A nom alous Line-Shape of C ross Sections for $\mathrm{e}^{+} \mathrm{e}$! H adrons in the C enter-of M ass Energy R egion betw een 3.650 and 3.872 GeV

 L.Y.Shan ${ }^{1}$, L. Shang ${ }^{1}$, D.L. Shen ${ }^{1}$, X.Y. Shen ${ }^{1}$, H.Y. Sheng ${ }^{1}$, H.S.Sun ${ }^{1}$, S.S.Sun ${ }^{1}$, Y. Z. Sun ${ }^{1}$, Z.J. Sun ${ }^{1}$, X. Tang ${ }^{1}$, Y. Yuan ${ }^{1}$, S.L. Zang ${ }^{1}$, Y. Zeng ${ }^{7}$, B. X. Zhang ${ }^{1}$, B. Y. Zhang ${ }^{1}$, C.C. Zhang ${ }^{1}$, D. H. Zhang ${ }^{1}$, H. Q. Zhang^{1}, H. Y. Zhang ${ }^{1}$, J.W. Zhao ${ }^{1}$, M.G. Zhao ${ }^{1}$, P.P. Zhao ${ }^{1}$, W.R.Zhao ${ }^{1}$, Z.G. Zhao ${ }^{1 \mathrm{~h}}$, H. Q. Zheng ${ }^{12}$, J. P. Zheng ${ }^{1}$, Z.P. Zheng ${ }^{1}$, (BES Collaboration)

${ }^{1}$ Institute of H igh Energy P hysics, B eijing 100049, P eople's R epublic of C hina
${ }_{3}^{2}$ C hina C enter for Advanced Science and Technology, Beijing 100080, People's Republic of C hina
${ }^{3}$ G uangxi N orm al U niversity, G uilin 541004, People's Republic of C hina
${ }^{4}$ G uangxi U niversity, N anning 530004, People's Republic of C hina
${ }^{5}$ H enan Norm al U niversity, X inxiang 453002, P eople's R epublic of C hina
${ }^{6}$ H uazhong N orm alU niversity, W uhan 430079, People's Republic of C hina
${ }^{7}$ H unan U niversity, C hangsha 410082, People's Republic of C hina
${ }^{8}$ Jinan U niversity, Jinan 250022, People's Republic of C hina
${ }^{9}$ L iaon ing U niversity, Shenyang 110036, People's R epublic of C hina
${ }^{10} \mathrm{~N}$ an $̈ \mathrm{ing} \mathrm{N}$ orm al U niversity, N an $̈ \mathrm{ing}$ 210097, People's Republic of C hina
${ }^{11} \mathrm{~N}$ ankai U niversity, T ian ̈̈n 300071, People's Republic of C hina
${ }^{12}$ Peking U niversity, Beip̈ng 100871, P eople's Republic of C hina
${ }^{13}$ Shandong U niversity, Jinan 250100, P eople's Republic of C hina
${ }^{14}$ Sichuan U niversity, C hengdu 610064, People's Republic of C hina
${ }^{15}$ T singhua U niversity, B eif̈ng 100084, People's Republic of C hina
${ }^{16}$ U niversity of Science and Technology of C hina, H efei 230026, People's Republic of C hina
${ }^{17}$ W uhan U niversity, W uhan 430072, People's Republic of C hina
${ }^{18}$ Zhej̈ang U niversity, H angzhou 310028, P eople's Republic of C hina
${ }^{\text {a }}$ C urrent address: D ESY , D -22607, H am burg, G em any
${ }^{\mathrm{b}}$ C urrent address: U niversity of O klahom a, N orm an, O klahom a 73019, U SA
${ }^{\text {c }}$ C urrent address: U niversite P aris X I, LA L-B at. 208-B P 34, 91898- O R SA Y C edex, France
${ }^{d}$ C urrent address: M axP lank-Institut fuer Physik , Foehringer R ing $6,80805 \mathrm{M}$ unich, G em any
${ }^{e}$ C urrent address: U niversity of Toronto, Toronto M 5S 1A 7, C anada
${ }^{\mathrm{f}}$ C urrent address: CERN,CH-1211 G eneva 23, Sw itzerland
${ }^{9}$ C urrent address: Laboratoire de 1'A ocelerateur Lineaire, O rsay, F-91898, France
${ }^{h}$ C urrent address: U niversity of M ichigan, A nn A rbor, M I 48109, U SA

Abstract

W e observe an obvious anom alous line-shape of the $e^{+} e$! hadrons total cross sections in the energy region betw een 3.700 and 3.872 GeV from the data sam ples taken with the BES-II detector at the BEPC C ollider. Re-analysis of the data show s that it is inconsistent w ith the explanation for only one sim ple (3770) resonance with a statistical signi cance of 7 . The anom alous line-shape m ay be explained by two possible enhancem ents of the inclusive hadron production near the centerofm ass energies of 3.764 GeV and 3.779 G eV , indicating that either there is likely a new structure in addition to the (3770) resonance around 3.773 GeV , or there are som e physics e ects re ecting the D D production dynam ics.

In the energy range from 3.700 to 3.872 GeV , the well established (3770) resonance is believed to be the only observed structure. This resonance has been identi ed to be a m ixture of D wave and S wave of angular $m o-$ m entum eigenstates of the cc system. In addition, the (3770) resonance is expected to decay into D D meson pairs w ith a branching fraction that is greater than 98\%. H ow ever, there is a long-standing puzzle in the existing m easurem ents of (3770) production and decays. B efore recent BES-II [1, [2, 3, [4, 5] and C LEO -c [6] results published, existing data indicated that about 38\% of (3770) does not decay to D D nal states [7]. Recently, the BES C ollaboration m easured the branching fraction of (3770) decays to D D to be B [(3770) ! D D] $=(855) \%$ [2, 3, 8] and directly m easured the non-D D branching fraction of (3770) decay to be $B[(3770)!n o n-D D]=(13: 4 \quad 5: 0 \quad 3: 6) \% 4]$ and $B[(3770)!$ non-D D $]=(15: 1$ 5:6 1:8) 5$]$ under assum ption that there is only one simple (3770) resonance in the energy region betw een 3.700 and 3.872 GeV . In the last two years, the BES and CLEO Collaborations have searched for exclusive non-D D decays of (3770). H ow ever, the sum m ed non-D D branching fraction m easured by both the BES and CLEO C ollaborations rem ains to be less than 2% [1, 6]. To understand w hy the m easured inclusive non $-D$ branching fraction is substantially larger than 2%, in addition to continuing searching for m ore possible non-D D decay m odes of
(3770), it is worth going back to carefully exam ine the previous m easurem ents of the (3770) param eters.

A n exam ination of analyses previously reported by the BES C ollaboration in Refs. [2, 9$]$] show sthat the ts to the observed hadronic cross sections or R values are rather poor for the ne-grained energy scan cross section m easurem ents [see Fig. 4 (a) in R ef. [2] and Fig. 1 in R ef. [9]]] even though the branching fraction for (3770) ! nonD D was left as a free param eter in the ts. In this letter, we present a reanalysis of the observed inclusive hadronic cross sections to better understand the hadronic annihilation structure in the energy region betw een 3.700 and 3.872 G eV .

The m easurem ents of the observed inclusive hadronic cross sections are discussed in detail in the R efs. [2, 3, 3 , 10]. The observed inclusive hadronic cross sections obtained from the cross section scan data taken in M arch 2003 and in D ecem ber 2003 are illustrated in Fig. [1] [17] by dot w ith error bars, where the error bars are the com bined statistical and point-to-point system atic uncertainties. The system atic uncertainty includes the statistical uncertainty of the lum inosity, the uncertainties of the M onte C arlo e ciencies for detections of the B habha scattering events and the hadronic events, as well as the uncertainty of the observed cross sections due to the reproducibility ($0: 1 \mathrm{M} \mathrm{eV}$) of setting the BEPC m achine energy. The cm. (center-ofm ass) energy of the BEPC

F IG .1: T hem easured inclusive hadron ic cross sections versus the cm . energy for the two data sets taken in M arch and D ecem ber 2003; the t is donew ith tw o incoherent am plitudes (solution 1), see text for detail.
(3686) and $J=$. The m easured m asses of (3686) and $J=$ at BEPC are obtained by analyzing 6 data sets of
(3686) scan and 2 data sets of $J=$ scan perform ed during the tim e periods of collecting the ner cross section scan data. T he uncertainty in the calibrated energy for the com bined two ner cross section scan data sets together is about $0: 5 \mathrm{M} \mathrm{eV}$.

A close exam ination of the energy region (from 3.74 to 3.80 GeV) around 3.777 GeV shows that the slopes of the observed cross sections on the two sides of the peak are quite di erent; w ith the slope of the high energy side of the peak substantially larger than that of the low energy side. It con icts w ith the expectations for only one resonance in this energy region, since the e ects of the initial state radiation (ISR) and the D D production threshold as well as the energy dependence of the D D scattering am plitudes due to the B latt-w eisskopt barrier [11] would all m ake the slope at the high energy side of the peak less steep relative to the slope on the low-energy side. This anom alous shape seen in the precision m easurem ent indicates that one sim ple resonance hypothesis is quite questionable to t the current data. Instead of the conventionalde nition of the (3770) decay width (E cm), if the dynam ics of D D scattering or som e reasonablem odeldescribing the D D scattering can give som e specialform of (Ecm) and m ass shift forw hich the scattering am plitude gets zero or node at the rather low D m eson m om entum ($\mathrm{P}_{\mathrm{D}} 0: 4 \mathrm{GeV}$) to adapt the unusal decline around 3.8 GeV in the cross section line shape, the anom alous line-shape of the cross sections for $e^{+} e$! hadronsm ight be understood.

H ow ever, as show n in this w ork, it can not be excluded
to the (3770) resonance in the energy region between 3.700 and 3.872 G eV , which and its interference w ith the
(3770) am plitude distort the line shape of the observed cross section from that expected if there was only one resonance in the region.

To investigate whether there are som e new structures in addition to the (3770) resonance in the energy region betw een 3.700 and 3.872 G eV , we t the observed cross sections w ith one or tw o am plitudes in the energy region. T he expected cross section ${ }_{\text {had }}^{\text {expect }}\left(\mathrm{E}_{\mathrm{cm}}\right)$ consisting of four com ponents can be given as

$$
\begin{align*}
\underset{\text { had }}{\operatorname{expect}}\left(E_{\mathrm{cm}}\right)= & \underset{\operatorname{Rs}(3770)}{\operatorname{expect}}\left(E_{\mathrm{cm}}\right)+\underset{J=}{\operatorname{expect}}\left(E_{\mathrm{cm}}\right) \\
& +\underset{(3686)}{\operatorname{expect}}\left(\mathrm{E}_{\mathrm{cm}}\right)+\underset{\operatorname{cTM}}{\operatorname{had}}\left(\mathrm{E}_{\mathrm{cm}}\right) ; \tag{1}
\end{align*}
$$

in which $\underset{R(3770)}{\text { expect }}\left(E_{\mathrm{cm}}\right), \quad \underset{\mathrm{J}=}{\operatorname{expect}}\left(\mathrm{E}_{\mathrm{cm}}\right), \quad \underset{(3686)}{\operatorname{expect}}\left(\mathrm{E}_{\mathrm{cm}}\right)$, and ${ }_{\text {htM }}\left(\mathrm{E}_{\mathrm{cm}}\right)$ are, respectively, the expected cross sections for $\mathrm{Rs}(3770)$! hadrons, $J=$! hadrons,
(3686) ! hadrons, and continuum light hadron production at the cm . energy E_{cm}, and R s(3770) denotes the full structure around 3.773 G eV . T he expected cross sections are obtained from the B om order cross sections for these processes and the ISR corrections [12, 13].
For the Rs(3770) resonance(s), we use one or two pure P -wave $\mathrm{Breit-W}$ igner am plitude(s) with energydependent total widths [2, 3, 9] to t the observed hadron ic cross sections. T he tw o am plitudes are expected as
where $M_{j},{ }_{j}^{e e}, \underset{j}{h a d}$, and ${ }_{j}^{\text {tot }}(s)$ are them asses, leptonic w idths, hadronic widths, and the totalw id ths of the two resonances, respectively. ${ }_{j}^{\text {tot }}\left(\mathrm{E}_{\mathrm{cm}}\right)$ is chosen to be energy dependent [2, 3, 9]. For tw o am plitude hypothesis, conceming the possible interference betw een the tw o am plitudes, w e use tw o extrem e schem es to see if we can get better description for the anom alous line shape. In the rst schem e, we ignore the possible interference; and in the second, we assum e the com plete interference betw een the tw o am plitudes. T hese tw o schem es give the Solution 1 and Solution 2, respectively. T he B om order cross section for R s (3770) production in Solution 1 and Solution 2 can, respectively, be w ritten as

$$
\begin{equation*}
\operatorname{Rs}(3770)\left(E_{\mathrm{cm}}\right)=\not \lambda_{1}\left(E_{\mathrm{cm}}\right) \stackrel{\jmath}{\jmath}+\not \lambda_{2}\left(E_{\mathrm{cm}}\right) \jmath^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Rs}(3770)\left(E_{c m}\right)=\lambda_{1}\left(E_{c m}\right)+e^{i} A_{2}\left(E_{c m}\right) \jmath^{2} ; \tag{4}
\end{equation*}
$$

where the is the relative phase di erence betw een the tw o am plitudes.

T he non-resonant background shape is taken as
w ith

$$
\begin{equation*}
\operatorname{CTM}_{\mathrm{DD}}^{\operatorname{CTM}}\left(\mathrm{E}_{\mathrm{cm}}\right)=\mathrm{f}\left(\frac{\mathrm{P}_{\mathrm{D} 0}}{\mathrm{E}_{\mathrm{D}^{0}}}\right)^{3} 00+\left(\frac{\mathrm{P}_{\mathrm{D}}+}{\mathrm{E}_{\mathrm{D}^{+}}}\right)^{3}+\quad \mathrm{B}_{+} \quad\left(\mathrm{E}_{\mathrm{cm}}\right) ; \tag{6}
\end{equation*}
$$

where $\operatorname{ctad}_{\mathrm{LtHd}}^{\text {ctin }}\left(\mathrm{E}_{\mathrm{cm}}\right)$ is the observed cross section for light hadronic event production given in R efs. [2, 9$],{ }^{B_{+}} \quad(s)$ is the B om cross section for $e^{+} e \quad!\quad+\quad, \mathrm{P}_{\mathrm{D}} 0$ and $\mathrm{P}_{\mathrm{D}}+$ ($E_{D}{ }^{\circ}$ and $E_{D}+$) are the m om enta (energies) of D^{0} and $D^{+} m$ esons produced at the nom inalenergy $\bar{s}, 00$ and + are the step functions to account for the thresholds of the $D^{0} D^{0}$ and $D^{+} D \quad m$ eson pair production, respectively; f is a param eter to be tted. The e ect of energy spread on the observed cross sections is also considered in the analysis.

In the follow ing, ignoring the tiny di erence of the detection e ciencies determ ined from the di erent schem es as described above, we t the observed cross sections presented in F ig. 1 and in F ig. 2, respectively, w ith the expected cross sections given in Eq. (1) in two schem es. In the rst case, it is de ned in Eq. (3) and the ts give the results of the Solution 1. In the second case, it is de ned in the Eq.(4) and the tgives the results of the Solution 2. A s a com parison we also the cross sections W ith the conventional one B riet-W igner form of (3770) resonance as the de nition of the $\mathrm{R}_{\mathrm{s}}(3770)$ for the one resonance hypothesis. In the ts, we x r = 1:5 fm (r is the interaction radius of the cc system) [2, 3, 9] and x the $J=$ param eters at the values given in PDG 07 8]; the (3686) and R s(3770) resonance param eters are left free, $R_{\text {uds }}$ and f [2, 9] are also left free.

A s show n in F ig. 1 and in F ig. 2, the circles w ith error bars show the observed cross sections. T he red lines in both of the gures and in the sub-gures (a) inserted in Fig. 1 and Fig. 2 represent the tted values of the cross sections of Solution 1 and Solution 2. T he green lines in the sulb-gures (a) show the t to the observed cross sections for the one am plitude hypothesis. T he circles w ith error bars in red as shown in the sub-guares (b) inserted in F ig. 1 and F ig. 2 show the m easured net cross sections, which are obtained by subtracting the contributions from $J=$ and (3686) decays to hadrons, the continuum hadron production and the interference term of the tw o am plitudes in R s(3770) de nition for the Solution 2 ; the blue lines show the t to the net cross sections from the two resonances for both of the Solution 1 and Solution 2 , respectively.

T he 2nd, the 3rd and the 4th colum ns of T able 1 sum m arize, respectively, the results of the ts for the Solution 1 and the Solution 2 of the tw o am plitude hypothesis, and for the one am plitude hypothesis, w here the rst errons are from the t and the second system atic. For the m easured m asses, the second errors m ainly arise from the uncertainty of the BEPC m achine energy calibration for the com bined two data sets together. For the one res-

TABLE I: The tted results for the data taken in M arch 2003 and D ecem ber 2003.

param eters as listed in the 4th colum n of Table m easured values of the resonance param eters are consistent w ithin error w ith the world averages [14] [18] and w ith the earlier BES m easurem ents [2] [3] obtained by analyzing the two data sam ples separately. The t gives the m ass di erence between the (3770) and (3686) resonances to be $\mathrm{m}=87: 8 \quad 0: 5 \mathrm{M} \mathrm{eV}$. H ow ever, the large ${ }^{2}=$ ndof in the 4 th colum n of Table \square gives the t probability of less than $7 \quad 10^{6}$, m eaning that the one resonance hypothesis is strongly incom parable w ith the present precision m easurem ent data. On the contrary, the ${ }^{2}$ change for the two hypotheses in Solution 1 is $(182125)=57 \mathrm{w}$ ith a reduction of 3 degrees of freedom. This indicates that the signal signi cance for the new structure is 7:0 . The ${ }^{2}$ change for the two hypotheses in the Solution 2 is 70 w ith a reduction of 4 degrees of freedom. This indicates that the statistical signi cance of the new structure is 7:6. C om paring the ts for the Solution 1 and Solution 2, we nd that the ${ }^{2}$ change of 13 w ith a reduction of 1 degree of freedom. The signi cance of the interference betw een the tw o B reit-w igner am plitudes is 3:6,which indicates that the tw o am plitudes likely interfere som ehow w ith each other. T he actual situation of the interference would be som ew here betw een the tw o cases. It depends on what are the exact nalstates of the possible new structure decays.

H ow ever, it is noted that the tted valuef = 5:2 $\quad 2: 5$ $0: 6$ in the Solution 2 w ould lead to a huge D D production cross section at higher energy region and there exists an evident dip of the inclusive hadron ic cross section around $\mathrm{E}_{\mathrm{cm}}=3.80 \mathrm{GeV}$. These indicate that, instead of only the continuum D D production, therem ight be a broad structure whose peak is at higher energy than 3.83 GeV and

F IG . 2: T he observed inclusive hadron ic cross sections versus the nom inalcm. energies for the com bined data sets taken in M arch and D ecem ber 2003; the twasdonew ith tw o coherent am plitudes for R s(3770) (Solution 2).

BELLE collaborations [16] observed G (3900). To consider the e ect of the G (3900) on the observed cross sections, instead of the rst two solutions for the two structure hypotheses one m ay adopt the third approach by including the new com ponent of D D production am plitude of $G(3900)$. The tting procedure is analogous to Solution 2. H ow ever, the amplitude $\mathrm{A}_{2}\left(\mathrm{E}_{\mathrm{cm}}\right)$ in Eq. (4) is replaced by a square root product of a param eter C and a Gaussian function G. The m ass and the standard deviation of G are xed at the m easured val-
ing to the D D cross section as the one m easured by BABAR at 3.943 GeV . The red line in Fig. 3(a) represents the tted values of the cross sections, which is obtained from the t under assum ption that the (3770) and $G(3900)$ am plitudes interfere w ith each other; the $t-$ ted value from the hypotheses for only (3770) am plitude (blue line), from Solution 1 (yellow line) and from Solution 2 (green line) are also illustrated in Fig. [3(a). T he 5th colum n of T able 1 sum m arizes the results (Solution $3)$ of the t including $G(3900)$. The t gives a rather poor t probability of less than $510{ }^{5}$, which does not signi cantly im prove the t from the one resonance hypothesis. If we consider three coherent am plitudes in the t by replacing $\not \lambda_{1}\left(E_{c m}\right)+e^{i} A_{2}\left(E_{c m}\right){ }^{f} w$ ith $\left.\lambda_{1}\left(E_{c m}\right)+e^{i}{ }^{1} A_{2}\left(E_{c m}\right)+e^{i}{ }^{2} G\left(E_{c m}\right)\right\}$ in Eq. (4), where G is the G (3900) structure, we obtain alm ost the sam e results as these show n in Solution 2 in T able I instead of $f=5: 2 \quad 2: 5 \quad 0: 6$. This t gives $f=2: 7 \quad 6: 4 \quad 0: 6$, which is com parablew ith the inclusive hadronic cross section m easurem ents at the higher energy region. F ig. [3(b) show s the ratio of the residualbetw een the observed cross section and the tted value for the one (3770) am plitude hypothesis to the error of the observed cross section. T he variation of the ratio w ith E_{cm} indicates that there is m ore likely som e new structure additional to (3770) resonance.

FIG. 3: (a) the observed inclusive hadronic cross section versus the nom inalcm . energy; (b) ratio of residual to error of observed cross section; (see text).

In sum m ary, by re-analyzing the line-shape of the cross sections for $e^{+} e$! hadrons, we nd that it does not describe the cross section shape well w ith the hypothese that only one sim ple (3770) resonance exists in the energy region from 3.700 to 3.872 G eV . If there are no other dynam ics e ects which distort the pure D-wave BreitW eigner shape of the cross sections, the analysis show s
one sim ple (3770) resonance there at 7 statistical signi cance, indicating that there m ight be evidence for a new structure additional to the single (3770) resonance. H ow ever, if there are som edynam icse ects distorting the pure D wave B reit-w eigner shape of the cross sections, such as the rescattering of D D leading to the signi cant energy dependence of the wave function in the D D decays of the (3770) resonance, one has to consider those e ects in the m easurem ents of the resonance param eters of (3770), since these e ects would de nitely shift the m easured values of the resonance param eters. A nyw ay, the large non-D D branching fraction of (3770) decays m easured previously [2, 3] m ay partially be due to the assum ption that there is only one sim ple resonance in the energy region betw een 3.700 and 3.872 GeV in the previous m easurem ents of the (3770) param eters.

The BES collaboration thanks the sta of BEPC for their hard e orts. This work is supported in part by the National N atural Science Foundation of China under contracts Nos. $19991480,10225524,10225525$, the C hinese A cadem y of Sciences under contract No . K J 95T-03, the 100 Talents Program of CAS under C ontract Nos. U $-11, \mathrm{U}-24, \mathrm{U}-25$, and the K now ledge Innovation Project of CAS under C ontract Nos. U-602, U-34(HEP); by the National Natural Science Foundation of C hina under C ontract No. 10175060 (U ST C) , and No. 10225522 (T singhua U niversity).
[1] J.Z.B aiet al., (BES C ollaboration), HEP \& NP 28 (4) 325 (2004); J. Z. B ai et al., (BES C ollaboration), Phys. Lett. B 605, 63(2005).
[2] M . Ablikim et al. (BES C ollaboration), Phys. R ev. Lett. 97, 121801 (2006).
[3] M . Ablikim et al. (BES C ollaboration), Phys. Lett. B 641, 145 (2006).
[4] M .Ablikim et al. (B ES C ollaboration), Phys.R ev.D . 76, 122002 (2007).
[5] M . Ablikim et al. (BES C ollaboration), Phys. Lett. B 659, 74(2008).
[6] N. E.Adam et al., Phys. Rev. Lett. 96082004 (2006); T.E.C oans et al., Phys. Rev. Lett. 96182002 (2006); G. S. H uang et al., Phys. R ev. Lett. 96032003 (2006); G.S.A dam s et al., Phys. R ev. D 73012002 (2006); D. C ronin H ennessy et al., Phys. Rev. D 74012005 (2006); R.A.Briere et al., Phys. Rev. D 74031106 (2006).
[7] G. R ong, D H. Zhang, J.C. C hen, hep-ex/0506051.
[8] W .M . Yao et al. (Particle D ata G roup), J. Phy. G 33, 1(2006) and 2007 partial update for edition 2008 (U R L :http://pdg.lbl.gov).
[9] M . Ablikim et al. (BES C ollaboration), Phys. Lett. B 652, 238 (2007).
[10] M . A blikim et al. (B E S C ollaboration), Phys. R ev. Lett. 97, 262001 (2006).
[11] J M . B latt and V F. W eisskopf, Theoretical Nuclear Physics (John W iley \& Sons, New York, Chapm an \& Hall, London, 1952).
[12] E. A. K uraev and V. S. Fadin, Yad Fiz. 41, 733 (1985);
[13] F A. Berends and G J. K om en, Phys. Lett. B 63, 432 (1976); A ndrej B . A nbuzov, Eduard A. K uraev et al, JH EP 10, 006 (1997).
[14] W .M. Yao et al. (P article D ata G roup), J. Phy. G 33, 1(2006).
[15] B. A ubert et al. (B aB ar Collaboration), arX iv :hepex/0710.1371v1
[16] G. Pakhlovs et al., (B E LLE C ollaboration), arX iv :hep-
ex/0708.0082v2
[17] The observed cross sections from the tw o data sets are corrected w ith the m easured R uds values before com bining them together.
[18] W e com pare our results w ith PD G 06 w orld average, since PD G 06 did not include BES results on them easurem ents

