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An analysis of mhd (Jiannol flow with hoat transfer under the influence 
of the crossed fields, buoyancy forces and variable viscosity is cairied 
out. Solutions for the velocity, current density, magnetic field tem
perature are derived and are slxown graphically. The numerical values of 
the skin-friction and the Nusselt- numbers are entered in tables. It 
is obst>rv(xl that in constant viscosity case, tlie skin-friction and Nu 
increases with more heating of the channel plates and decreases with 
more heating of the (haniiel plates and decreases with more cooing of 
iixo cliannol plates. In case of variable viscosity, with more cooling of 
tile plates, Uioro is a tendency of separation at tlie lower plate, fn the 
presence of bouyancy forcas, the akin-friction decreases. In a mJxd 
generator, an increase in the loading parameter or duo to more heating 
of the plates, the skin-friction increases.
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1. Iktroductton

MHD channel flows have been discussed extensively in recent years for their 
wide applications in t()chnology. The heat transfer aspect of such flows has also 
boon studied in case of fully developcxl flows by Siebel (1958), Ger»sliuni & 
Zukhovitskii (1958), fSiitton and Shonnan (1965), Soundalgekar (1908), whereas 
Nigam Singh (1900), Perlmuttor & Siegel (1961), Erickson etal (1966) have 
discussed it in the entrance region of channel flow. In all those investigations, 
duo to liori-zontal flow, the effects of the buoyancy forces have not been taken 
into accnont.

This is due to the assumption that the buoyancy forces are quite negligible 
in horizontal flows. This is not always true. It was shown by Sparrow el al
(1957) that in case of horizontal flows of low Prandtl number fluids, the buoyancy 
ionics cannot bo neglected as they significantly affect the flow field. Indepen
dently, it was also slxown by Gill and Casal (1962) that the effects of the buoyancy 
forces ar(i significantly important in case of the horizontal flows of the low Prandtl 
number fluids. Gill & Casal also discussed the effects of the variable viscosity 
on the horizontal channel flow between two parallel infinite plates.
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All tho low Prandtl number fluids are electrically conducting and henco tlK̂ ir 
(low in affected by trauHvornly applied magnetic field. TJob property has bo(m 
utilised profitably in magnetohydrodynamic channel flows. But all attempts 
to analyse the mhd flows were without considering the buoyancy forc,es. Tliis 
led Gupta (1969) to investigate the effects of the gravitational field on the hori
zontal mhd channel flow of electrically conducting, viscous incompressible fluid 
for open circuit case. Gupta, however, assitmed the viscosity to be constant. 
Reccmtly, the effects of varial)Ie viscosity on horizontal mhd channel flow w(tre 
discussed by Soundalgekar & Haldavnokar (1973).

The study of mhd channel flows is important from practical point of vi(uv as 
its works as a gfmorator or an accelerator depending Upon th(̂  value of tlvo loading 
parameter c --- E/VB wliore F, E, B are respectively the fluid volo<nty, <doctric 
field strength and the magnetic; field intensity. Moffatt (1963) has shown that, 
?>' >  1 corresponds to a mlid generator, ii) e >  1 corresponds to a mhd accelerator 
M-nd iii) c =r {) or 1 corresponds to short or open-circuited case. Hence, in order 
to study the mhd channel flows from practical point of vicnv, it is necessary to 
(consider tlve effects of i) cross(Kl-fields ii) gravitational field and iii) the variable 
properties of tlu; fluids. It is now the object of the present- investigation to 
study the effects of those forces on liorizontal mhd channel flow the viscosity
of th(; fluid is a linear function of th(̂  temperature and lh<; tompeT-atiire of the 
plates also varies linearly. For electrically conducting fluids, such an assumption 
does giv(; good results. Tn section 2, t-lie problem is posed in a suitabk; manner 
and t-lie expressions for the velocity and tiunporatiire are first d(;rived under 
constant prop(;rty assumptions. Then for the case of variable; viscosity, neglect
ing disssipation and ijû  source terms in ilie energy equation, under a suitable 
transfonnation, the problem is completely solved and expressions for the v(flocity 
profiles, current density, magnetic field and ternporatun; profiles are plotted on 
graplvs and the numerical values of the akin friction and the Nusselt number are 
(mterod iji the tables.

fn section 3, the conclusions are presented wh(;rein the off(H;ts of heating 
or cooling of th(̂  plates, th(; Imoyancy forces and the loading parameter are 
described.
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2. Mathematical Analysis

Here a steady, laminar flow of a viscous, incompressible, (doctrically conduct
ing fluid between two infinite and non-conducting plates in the x and directions 
IS assumed. The o;-axis is chosen along the lowor plate in the direction of the 
flow and the jy-axis is chosen normal to it. A uniform magnetic field is aasumed 
fo bo applied parallel to the y-axis. The electrical conductivity of the fluid 
medium is assumed to bo a constant scalar quantity. For steady flow, the dis
placement current vaniehos identically.
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Urulor those conditions, conaidoring tho buoyancy forces, tho fully dovolopod 
mhd flow is govornod by tho following equations

dp ,

m

( 1 )

(2 )

Horti w, is iho volooity componont, p tho density, p the viscosity, p the pressure, 
jz tlie (iiirrent density, (Bj,, B„. 0) the components t)f t]ie magnetic field intensity 
and (jj., gy are the components of the gravitational force. Neglecting Hall curreul., 
t he Ohm's law is

jz a-(Ez l-UiBy),

whore Ez is the applied electric field. The equation of state is

P — Po[l ô)]

...(3)

(4)

where // is the coefficient of expansion, t the temperatiire and („, p„ are the initial 
tejuj>oraturo and density, aasiuned constant.

I f the temperature varies linearly in the direction of fl<.»w, then the energy 
equation is

(IHdt
P('p'̂ x da; k w ' ( t  ) ’ € + « .

wliero tJxo Iasi throe terms roprosont respectively tho heat duo to viscous dissipa
tion, Joule dissipation and th(̂  constant heat source. Also c and h art) respec
tively tlû  specific Imat and the thermal conductivity of the fluid. Tn view of i)w 
ar-axis being perpendicular to tlie gravity force, the terms pĝ , in eq. (1) is identi
cally zero. Tlû n eliminating p between eqs. (2) and (4), wo get

(«)

In fully dovolopod flow, all tho physical variables, except tho pressure, arc func
tions of y only. Hence differentiating (6) with respect to x, we obtainL  ^

>0 dxdy =  -P9v dx
(7)

Differentiating (1) with respect to y, dividing by and eliminating — 
dxdy) from eq. (7), wo get

P9v
grBf,̂  dui

dx “ " ^  dy ’ (8)



whoro V =  /ijpQ is the kinematic viscosity.
Introducing the following non-dimensional quantities,

ff =  xlia.Pe), 7j =  yja, u ^  

into oq. (8), we have,

Effects on horizontal magnetohydrodynamic flow 397

^a^gy fp)
vV,Pe Hi

du d̂ u
p̂ v d'lf *

(9 )

( 10)

Hero a is tlio separation between the two plates «ad Û  ̂is the average velo(;ity of 
the fluid. Tliis e(p (10) will describe tlie fully-developed flow only when the right- 
hand side is independent of To satisfy this condition, we assume that the wall 
temperature varies linearly in the direction of the flowi.e., the heat flux at the wall 
is constant. Mathematically, this is represented by

( 1 1 )

whore A is tl\e axial temperature gradient and ^  Aa. On substituting eq. 
(II), (»q. (10) rtniuces to the following non-dimensional form

(Pu
dif

=. a,di]
( 12)

wller(̂

VUn Grashof number

and M  == B^a{(Tlp v̂)K

the Hartmann number. The constant has the dimension of temperature. 
Also, the P'eclet number Pe i» defined as the product of the Reynolds number

and the I^andtl number r/A i.e., . Now in oq (11) may have the

p̂ Ksitivo or negative values which physically corresponds to heating or cooling 
of the chamiel plates. Hence in terms of G, the heating or cooling of the plate is 
represented by

0 >  Oy (heating); G < 0 ,  (cooling).

This relation is useful for the physical interpretation of the results.
The no-slip boundary conditions are

w(0) =  0, w(l) =  0, (13)
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As 0(1. (12) is of th(̂  third order, one more condition is nocoasary to solve it com- 
plt t̂oly. So we employ tlio equation of continuity a« tlio additional condition 
Mluch, under no-nlij) c*onditionH, may be stated as follows :

J rid ri — 1.
0

The solution of <̂ q. (12), in virtue of eqs. (13) and (14), is given by 

V -r- fq(cosh M7j— 1) f s i n h  M ĵ—GrjIM ,̂

wl\er«'

fifsinh yi/(2 sinh M —il/(cosh i f  ~1 )~4(cosh i f  — 1)]a. --

(14)

(15)

i / “(cosh M -\)(M  sinh i f -  2(oos}i i / ~  I)

i f  sinh i f
M sinli M -2(cosh i f  — 1J

_  if(eosh ii^ l)+ G [if(c o sh  i f +  1)~2 sinli if]/if2 .
"  ~M sinh if-2 (co sh "if  ~ I )

The velocity profiles, calculated from oq. (15), are plotted in figures 1 and 2 for 
positive and negative values of G, Once u is determined, we can now find tlie 
(nirront density from oq. (3) wliich in non-dimensional form becomes

J ~  c, (1(>)

Fig. 1. Velocity profiles. G = —10-------- ; 5--------; O' =* 0— ; 6— —; M

whore J  and 6 =  — The current density from ©q. (16)
is plottfKl in figure 3. From Maxwell’s equations, the magnetic field is given by,

J =
Rm drj *

(17)
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0 0  0 2  0 4  0-6 o e  y  1 0  1-2 1 4  1 «

Fig. 2. Velocity profil(5. Q — 10; M 2—; 4--------.

Fg. 3. Current density, M ~ 4, t? = 0.4—; 0.5---- ; 0.8— ; 1.0- .

where =  itefrlJ  ̂ a is tho magnetic Reynolds number and /#c is the magnetic 
permeability o f the fluid medium. To determine tlie induced magnetic field from 
oq. (17), knowledge of the geometry of the oxhirnal circuit is necessary. Hughes 
& Young (1966) have described such a geometry which leads to tJie condition

H(0) == 0,

Hence from oqa. (15), (16), (17) and (18), wo got

(18)

... (19)
is plotted in figure 4

The skin-friction, in non-dimensional form , is given by

2 du
B dif It-O

. . .  (20 )
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Honco from eqa. (15) and (20), wo have

T  =  -  ^  (6jJlf-0/J/2).

The numerical values o f (—i?r/2) arc entered in table 1.

Table 1. Values o f i2r/2

M /
-10 - 5 0 5 10

2 5.6065 5.9978 6.3891 6.7804 7.1716
4 6.7728 7.1086 7.4444 7.7802 8.1161

(21)

Knowing the velocity field, we can now determine the temperature field from 
eq. (6) which in view of oqs. (9), (11) reduces to the following non-dimensional form.

where

u

d =

dW
drî

m
PcA.,

. . .  (2 2 )

Bt — > Brinkman number
PoCpXA^e

QQ =  , non-dimensional heat-souroe parameter.
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Tho boundary conditions are (0«,—upper wall temperature)

<?(0)_0, 0(1)

or in torma of constant hoat flux

(W ^  _f7(0)a d()(l)
drf ~  dij

7(1)«
K Al' (23)

After substituting for u from eq. (15), tho solution <rf cq. (22). in view of oq. (23) 
is as follows

r, n  ̂ \ l+«osJi J/w—w cosh ilf ,
0 ^ 0 „ r i + a i ^ - i -------------- ■ - - -  f  J - f

r sinh M y-r i  sinli M  1 O , , _ , o _
f>i [ Jj/2 J 6Jf2  ̂^

— (coalx 2Jf^—// cosli (sinli Mrj—y sinli M) —

C.
^ 2  (cosh Mt)—7) cosh A f+ 1/— 1 )+  {v^~v)+

^  (7*“ "7) +  2®iA  (>̂ inlx 2M i j — }j siiilx 2A/) +

, /„4 .  ^ fj/(cosh il/v -cosh  il/)
+  12M^ ------------- j p ---------------

2(sinli M7}—7j sinli M)
M3 }  2 6 /; I -  M"

f »/ (sinh M y—sixiix M)

2(cosh M ti—ij cosh i l / + 1 \ ] Qiî  , ^ (24)

whore Oy, =  Br I (i_ co sh  M)^- A ji  (2A /-siuli 2M)\* — * -  / 1 2

-2 a f } {2  sinh ilf-ilf(cosh  J f+  l)}/AP-26i<?{ili sinh M  
-t-2(l-cosh M )}IM ^-ll{l-q(l)lq(0)}-a^(M ^-2(coB h JJ-1))I3P  

-6 i(J tf-sinh  M )IM ^ -G IU P -Q I2  
=  20(a^+e),

C\ ^  A f* (a /+ 6 /),
=  2CiaJM+2biM^{ai+e), 

i>i =  G»/ilf‘ +Jlf*(oi+c)».
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The temperature profiles, calculated from eq. (24), are shown in figure 5. 
In technological fields, the rate of heat transfer is important and is defined in terms 
of Nusselt number as

N u = ^ - a d{T(ti)~Tm
dy »“ 0

do
dy (25)

Fig. 6. Temperature profiles, G = 5; Af = 2; Br = 0.05; e = 0.4—; 0.5------- Q 0.2.
On substituting for 0 from oq. (24) in (25), Ntt is calculated and its values are entered 
in table 2.

Table 2. Values of Nusselt number, i f  =  2, Q =  0.2, JB =  0.3

^  0 -10 —5 0 6 10

0 -0.2025 0.0862 0.4917 1.0141 1.6612
0.2 —0.1850 0.1049 0.6107 1.0323 1.6697
0.4 -0.1715 0.1187 0.6247 1.0466 1.6842
0.5 -0.1662 0.1240 0.6302 1.0622 1.6900
0.8 -0.1666 0.1342 0.6407 1.0631 1.7012
1.0 -0.1550 0.1369 0.6427 1.0664 1.7038
2.0 -0.2075 0.0846 0.4927 1.0166 1.6663

3. Vaeiable Viscosity

Here wo assume that the axial variation of viscosity is negligible and therefore 
we take into account the variation of /t with respect to y only. Under these condi
tions eq. (10),in virtue of eq. (11), may bo written as

dif \ /i„\/tft dy/ dy *



whero th© viscosity used in. G is /Iq, th,© initial value of n at th© lower plate. Wo 
now introduce th© transformation
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u
0 ■

into eq (26), which then reduces it to

dtj O.

(27)

(28)

For electrically conducting fluids, like liquid sodium, the viscosity can be approxi
mated by,

/<() 1^. t i k  _
P' +

(29)

wlioro, c ~=~ Hero fa is a reference temperature for the viscosity.
Hence (Up (27), in virtue of ©q. (29), reduces to

u ' - = ^ + c ] 6 [ f ^ ) d n . (30)

.‘Mid neglecting heat duo to viscous, Joule dissipation and heat sources, the 
(uv̂ rgy equation can now b(5 written as,

9 ^  , c n ! (31)

Hero u' and 0* represent the velocity and tomporaturo in case of variable viscosity. 
The eqs. (30) and (31) are now solved by the method of iteration. This is ac
complished as follows. First eq. (28) is solved for O. This expression for <[) and 
the one for 6 from eq. (24), are then substituted in eq. (30). The constants of 
integration are determined from the boundary conditions eqs. (13) and (14). Then 
this value of u* is integrated twice and after determining the constnts from eq.

Fig. 6, Temperature profiles, M  ^  2, e = 0.4—; ;.6------- ; 2~- — —; Br «  0 06; e «  0.2,
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(23), the expression for 6' is obtained and O' is shown in figure 6. With this now
oxŷ JUS>siou for th<̂  Hkixi-friction is caleulatt^d with the help of eq. (20) and its 
values are entered in table 3. Similarly from the expreasion for the Nussolt 
number ia also calculated and the values are entered in table 4.

Table 3. Values of (-J?r/2)
M 2, Q -  0.2. Ou, 0.2. e r-O .l, Br 0.03

a
V

-10 - 5 0 5 10

0 -5.2105 2.0508 3.9906 3.7940 2.6354
0.2 — 4.0510 2.0000 4.0285 3.8829 2.7592
0.4 -4.7110 1.9408 4.0648 3.9740 2.8870
0.5 -4.6010 1.9105 4.0823 4.0207 2.9526
0.8 -4.3000 1.8172 4.1320 4.1653 3.1560
1.0 -4.1230 1.7534 4.1720 4.2657 3.2977
2.0 -3.4399 1.4279 4.2825 4.8202 4.0947

Table 4. Values of ( —-Nu),
M  =. 2, (? = 0.2, 0,„ = 0.2, e = 0.1. B r ^ 0.03

V. G -10 - 5 0 5 10

0 1.6652 3.0495 2.0824 2.3038 5.2128
0.2 1.7253 3.0601 2.1558 2.3486 5.2019
0.4 1.7757 3.0659 2.2290 2.3968 5.1940
0.5 1.7977 3.0070 2.2055 2.4222 5.1911
0.8 1.8520 3.0639 2.3744 1.5038 6.1877
1.0 1.8797 3.0567 2.4463 2.5629 5.1899
2.0 1.9410 2.9714 2.7918 2.9203 5.2667

7. Conclusion

In order to study the effects of different parameters, the values of e are chosen 
from tlio practical point of view. The eflicioncy of a mhd generator may bo defined 
as tlie ratio of the electrical power to the flow power, wliich is identical to the value 
of the electric field factor e. But as pointed out by Moffatt (1963), the value of 
c for the maximum power is 0.5. In general, a reasonable compromise is, there
fore, required between the conflicting requirements for maximiun efficiency and 
the maximum power; e. =  0.8 is th(̂  generally acceptcxl value. Hence, one of the 
values of e is chosen as 0.8, Also, to bring out the effect of heating and cooling of 
the jdato, the positive axid negative values of G are also taken. Wo have the fol
lowing observations :
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1. Constant viscosity

From table 1, we conclude that with more heating of the plates, the skin- 
friction increases and with more cooling of the plates, tlio skin-friction decreases. 
With incroa*sing M, the skin-friction also increases both in case of cooling or 
heating of the plates.

From table 2 we conclude that with more cooling of the plates, the rate of heat 
transfer decreases whereas with more heating of ilie plates, it increases. In a 
mhd generator, an increase in e, the loading parameter, loads to an increase in the 
Nu for all 6?.
2. Variable viscosity

The numerical values of the skin-friction are shown in table 3 for ilf — 2, 
Q -- 0.2, Oyo — 0.2 and Br ~  0.03. For all c, we observe that with more cooling 
of the plates, the numerical values of the skin-friction are negative. Hence 
sepajation may occur at the lower plate. The numerical values of 0  ^  0 are 
always less tlxan those for G 0. Henc( ,̂ when the viscosity is variable, the pro- 
s(mce of buoyancy forces reduces the skin-friction. Tn case of a mhd generator, 
tlû  skin-friction increases with incressing the loading parameter and when the 
platens are being heatcnl. But when the plat(\s are being cooled, for the same 
device, the skin-fricion decreases with an increase in e,

Tlie numerical values of the Nussolt number are sliown in table 4. In case 
of a mlid generator, the rate of heat transfer increases with increasing e, in case 
ol both Jieatiug or cooling of the plates. With increasing (r, it increases and de
creases with decreasing G,
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