constant.
Recently. the offects of variable viscosity on horizontal mhd channel flow were
disecussod by Soundalgekar & Haldavnekar (1973).

The study of mhd channel flows is important from practical point. of view as
ifs works as a generator or an accelerator depending upon the value of the loading
paramotor ¢ = E/VB whero V, E, B are respectively the fluid velocity, oloetric
fiold strength and tho magnetic field intensity. Meffatt (1963) has shown that,
7)e > 1 corresponds to a mhd generator, ii) e > 1 corresponds to a mhd accolorator
and iii) ¢ = 0 or 1 corresponds to short or open-circuited case. Honco, in ordor
to study the mhd channel flows from practical point of view, it is nocossary to
consider the offects of i) crossed-fields ii) gravitational field and iii) the variable
properties of tho fluids. Tt is now the object of the present investigation to
study the effects of those forces on horizontal mhd channel flow when the viscosity
of the fluid is a linoar function of the tomperature and the temperature of tho
plates also varies linearly. For electrically conducting fluids, such an assumption
doos give good rosults.  Tn seetion 2, the problem is posed in a suitable mannor
and tho oxprossions for the velocity and temporature are first derived undor
constant property assumptions. Then for the case of variable viscosity, negloct-
mg disssipation and the source terms in tho energy equation, undor a suitable
transformation, the problom is completoly solved and oxprossions for the velocity
profiles, eurront density, magnetic fiold and temporature profiles are plotted on
graphs and the numerical values of the skin friction and the Nusselt number are
onterod in the tablos.

[n soction 3, the conclusions are prosentod wherein the effocts of heating
or cooling of the plates, the huoyancy forcos and the loading paramoter aro
desceribed.

2. MATHEMATICAL ANALYSIS

Hore a stoady, laminar flow of a viscous, incompressible, clectrically eonduct-
ing fluid between two infinite and non-conducting platos in the  and = directions
i assumed. The z-axis in choson along tho lowor plate in the direction of tho
flow and the y-axis is chosen normal to it. A uniform magnotic field is assumed
to be appliod parallel to tho y-axis. The olectrical conductivity of the fluid
modium is agsumed to bo a constant scalar quantity. For steady flow, the dis-
Placement, current vanishes identically.



396 V. M. Soundalgekar

Under theso conditions, considering the buoyancy forces, the fully developod
mhd flow is governed by the following equations

+ ayz ’—sz = PG (1 )

.
~ Gy ieBe = poy @)

Here w, is the velocity component, p the density, x4 the viscosity, p tho pressuro,
Jz the cwrrent density, (B, B,. 0) the components of the magnetic field intonsity
and g, gy are the components of the gravitational force. Neglecting Hall curront,

the Ohm's law ig
Jz = 0(Bz-|-u,By), ..(3)

whore E, is the applied olectric field. The oquation of state is

p = poll—pt—1y)] )

where f# is the coefficient of expansion, ¢ the temperature and {,, p, are the initial
tomporature and density, assumed constant.

If tho temperature variod linearly in the direction of flow, then the energy
cquation is

ot 72t ( duy

. uy \* e 5
peo 5, =k 5o bul Gt ) e, (5)

where the last three terms reprosent respoctively the heat due to viscous dissipa-
tion, Joule dissipation and the constant hoat source. Also ¢ and k are respec-
tively the specific hoat and the thermal conductivity of the fluid. TIn view of the
z-axis heing perpendicular to the gravity force, the terms pg, in eq. (1) is idonti-
cally zoero. Then eliminating p between eqs. (2) and (4), wo got

l ap

o 01[* ]‘B =gy[1—pt—1y)]. .. (6)

In fully devoloped flow, all tho physical variables, except the pressure, are func-
tions of y only. Henco differentiating (6) with respect to z, we obtain

1 a(t-—zQ) .
~ o ey = Py . ™

Differentiating (1) with respect to y, dividing by p, and eliminating —(1/p,)(?*p/
Jdzdy) from eq. (7), wo get
At _ 0_oBg o ®)
/3 Ty aya P ay ’
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where v = u/p, is the kinematic viscosity.

Introducing tho following non-dimensional quantities,
& = z[(a.Pe), 7 =yla, u=u,lu, e (9)
into oq. (8), we have,

pacgy (')_(@:to) — O'B_ng 6:& 23"_‘ . (10)
vUPe  0&; py 09 Op

Here a is the soparation between the two plates and U, is the average velocity of
the fluid. This eq. (10) will describe the fully-developed flow only when the right-
hand side is independent of £&.  To satisfy this condition, wo assume that the wall
temperature varies linoarly in the direction of the flowi.e., the heat flux at the wall
is constant. Mathomatically, this is represented by

t—ty = AE+T(y), . (1)

where 4 is the axial temperature gradient and 4, = Aa. On substituting eq.
(11), oq. (10) reduces to the following non-dimensional form

d3u. o du

— = .. (12
s~y = O (12)
where
2
= Pgy@* Ay, , Grashof number
Vi
A
Ay, = 1;:,
and M = Ba(o[pyw)t.

the Hartmann number. The constant A, has the dimension of temperaturo.
Also, the P’oclet number P, is definod as the product of the Reynolds number

Uya/v and the Prandtl number »/A i.e., Q/g“. Now A, in oq (11) may have tho

positive or negative values which physically corresponds to heating or cooling
of tho channel plates. Hence in terms of G, the heating or cooling of tho plate is
Topresonted by

G > 0, (hoating); @ < 0, (cooling).

This relation is useful for the physical interpretation of the results.
The no-slip boundary conditions aro

'M(G) =0, u(l) =0, vee (13)
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As cq. (12) is of the third order, one more condition is necossary to solve it com-
pletely. So we employ the equation of continuity as the additional condition
which, under no-slip conditions, may be stated as follows :

§ udy = 1. (14)

1]
The solution of eq. (12), in virtue of eqs. (13) and (14), is given by
u = a,(cosh My—1) +b, sinh My—Gy|M?, (15)

where

Gfsinh M(2 sinh M — M(eosh M —1)—4(cosh M —1)]

@ = 2M72(cosh M—1)(M sinh M- 2(cosh M—1)

M sinh M
"M sinh M —2(cosh M —1)

M(cosh M —1)+G[M(cosh M-+1)—2 ginh M)/ M>.

by = "M sinh M—2(cosh M—1)

The velocity profiles, caleulated from eq. (15), are plotted in figures 1 and 2 for
positive and negative valuos of ¢. Once u is determined, we can now find the
current density from eq. (3) which in non-dimensional form hecomos

J = u—e, (16)
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Fig. 1. Velocity profiles. G = —10—— —;5—— —; G = O———; b—ri—r.—; M -

where J = j,loU,B, and ¢ = —E,/U,B,. The current density from eq. (16)
is plotted in figure 3. From Maxwell’s oquations, the magnetic field is given by,

1 dH

J = ——

T @y e (17)
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Fig. 2. Velocity profilo. @ = 10; M = 2—; 4— — —.
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Fg. 3. Current donsity, M = 4, ¢ = 0.4—; 0.6 — —; 0.8—.—; 1.0— . —-.

where Ry = peoU, a is the magnetic Reynolds numbor and g¢ is the magnetic
permeability of the fluid medium. To determino the induced magnetic field from
eq. (17), knowlodge of the geometry of tho oxternal cireuit is necessary.  Hughos
& Young (1966) havo described such a geomotry which lcads to the condition

H(0) =0, (18)
Heneo from ogs. (16), (16), (17) and (18), wo got
H ginh M b ay?
7y = 1o T )+ e Mr—n—pin ] a9
H|Ry, is plotted in figure 4

The skin-friction, in non-dimensional form, is given by

2 du S
T = —F dﬂ =0 e (20)
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H/Rm
Fig. 4. Mugnetic field, M= 2

Honce from eqs. (15) and (20), wo have

7= — % (b,M—G|M?). . (20
R

The numerical valucs of (—R7/2) are entered in table 1.

Table 1. Values of R7/2

Q —10 —b 0 b 10
M/
2 5.6065 5.9978 6.3891 6.7804 7.1716
4 6.7728 7.1086 7.4444 7.7802 8.1161

Knowing the velocity field, we can now determine the temperaturc field from
eq. (5) which in view of egs. (9), (11) reduces to the following non-dimonsional form.

dz0 du\?
w= Gt Br[(%) + 3o +Q, . (22)
where

_ T

0= P..4,
U 2
Br— 1% :

r patoA AP, , Brinkman number
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The boundary conditions are (6,—upper wall temperature)
0(0) — 0, (1) = Oy
or in terms of constant hoat flux

40 _ _gq(0a d0Q1) __q()a 23

dp = T K4, dy T KAy e (23)
Aftor substituting for « from eq. (15), tho solution of eq. (22). in view of eq. (23)
is as follows

0= a,,,,,+a1[ 17:_1...4”22?]311!{17_':71."‘.’“‘_}3 M __"_/:%r/] 4
sinh My—» sinh M 7]
b [ R AL ] P

—-Br[ 4(’1&2 (cosh 2My—» cosh 2M +9—1)— 1;(;': (sinh Mp—» sinh M)—

— —lC";é (cosh Myp—n cosh M +y— 1)+T2{1 (P—7)+

-+ (;‘ (p*—n)+3a.b, (sinh 2M y—y sinh 2M )+

e y(cosh M y—cosh JM)
+ a2 01— =206 i -

_ 2(sinh My—y sinh M) }_01) a {7] (sinh My—sinh M)
M3 e e L

2(cosh My— h A +5—1 ) ‘
__2(cosh My E::Sl +7 H_%ﬂ(”_]) (24)

040,
4 M2

whore 6, = Br [ (1—cosh M)+ a‘f‘ (2M —sinh 2M)

~ o (M—sinh 31— 122 3T
—2a,G{2 sinh, M — M(cosh M+ 1)}/ M3—2b,G{M sinh M
+2(1—cosh M)}/ M3—1/{1—q(1)/q(0)}—a,(M2—2(cosh M —1))/M?
—by(M —sinh M)/ M*—G/[6M*— Q|2
Cy = 20(a,+e),
'y = M¥a,2+4-b,?),
Cy = 2C,a,/ M +2b, M¥a,+-¢),
D, = G*| M4+ M?(a,+e)2.
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The temperature profiles, caloulated from eq. (24), are shown in figure 5.
In technological fields, the rato of heat transfer is important and is defined in terms
of Nusselt number as

a d(T(n)—T(0)) df
_ kSl W P ) 25
Nu=— P, " @ 4o dn (25)
10
08 ’///’
06 /
n
oalff/
02
00 " . . N
(o]0} 04 08 e 6 2
6x10"
Fig. 5. Temperature profilos, G = 5; M = 2; Br = 0.05; € = 0.4—; 0.5— — — Q = 0.2.

On substituting for 6 from eq. (24) in (25), Nu is caleulated and its valuos are entered
in table 2.

Table 2. Values of Nusselt number. M = 2, Q@Q=02,B =03

~ Q -—10 —b 0 b 10

e,

0 —0.2026 0.0862 0.4917 1.0141 1.6512
0.2 —0.1850 0.1049 0.5107 1.0323 1.6697
0.4 —0.1715 0.1187 0.6247 1.0466 1.6842
0.5 —0.1662 0.1240 0.5302 1.0522 1.6900
0.8 ~—0.1666 0.1342 0.5407 1.0631 1.7012
1.0 —~0.1550 0.1359 0.5427 1.0654 1.7038
2.0 —0.2075 0.0846 0.4927 1.0166 1.6563

3. VARIABLE Viscosrry

Here we assume that the axial variation of viscosity is negligible and therefore
we take into account the variation of 4 with respoect to 9 only. Under these condi-
tions eq. (10),in virtue of eq. (11), may be written as

a2 ( /"d“)_Ma du

dn® \ p, dy dp = @,
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where the viscosity used in G is u,, the initial value of x at the lower plate. We
now introduce the transformation

¢ do
u={- 27
{ Ll @7)
into eq (26), which then reduces it to
d3¢ dé
S M” = @. 28
n® dy (28)

For electrically conducting fluids, like liquid sodium, the viscosity can be approxi-
mated by,

Fo . ttla_yy bl g 29
p T lgttes +ta+to +e (29)

where, € = A,.Pe/(ta-+1t,). Hore t is a reference temperature for the viscosity.
Henee cq. (27), in virtue of eq. (29), reduces to

W= pte j (¢ ¢)(l;;, (30)

and on noglecting heat duo to viscous, Joule dissipation and heat sources, the
energy equation can now be written as,

(fl;)’ = O te j o df” ). @31)
Horo u’ and @’ represent tho velocity and tomperaturo in caso of variable viscosity.
Tho egs. (30) and (31) are now solved by the method of iteration. This is ac-
complished as follows. First oq. (2R) is solved for @. This expression for ® and
the one for 6 from eq. (24), are then substituted in eq. (30). The constants of
integration are determined from tho boundary conditions eqs. (13) and (14). Then
this value of ' is integrated twice and after determining the constnts from eq.

T
ool ) )

n
oar / /\ =5
o2} // G=5
oo 1 1 1 1
00 02 09_ 06 08 10

Fig. 8. Temperature profiles, M = 2, ¢ = 0.4—; ;.5—— —; 2———; Br = 0°05; 6 = 0.2,
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(28), the exprossion for @’ is obtained and 6’ is shown in figure 6. With this new
oxprossion for «’, the skin-friction is caleulatod with the help of eq. (20) and its
valuos arc ontered in table 3. Similarly from the expression for ', the Nusselt
number is also calculated and the valuos are entered in table 4.

Table 3. Values of (—R7/2)
M-—=2, Q=02 0,=02 €=01, By =0.03

) a —10 -b 0 5 10
P

0 -5.2165 2.0568 3.9906 3.7046 2.6354
0.2 —4.9510 2.0000 4.0285 3.8829 2.75692
0.4 —4.7119 1.9408 4.0048 3.9740 2.8870
0.5 —4.6016 1.9105 4.0823 4.0207 2.9526
0.8 —4.3006 1.8172 4.1320 4.16563 3.1560
1.0 -~-4.1230 1.7534 4.1726 4.26567 3.2077
2.0 —3.4399 1.4279 4.2825 4

.8202 4.0947

Table 4. Values of (—Nu),
1” == 2, Q = 02, 0“, = 0.2, € = O]. Br = 003

\(1' -10 -5 0 5 10

e
0 1.6652 3.0495 2.0824 2.3038 5.2128
0.2 1.7253 3.0601 2.1558 2.3486 5.2019
0.4 1.7757 3.0659 2.2290 2.3968 5.1940
0.5 1.7977 3.0670 2.2655 2.4222 5.1911
0.8 1.85620 3.0839 2.3744 1.5038 5.1877
1.0 1.8797 3.0567 2.4463 2.5629 5.1899
2.0 1.9416 2.9714 2.7918 2.9203 5.2667

7. CONCLUSION

In order to study the effects of different parameters, tho values of e are choson
from the practical point of view. Tho cfficiency of a mhd generator may be defined
as the ratio of the electrical power to the flow power, which is identical to the valuo
of the oloctric field factor ¢. But as pointed out hy Moffatt (1963), the valuo of
e for tho maximum power is 0.5. Tn general, a reasonable compromise is, there-
foro, roquired betweon the conflicting roquirements for maximum officiency and
the maximum power; e = 0.8 ig tho generally accopted value. Hence, one of the
values of e is choson as 0.8. Also, to bring out the effect of heating and cooling of
the plato, the positive and nogative values of (7 aro also taken. We have the fol-
lowing observations :
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1. Constant viscosity

From table 1, we conclude that with more heating of the plates, the skin-
friction increases and with more cooling of the plates, the skin-friction decreases.
With incroasing M, the skin-friction also increases hoth in case of cooling or
hoating of the plates. .

From table 2 we conclude that with more cooling of the plates, the rate of heat
transfer decreasos whoroas with more heating of tho plates, it increases. In a
mhd gonerator, an incroase in e, the loading parameter, leads to an increase in tho
Nu for all @.

2. Variable viscosity

Thoe numerical values of the skin-friction are shown in table 3 for M = 2,
) -=0.2, 0y = 0.2 and By = 0.03. For all ¢, wo obgerve that with more cooling
of the plates, the numorical values of the skin-friction are negative. Hence
separation may oceur at the lower plate. The numerical values of ¢ Z 0 are
always logs than those for @ —= 0. Honce, when the viseosity is variahle, the pro-
sonce of buoyancy forces reduces the skin-friction. Tn case of a mhd genorator,
the skin-friction increasos with incressing the loading paramoter and when tho
plates are being heated. But when the plates are being cooled, for the same
device, the skin-fricion decreasos with an increase in e.

The numerical values of the Nussolt number are shown in tablo 4. In case
of a mhd gonerator, the rate of hoat transfer increases with increasing e, in case
of both heuting or cooling of tho plates. With increasing @, it increases and de-
croagos with decreasing G.
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