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The Maxwell’s wave equation in a medium whose pormittivity is
undergoing a one-dimensional periodic space time variation by the
action of a pump wave is solved by a perturbation technique based
on the methods of Bogoliubov and Mitropolsky for non-linear oscilla-
tions. Expressions are obtained for the amplitudes of the various
frequency components associated with the wave. The general dis-
persion relation is also obtained.

1. TNTRODUCTION

The topic of propagation of olectromagnetic waves in & moediun whose permitti-
vity is varied by the action of a pump wave is of contemporary interest for
physicists and engineers. The notable contributions are found in the papers of
Slater (1958), Tien (1958), Simon (1960), Cassedy & Oliner (1963), Kunz (1964).
Holbery & Kunz (1966), and others. The effect of the pumping by an acoustic
or electromagnetic wave is to produce a periodic variation of the permittivit)
of medium in space and time, determined, by the frequency and wave numbor
of the pump wave. Tho complicated wave equation in such a medium has beon
solved by the above authors by numerous approximation techniques. The
present paper deals with a perturbation mathod for the one-dimensional case and
it has more genéral applicability than the others. This method can be suitably
applied for several oases of wave propagation in nonlinear media.

In the ordinary case of a constant permittivity the wave equation is separ
able in the space and time parts. But when the permittivity is a fanotion of
space and time the wave equation is not saparable. But if the wave equation
is expressod in terms of a retarded time it will be soparablo in space and retardoed
time by tho introduction of a suitable separation constant. The equation in
terms of the retarded time will be one of the Mathieu type with periodio cooffi-
cients. The solution of the Mathieu oquation has beon discussed by MoLachlan
(1951) and has been used by Holbery & Kunz (1966). But the method will not
be applicable to the equation in the present cage. To solve the equation a por-
turbation method based on the mothods of Bogoliubov & Mitropolsky (1961)
is developed.
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The solution of tho wave oquation falls under two heads. (a) The non-
rosonance case where tho soparation constant has any general value. [In this
caso the wave amplituda is stable in spaco and time. (b) The resonance caso
whero the soparation constant has cortain spocial relationship with the pump
froquency and the propagation constant. Tn this case undor cortain conditions
tho solutions are unstable. This papor discussos tho goneral non-resonance caso.

2. FORMULATION OF THE PROBLEM

Considor an infinito isotropic non-conducting non-dispersive modium of
pormittivity €, which is subjoctod to the action of a pump wave of frequency
0. (In this papor tho froquoncy rofors to the angular frequoncy), propagation
constant K propagating along the z-direction. The effoct of the wave is to
modify tho pormittivity to a value ¢ given by

ez, t) = g[l-+h cos(Qt—Kzx), e (D)
where h is a factor much loss than 1 callod the modulation index. Tho pump
wavo is thus modulating the pormittivity of the medium to tho value givon by

eq. (1) and it doos not have any other interaction with the propagating electro-
magnotic wave in tho modium.

Assuming a lincar rolationship botweon tho cloctric displacoment vector D

and tho fiold vector E wo obtain from Maxwell’s oloctromagnetic equations in
M.K.S. units.

vxv><E+ﬂo—g;; (eE) == 0, e (2)

where g, is the magnotic permeability of tho medium which is not affocted by the
pump wave. For a transverse oloctromagnotic wave propagating in the z-
diroction we have E, = E(z,t), E, = Ey, = 0. With e given by eq. (1) we have
from eq. (2)

{-2%.?. sin Q (z_;.)g?—}—hg: cos Q (t-—; ) =0, e (3)

where C' = (u4,)-# is the velocity of propagation of tho wave (called signal) in
the unmodulated modium, E = E(z,t) and V = Q/K is tho pump wave velocity.

Wave eq. (3) is to bo solved for the electrio fiold. But since it is not separ-
able in the space and time part we can introduco & transformation of variables
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8o that the resulting differential equation is separable in the new variables. This
transformation can be introduced by setting

X =gz, 1=t—-—; e (4

where 7 can be considered as a retarded time. Using eq. (4) and with

0 _9 gl _ 2. 129
a7 "axT ax Vo

we can write eq. (2) in the form

PE 1 ”E 2 ®E  OE de d
oxs (Vi #) 5~y Txor Mo 57 drmEga =0 - 0

where
E = E(z,7) and € = €(1) = €(1+-cos Q7). .. (6)

We can investigate the solution of eq. (5) having the form
E(X,7) = T(r)expifX, ‘ e (M

where g is a separation constant which can be real or complex. Using eq. (7)
in eq. (6) we get an ordinary differential equation for 7" in the form

drt

2 ; aT
( ;l,rﬂos) ) —2( '{,?+ﬂoe') 37 (BT =0, o (8)

where

, , _de . _ d%

I,=T(T),€ —Z—T Bnd € = a‘,‘j.
Eq. (8) can be transformed into a differential equation where the first derivative
is removed by a substitution

T(r) = G(r) exp [ p(7)dr. e (9)

Tho function 7(7) can be choson such that when eq. (9) is substituted in eq. (8)
the cooffisient of d@/dr in the resulting differential equation for @ is zero. With
this condition applied we get
P(r) = T
i;i“-[&ns ... (10)
and with ¢ given by eq. (6) we get
T, [ 2 af(ltha (b Q7
v (11)
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where 7', i8 an arbitrary constant of integration.

_ ! LB
02”] ’ a] - v Qa.
vET

a —=

Using eqs. (9) and (10) in eq. (8), we get. .
1 2 dz2q ;
(Vg"‘.“oﬂ) -(i;z +(ﬂ2/‘f_'if /‘l‘oe' )(l‘ S ) .. (12)

The two linearly independent solutiogs @, and @, of eq. (12) can be substituted
in oq. (9) and the electric ficld £ in the miodulated medium can bha obtained from

eq. (7).
3  PERTURBATION METHOD

The solution of eq. (12) in closed form is not casy and as in similar problems
a suitable perturbation technique is to be used. Hero a technique based on the
methods of Bogliubov & Mitropolsky (1961) for non-linear ogcillations is deve-

loped.
The solution falls under two heads, (a) the so-called non-resonance case
where the separation constant £ is not in the neighbourhood of the quantity

N g ().

'N being an integer, (b) the resonance case when f is in the neighbhourhood of
NQ (C? 1
2v (i” ) )

The non resonance case is dealt in this article

Substituting for € and ¢’ from eq. (1) and assuming ah << 1. we can write
eq. (12) in the form

P8 4G = —+A[h(ag cos Qr-+iay sin )

}-h¥(a, 008207 iase 8in 2Q7)4-...]G. . (13)
where
\ W= %_0_& , g — 142, g = 2a+3at . (14)
(1)

In most cases of practioal interest h is small and henoe the expansion used to
obtain eq. (13) is valid.
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Eq. (14) can be intorpretod in genoral as the oscillation of a systom with
natural frequency » subjected to a small periodio porturbation reprosented by
the terms on the right hand side. It is to be notod that whonv— 00, a;=0
and for small A neglecting terms in A2 and abovo, eq. (13) is reduced to tho Mathiou’s
equation which has been intensivoly studiod and appliod to several problems.
In the present case the solution of eq. (13) can be studied to the second order
in h so that terms in A and A? can be retained.

The general solution of eq. (13) will consist of a wave with a fundamental
frequoncy v and harmonic components of frequencies nQ-+mp (the integors m
and n varying from —co to +c0) and relative amplitudes depending on A, Q
and v. But when n and m aro such that one of the harmonic froquencies is equal
to the natural frequency v, ie.,
nQ+my =»

... (15)

or

vee 20
q

whore p and g are integers, the amplitude of the particular harmonic will be
comparable with that of the fundamental and we say there is resonance. How-
ever, it will be observod lator that resonance will not oocur for all values of p
and ¢ and it occurs for » in thie neighbourhood of NQ/2, whore N is an integer
When substituted for » from cq. (14) we get the resonance condition as

8= 30 (1) - 10

In the non-resonance case the solution of eq. (13) has to be sought in the
form

G = £ cos y-+huyf, ¥, Qn)+Bulf, ¢, Q1)+, e (17)

Where the function u,, u, etc. are poriodic in both the angular variables ¥ aud
Q7 with a poriod 27. The amplitude f and the total phase y are detormined by
the following defferential equations,

g{. = hR,(f)+ MR (f)+... e (18)
dyy
ar = vHaS(N+8(N+..., e (19)

when h = 0, we nota that f is & constant and y* = 7 so that the unparturbed
solution is
. @ = fcosvr. v (20)
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"The quantities B,, Ry, S,, S,, ... etc. on tha right hand sidos of oqs. (18) and (19)
must dopend only on the amplitude f sinco in the non-resonance case the phase
of the natural oscillation has no dspzndsnee on the phaso of the porturbation.
But in the 1osonance case the situation will be different.

Substituting egs. (17), (18) and (19) in eq. (13) and oquating the coefficients
of like powers of & on both sides of the resulting equation wo got

02U 02U U :
2 6¢I”l+2v 5&51; + 6121+V2U' e a04-2fu,91 cos ¥ +-2vR, sin o, .. (2D
02U, , 02U, d*U . .
v? _6;022-!-2”5'/’3;-*- 5{2} +v2U, = a;+2fv8S, cos Yr+2vR, sin .. (22)
where
a, = v cos (o, cos Qr-f-ia, sin Qr) ... (23)
a, = —v2U (ay cog Qr-+1a, sin Qr)

-v%f cos Yr(a, cos? Qr-Hiaa, rin 2Q7)

y(Rl %}ﬁ .-fs,z) cos Y — (_ﬂel %51- +21e,s,) sin ¢

*Uy

“_2R(7-U,

Yofor

22U,

oyor .. (24)

Uy +2v8

PRy g

+28,

The functions a,, a, are periodic in ¥ and Qr and moreover dopend on I
Krom tho relations given by eqgs. (21) and (22). U, U, R, R;, 8,, 8, aro to be
dotormined. Tho first step is to ovaluate U, B, and §,. The function a, can
he expanded into a double Fourier series given by

af,t, Q) — 5 3 am®(foxpinQr+my), .. (25)

-0 ) ——D

whore a,n,® are the Fourier coefficionts. Multiplying both sides of eq. (25) by
exp i(n0+myr) (where 0 = Qr) and intograting with respoct to 0 and ¥ over a
complete cycle we get

B (f) = _4,71;5. o” ? ag(f, ¥, O)exp—i(n0+my)d0dy. ... (26)

Similarly U, can be expanded in & double Fourier series with the Fourier co-
effivionts U, givon by

U0 = 3 T UM (foxpitnQrimp) . @7)

Mm—CO Rm—00
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Substituting egs. (26) and (27) in eq. (21) we gat
2 I [B—(nQ+my)3UD p(f)exp ¢(nQr+myr)

= 2fv8, co8 Y+ 2vR, 8in Y+ T a,m?(fexp s(nldr+myr)
n m
.. (28)

Since we are dealing with the non-resonance case it is necessary to detor
mine such values of U,,", R,, S, that U, will not contain the resonance term
wth frequency nQ+mv = v. For this, those U,,"(f) for which »*—(nQ+mw)
= 0 should be zero. This condition is satisfied for n = 0, m = 41. Hence
Uy = Uy, = 0. With these conditions applied, and equating the co
efficients of equal harmoniocs in eq. (28) we got

()

Uam(f) = yff('quﬂ%;;}’ (with n # 0, ms#=+1) . (29)
2R, = —i[ay®+a, ) - (30)
2fu8; = —[ag, @ +a,, . (3D

Using egs. (26), (30) and (31) we get

B - '41:12.; Iﬂ ’f a(f, ¥ O)rin ¢ dldy L (32)
8 = 41:zfv I I ao(f, Y. B)cos Y dBidy. L33

Knowing R, and 8,, f and ¢ can be evaluatod to the firat order in & and U, deter
mined as

- .1 expi(nQr+my) 2 2= . 14

U, Z m‘z;l 4 (P (nQFm] ) f f asexp nl+my)dddy ... (34)

The above procedure can be continuod to doterminod R, 8, and U, With

R,, S, and U, determined from eqs. (32), (33) and (34) a(f, ¥, Q1) can be evaluated

from eq. (24). Expanding a, and u, in double Fourier series. substituting n
eq. (22) and proceeding in the samo way as hefore. we get

1 an Sn . 9 rn
R’ = '-'4-'"—’-;10 Ja! Blnilfd()dl/l .. (35)
1 ar 8n o
8, = grer { 6[ a, cos Y didy .o (36)

1 . exp i(nldr+my) - 37
U= g .%o -.-2;'.:: V—(nQ+mv)} ; {“‘“p ind-+my )Y -
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On evaluating the appropriate integrals it is found thut

Rom 0 820, K=o, 8y | G .
1 0y 2 s =V 4Q2—4:2) + 4 ] ... (38)

Uy = f1Cy exp iy +0)+Cy 0xp- i(y-+ )+-Cyexp iy~ 0)4C, exp (Y- 0)]

. (39)
Uy = fDy expi(yy+20) + D, oxp —i(yr+20)u- Dy expi(f-- 20)+ 1)y exp- - i(yr—26),
; ... (40
where 3 (40)
R . (41)
o. . v i (agta,) o _ V(@ -ay) ]
B 4 - (v+Q) 2 42— (v Q)
. (42)
o 'f (o) ) v (oz+a,) |
* 4 V- (v—Q) ¢ 4 (v J
D, 2 PUi(astay)— ay—2a.a
178 v —(v+2Q)%
|
. 2 Osag—an)—ay+2ax]
T8 vi-- (v-4-2Q)
(43)
D - N [Ua(as“‘az)—ari’zazal
3T 8 V2 —(v-- 2Q)2 '
D, = v [Cylog ) —a,—2apx|
‘t7 8 vi—(r—2Q)? ]
If the solution is assumed as
( = fsin y+hU," FARU + .. . (49)

we get by similar procedure
U, = if[— Cexpi(y+0) FCyexp Y+ 0)- Cgexpi(y---0)+Cyoxp--i(y—0)]
.. (45)
Uy’ = sf{ — Dyexp i(y+20)4- Dyexp-  i(-+260)—Dyexp i(y—20)
D, exp—i(yr—20)). ... (46)
From ags. (17), (39), (40), (44), (45) and (46) we ocan write the two sulutions for
G as
@ = feaxp syl +h(2C, exp i0+2C; exp—i0) _
1 +h2(2D, exp 2i0+2D; exp--2i0)+...] ... (47)
and

@ = foxp—iy[1 +A(2C, exp—i0+2C, exp if)
H:’(2D, exp--2i0-+2D, exp 2i0)+...}. ... (84)
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In the above discussions, the cases v = Q2 and v = £ (corresponding 1.
n =0, m == 41 etc.) are obviously resonance conditions as evident from tjy
cooffizionts givon by ogs. (42) and (43). Since S, is real, the solutions do not
change their amplitudo exponontially with inoreasing 7 and hence can be said
to represent stable solutions. Theso solutions aro valid for all v 2 NQ/2 (N
=1,2,...). Henoe stable solutions ocour for all » £ NQ/2 or

4. EvecTrIC FIELD IN THE MEDIUM

The expression for the oloctric fiold E(z, ) can bo obtained from eq. (7) by
tho use of eqs. (9), (10), (47) and (48) with eq. (47) we get the solution as

Elz, 1) = L oxp i(wt—k) [1+Ll oxp iQ ( t—r )+L2 cxp~--iQ( tsr )

+Lg exp 21Q (t—-; )—}—L‘ exp—2iQ2 (t - it ) —}] NEL

where L can be called the fundamontal amplitude depending mainly upon f
the rolative amplitudos L, and L, of the harmonics are proportional to A whil:
Ly and L, aro proportional to A2,

1 2
w = CC/l +2 (@3 4-8,) . (B0
I—/_l

SN X Yoa ')(l__l nl
kl-—-0+h (Q 2 th V 0). (')
Eq. (49) represents a forward wave in the direction of pump wave having a funda
mental frequency w, and wave voctor k.

The phase velocity w,/k, is not C, but depend upont he modulation index 4
and the pump wave froquency Q and veocity V. Thus the medium is turned
dispersive by the effect of the pump wave. The associatod harmonics have
froquencies w,+%Q, w,;4-20 etc. and their velocitins are different from those of
fundamental.

When eq. (48) ia used, the electric field
E(z, t) = L'exp i{wgt-+kyz) [1+L{ oxp iQ ( - )+L,‘ exp i@ (t— )

4L, oxp 2iQ ( t—-;) +L,/exp—2iQ ( I~y ) ] , e (B2)
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where L’ is tho fundamontal amplitude L', L',. L',. I/, the relative amplitudes
of the harmonics as in eq. (49). Huore

c . ,
arg = Z"'T_:/%—{_hz (Sl—%g‘ JT.Sz) .. (63)
1 4

Eq. (62) thus represents a backward waxe in a dircction opposite to the pump
wave with a frequoncy diffarent from that of the forward wave. The wave
voctor is also difforont from that of the farward wave and so is the velocity. The
frequeoncies w, and w, dopend on the particular choice of 8. For a given value of
B there will be two dominant frequencios excited in the medium and they travel
in opposite directions with different velocities.

But for a given froquency oxcited in the medium the values of g will be
difforont for the forward and backward waves. [If this frequency is w, for the
forward wave g is given by the relation

2
- Caﬂ +h2 ( L o +8,) .. (55)
1

and the wave is represented as

E(z, 1) = A exp idgz{oxp i(wt—kyz)+a, exp i{(w- Q)—(k+ K)z}
+a_, oxp if{(w— QW —(ky— K)x} ... 1, ... (68)

where A is an arbitary constant

w ! w?, C 1
. o) rev )]
- 2 2
(AT
k — w
o L ... (BT)
o = — h (w-i-Q)? _
T e
.o (9:9_):_;_ R
—-1__--
) Q(I—g')l“('v‘+‘)”2"‘] )
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For the backward wave g is given by the relation
C, 2
0=t w292 g e (88,
c +1 2 '
4
The wave is given by

B(z, t) = B exp iApx[exp i( wt+k,x)+-b, oxp t{(w+ Q)+ (ko— K)z}
+b_; exp i{(w— Q)+ (ky+ K)z}+...], ... (89)

where B is an arbitrary constant and

wo [(o7=a(v+)] ]

4 v Q?

__bk (w0+Q)? o
CRabeg)eg)ee [ "
b =__h_ (w—Q)z‘ L
T P afiy)[e(1-5) -2

Eqs. (66) and (60) show that in a permittivity modulated medium the elec-
trio field exists as a superposition of waves of frequencies w, w4-Q etc. with
different amplitudes. The different frequency ocomponents have different
velocities and the medium is turned dispersive. Besides the velocity of each
frequency component will be different for the waves travelling along the direc-
tion of the pump wave and opposite. For a real w, the propagation constant k,
is also real. The amplitudes of the waves do not grow exponentially in space
and time and hence the waves are stable in the medium.

REFERENOCRS

Bogoliubov & Mitropolsky 1961 4 Symgplotic Methods in the Theory of Non-linear Oscillations.
(Translated from Russian) Hindustan Publishing Corporation, Delhi.

Cassedy E. 8. & Oliner A. A 1963 Proc. IEEE 51, 1342,

Holberg D. E. & Kuns K. 8. 1966 IEEE Transactions on Antonnas and Propagation AP-14,
No. 2, 188.

Kunz K. 8. 1864 Sandia Oorporation Monogaaph, SO-R-684, 1361.

MoLachlan N. W, 1051 Theory and Applications of Mathieu Functions, Oxford Univ. Press.

8imon J. C. 1960 IRH Trans. MTT-8, 18.

Slater 1058 Bev. Mod. Phys. 36, 197. . “

Tien P. K. 1958 J. Appl. phys. 29, 1347.



