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On thc performance of slider bearing under fluctuating speed
using a non-Newtonian visco-elastic fluid as lubricant
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In the prosent paper effect of fluctuations on tho porformance of o
slider bearing has been considered using a non-Nowlonian visco-
elastic flnid as lubricant I{ has been obtained that load-carrying
capacity of the bearing always oxceeds its valuo in steady case except
for a brief initial period. The offeot of visco-clasliuity has heen
found to he advantageous for the increase of load-carrying capaocity.

1 TNTRODUCTION

The problem of hydrodynamic lubrication of certam {ypes of non-Nowtoman
flmds have been investigated in ils theoretical and experimental aspects by many
worhers (Saibel 1962, Slibar & Paslay 1956, Shukla 1964 and Srivastava 1964)
Tn the study ol bearing lubrication of both Newtonian and non-Newtonian fluids,
most of the problems have been investigated under the conditions of steady load
and steady spoed and literature on the performance of such beorings is almost
exhaustive, Comparatively loss attontion has been paid towards the problems
of hoarings which have been subjected to the variable conditions of load and
speed.  The theoretical analysis of the problem concerning the variable load
has heen carricd out by Harrison (1920) and Swift (1937) Ladanyi (1948) has
given approximate solution for the effect of hearing acceloration during unsteady
stale of speed whilo Burwell (1947) has developed an analytical method for com-
puling the behaviour of any dynamically loaded bearings.

The present problem aims to investigate the effect of slider fluctuations
on the performance of bearing using a non-Newtonian visco-elastic flud as lubri-
cant  Verma (1969) has investigated the same problem and has only obtained
& modified Reynolds equation which includes the texms on account of slider
oseillations.  But no attempt has been made to discuss the pressure distribution,
load-carrying capacity ete Moreover a ierm has been missing in his equation
(27). The present problem has been solved using a technique different to that
of Vorma and taking into consideration the term dropped out by him. It is
interesting to note that except for a brief initial period, the load-carrying capacity
always exceeds its value in steady case Effect of visco-elasticity has heen
found -to be advantageous in increase of load capacity.
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2. PBOBLEM FORMULATION

The classical theory of lubrication has heen developed by Fuller (1961),
Pinkus & Sternlicht (1961) and Tipei (1962) o explain the fluid mechanical
behaviour of lubricants acting as thin load-bearing films between almost—mating
smooth metal surfaces moving relative to one another. The assumptions of the
original theory aro :

(1) the fluid is Newtonian, and of constant viscosity;

(2) the flow is laminar, and is dominated by viscous and pressure forces:
(3) the fluid is incompressible; ¢

(4) the flow is steady;

(5) tho pressure in the film is a tunction of the coordinates only measuring
position on either surface, but not of the coordinate measuring position
between opposing surfaces

The justification for these five assumptions is usually that the films are very
thin and so the length seales in the planc of the surfaces are large compared with
the film thickness. As the assumptions are independent, we have relaxed the
assumptions (1) and (4) to include—

(a) non-Newtonian behaviour duc to visco-elasticity;
(b) wnsteadiness due to oscillating fluotuations.

Tho constitutive oquations of incompressible second order visco-elastic
fluid following Colueman & Noll (1960) are

7y = A st Adwyt pad e e, - (23)
where
Aig = vig+vsg,
Ay = g+ 20muvmy,
and St = Ty—pgy, . (22

such that Sy is the stress tensor, g¢; the metric tensor, v; and a; the velocity and
acceloration vectors, respectively, and p pressure, p,, s, and u, material oonstants.

The flow takes placo between two almost parallel surfaces sliding past one
another and spaced apart by a variable distanco &(z, ¥) and the bounding surfaces
are z = 0 and z = h(z, y).

3 ILquarioNs oF MoTioN

With the usual assumptions of the lubrication flow, the equations of motion
of @ incompressible second-order fluid in cartesian coordinaies, making use of
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@.1), 2.2) and equation of continuity, can be written nfs :

f';—;‘— ﬁ[—l’+(2ﬂa+l‘a)( az) ]+ oy ';:': “+ ity :;Z, e (31
and
0= o (m o+ 2 ) —p+emtm(%)) . (32)

Here, tho first equation of (2.7) of Verma (1969) is corrected as (3.1) in whioh
3,
additional term p, ;3%:2 ocours in the right hand side.

The above equations may be written as

du_ _9OP Pu_ . Pu

Pa = " o T &T—'—M otz
(3.3)
P | 3( ou
0=~ ta(m )

where P iy the modified pressure (Bhatnagar 1961).

As the characleristic length in the x.direction is much greater than the

characteristic longth in the z-diroction, hence 2 is small in comparison to 9 and

ox 0z
thus second equation of tho (3.3) reveals that P = P(x) and (3.3) reduces to
ou ®u g
at = Mg ﬁz“ T o - 84)
1 0
whero A= — ; 51;4 , vy = /‘71 and v, = #2,

4. SoLuTIONS

We shall solve the equation (3.4) by the technique due to Lighthill (1949),
ie., we assumhe the expression for velocity as

u = ug(z)+-euy(2, 1) - (41)
Substituting (4.1) in (3.4), wo have

¢ i’ﬁ — i, [a’u', pedu ol ]+u, [ atazz] . (42)
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On cquating thoe coofficients of € on both tho sides of (4 2), we have follow-mg
oquations -

Puy A .
022 —"1 - e (43)
and
ouy _ 0Puy Puy
o T oma e 49

Equation (4 3) is to be solved subject to the following boundary conditions :

uy = U; when z = 0
Uy = 0; when z = h.
Its solution is
_ 1 opP v, .
Uy == U 0w z(z—h)+ L (h—=). e (4.5)

Now in order to solve tho oquation (4.4), we define the Laplave transform
Ty(z p) = | oxp(—pthue, 1) . (46)

Equation (4.4) 13 to he solved subjeet 1o the following houndary conditions

(a) wu, = Uoxp(int) onz=0;1>0
() Uy =0 onz=/h,t>0 j o (7Y
(c) Uy == 0 ont =0

Mullaplying both the sides of (4.4) by exp(—pt) and integrating between Uhe
limits 0 to oo, wo have the Laplace transform of (4.4) as

0%, P -
— =0 ... (48
92 nfup t @

and transformed boundary conditions are

Uin onz =0,
r . (49)

(a) iy =

(b) =0 unz=k.J
Now thoe solution of (4 8) subject to (4.9) is

U sinh [(Eﬁjp)—)l ("—"“)_]_ e (410)

(p—1n) sinh[ (vl——{—%)i’b l

Uy =

J
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The inverse Laplace integral of (4.10) is evaluated by transforming the path of
(nlegration into a closed contour and applying the caloulus of residues (Carslaw
& Jueger 1941). We obtain

\

sinhiAyh—2))

sinh (Agh)
o 2 [k (15 oro [, 250 )]

u, = U exp(int)

+ % (4.11)

IK=1 ( 1 _+ Vzk e )[v]ksﬂz—i-ln(’ba-i-vzkzﬂz)]
; I2
oo A, = (Mﬂﬂ v
where 0 P )
Thus wo have from oquations (4 1), (4.5) and (4.11)
P ) _ _ . sinh(Ay(h—z))
u — 2 0% 2(h z)—l— (b n)—l-s[ U exp(int) «s'lnh o
S 2
+5 um( kn(l——w))F(k, k, t)] e wl)
k*m?
(—1)kU2mhy, oxp _z(Lfﬁ ]
where F(k, I, t) = ok [ L 7 ) .
(1+ 2 ) [v,k2n4+m(lb‘~’+ vym2k?))
5. Rarg or Frow AND PrEsSURE DI1STRIBUTION
The flow rate @ is given by
13
= [ udz .o (8.1)
0

Substituting (4.12) in (5.1) and integrating, we obtain
Q_

Uh ) U exp(int) 1 ) R 2 5
+ec ( ) {_—‘7 —coth()\uh)} +E T Fht) )

T T 12, Ox A sinh (Agh)
(6.2)
where & is an odd intoger.
Applying the condition that there is no side leakage, we have
9 _Udh_0d ( m P U oxpl(int) (71 — coth(AJ
dx T 2 dzx o (12,4 o ‘{ e \sinh (Agh) %P )
X 2R .
2h =0, .. (53
+2 o Bl b t) 3] (5.3)
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F L, 2 (- by e
—FL; 27” P t)}) e (54)
Bfuation (5.4) on integration yields
g— (h—cy) = —l% %1; 6{ Uw/:\}:(m}_) (si—n}:m)—coth(/\uh))

p).* '?{’LF(K’h e}

’ \
whers ¢, is constant of integration, or '

or 12p¢ (U exp(ind) 1 _
G = 00m () T ( o T (gh) coth (A}

2h

S 4+ 5,2 F(k,n,n)‘),. .. (85)
K=1 km '

Equation (5.5), which is similag 1o Reynold’s (1886) equation for steady spoed
except that offects of slider fluctuations arc also included; is the governing equa-
tion and all the oporating characteristics of the flow may be derived from 1.

6. Prussure DisTRIBUTION AND Loap Caracrry ror SMALL Tmvui

In order to oblain the pressure distribution, we collect: the roal part of equa-
tion (5.56) and integrate the oquation so obtawed. Wurther integration will yield
us {he cxpression for the load capucit_'s(

On collecting the rcal part of (5.5) and uppmxlnmtmg,

exp ( — ( m"_'_lkz_l___ ) )
B2t v kPt
for small values of ¢, wo have . BELE

oP ¢, 124,6U
0% 6"‘U(h= hé) T [l(b”—l—c’){cosh@bhl)—-¢os(2¢hl)}

X {(b cos nt+c sin nt)|2sinh(bhl)cos(6hl) —sith(REAL)] -
(b sin nt—¢ cos nt)[Zcobh(bhl)ml(( hl) bm(%hl)?}

2 v, litr?
., « Amy 2l h? { (],,z |.lv 22 ,)} . (6.1)
Ka (h*-l-uakwa){ﬁwmiﬁ”_%"“f !
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where . .
b = ({2 vt )]s, RS RS

and

¢ = H‘{(Vlz‘l""zznz)i""}uif

2= (rmm) |40

t.
v Vi,

’

Now as & is small, equation (q.l) can further he simplified by neglecting the terms
of order & and highor:~ We ;thus obtain

I
oP _ . 1 _¢ cos nt
=8 _bp,UB( i 7L_a)+1z,u1UB¢~.~(_~2,hz, +

12 o 4v12(l—t “
{ 5 [2be 5 03 c0s ni(bi—o%)]

Vs )
—VZW‘(VI“+;2§7?“)} ) (6.2)
where & = z/B.

|
In tho case of slijer bearng with a film given by the equation

h = hy(a—aZ+%), o= ;ﬂ,

o 6.3)
we have - ' ;

ar :Gp,UB( 1

a3 ¢y : )+12/L1UB(-.‘ (1 cos nt
o hy? (@a—ak+-E)?,  hya—ak{-T)? X 9 (@—az T z)
A 4ot l—t-}l! ) e ‘ f
12 . fa ) 1 ( V. ‘) . .

. 71141 \
By using the boundary t;o'nditim}s P(0) = P(1) = 0, the integrated pressure is

p=TB -UA3) 1B (o,

(e—1)FA—F) kg a? —Flat—1)—
‘(a+1)(afﬁ+‘5)*_xa%i-l){(a—afmﬂ At —1)-1}

| ' 4v12( 1—t. K‘-)
><{l2 [2be sin né-+3cos nt(Bi—ct)]— ' 2. }) ... (6.5)
24 vom4 (v % +-vytn?)
Having obtained pressure distribution, Load capacity W can be obtained from
the followingA: :

W.= LB{ Pdz. . (6.8)
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From (4.6) and (4.6), we obtain

__ 6p,UBL _ 2(a—1)
= htla—1pt ("’f"" @t )

2f1_¢ M1
4:v1(l t.v)

_12mUBLe ( 1 (a—1)hy? { o) _
Bt 2 (@FN) o tvin®)
12 . e __ _cosmt _oa—1)
54 [2he sin nt+-3(b2—c?)cos nt]} 2a—1)% {lu a V(a:lfr)}) . (6.7)

Tquation (6 7) can also be written as

p2(1—g.
W—W, _ 2ea—1)2  (a—D)hy? {4” (] b vz) _
We " opg 2@=T) ('2(a+1) g (v, vy2n?)
247 @+
_ B Y L __ cosml _ 2(a—1)
24 [2be sin wt--3(b cz)co.qqu]} a1y {lnga sy }) (68)
whore

;s _ 6u,UB*L _ 2a-1)
Ve ey (8= e )

Expression for the centre of pressure has been obtained as

_ 1 (G,u,lU B:L {—5(a3—71)7—|—2a(a+27)loﬁg4 a}
= wl ae (at-1)(a—1)

+

124,UBLe [ connl (—b(a?—1)+2a(a+2)log a
TP fme |

Tig? 2 T 2@ =T)e—1)

T 6(a?—1)(a—1) (@@=1){a—1)?

+h=5( (203 —8a?+-a—1) a?log a )

4v1’(1—i e )
Vo

12 .
Xgq {2bc sin nt4-3cos nt(b’—c”)}—'};"i (R gtnt) (69)

7. DisdussioNn

The equations (6.7) and (6.8) for load capacity and relative rednection of load
are examined numerically and the graphs are shown in figures 1 and 2. The
relative reduction of load capacity in (6.8) as shown in figure 2 is to be under-
stood only as an instantaneous effect. As the acceloration persists, the velocity
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will increase and the load capaoity will rise with time. The slider bearing is given
a pulsating motion hence, the load capacity is maximum at nf = 7 and then it
will decrease with time but always remain positive In figure 1, the load capacity
18 plotted against nt and it will always remain greator than the load capacity
in case of steady motion, except for very gmall time in the beginning, which can
be considered. as the instantaneous effeot.
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