Indian J. Phys. 47, 480-489 (1973)

On the electronic spectra of 2, 5-and 2, 6-dibromopyridines

D. MARJIT

Optics Department, Indian Association for the Cultivation of Science, Calcutta-32

(Received 1 September 1972)

The near ultraviolet absorption spectra of 2,5- and 2,6-dibromopyridine in the vapour state and in solutions in cyclohoxane and ethyl alcohol have been studied and their vibrational structures have been analysed. Both compounds exhibit only one system of bands due to $\pi \to \pi^*$ transition in the vapour state and in solutions Solvent shifts of the 0,0 bands in solutions in the two solvents have been discussed

INTRODUCTION

The appearance of two systems of bands due to $n \to \pi^*$ and $\pi \to \pi^*$ transitions in the absorption spectra of pyridine and substituted pyridines and the effect of solvents on the two systems were discussed by Kasha (1950) and Brealey & Kasha (1955). Solution and vapour spectra of several mono- and di-substituted pyridines have been described by different authors (Herrington 1950, Rush & Sponer 1952, Andon *et al.* 1954, Ikekawa & Sato 1956, Kyte *et al.* 1960, Pandey 1967, and Bag 1971). Stephenson (1954) studied the solution spectra of 2- and 3-hromopyridine and observed that 3-bromopyridine yields both $n \to \pi^*$ and $\pi \to \pi^*$ systems of absorption bands while the spectrum of 2-bromopyridine exhibits only the $\pi \to \pi^*$ system of bands. These observations were later corroborated by Misra (1960)

The ultraviolet absorption spectrum of 2,5-dibromopyridine was reported by Spiers & Wibaut (1937) without any analysis. The spectrum of 2,6-dibromopyridine has not been reported by any author. In the present work, the absorption spectra of 2,5- and 2,6-dibromopyridine in the vapour state and in solutions in cyclohexane and ethyl alcohol have been photographed and analysed Since data on the ground state vibrational frequencies of the two molecules are not available in the literature their infrared absorption spectra have also been recorded.

EXPERIMENTAL

Pure samples of 2,5- and 2,6-dibromopyridine were obtained from Schuckardt, Munchen (Germany). The samples were fractionated and the proper fraction of each sample was further distilled under reduced pressure before being used. The experimental arrangements for studying the electronic spectra were similar to those described in an earlier paper (Marjit 1970). The spectra were photographed on Kodak Spectrum Analysis Film No 1 with an all metal Hilger El (E478) quartz spectrograph having an inverse dispersion of about 3 Å/mm in the 2600 Å region. Iron are comparison spectrum was photographed on each spectrogram by means of Hartmann's diaphragm.

Microphotometric records of the spectra were taken with a Kipp and Zonen Moll microphotometer The accuracy in the measurements of the positions of absorption bands was about $\pm 10 \text{ cm}^{-1}$ for sharp and moderately sharp bands.

The infrared absorption spectra of the compounds in dry ether in the 600-2000 cm⁻¹ region were recorded with a Perkin Elmer model 21 double beam spectrophotometer equipped with rock salt optics

RESULTS

The microphotometric records of the absorption spectra of 2,5- and 2,6dbromopyridine in the vapour state and in solutions are reproduced in figures 1-4 The wave numbers of the absorption bands with probable assignments are given in tables 1-6 The infrared frequencies are given in table 7.

Figure 1. Microphotometric records of the ultraviolet absorption spectra in Transition II $(\pi \to \pi^*)$ of 2,5-dibromopyridine in the vapour state. (a) 30 cm cell at 70°C. (b) 100 cm cell at 40°C (c) 100 cm cell at 120°C.

Figure 2 Microphotometric records of the ultraviolet absorption spectra of: (a) $8.5 \times 10^{-4}M$ solution of 2,5-dibromopyridine in ethyl alcohol at $32^{\circ}C$ (b) $9.5 \times 10^{-4}M$ solution of 2,5-dibromopyridine in eyelohexane at $32^{\circ}C$

Figure 3. Microphotometric records of the ultraviolet absorption spectra in Transition II $(\pi \to \pi^*)$ of 2,6-dibromopyridme in the vapour state. (a) 30 cm cell at $0^{\circ}C$ (b) 30 cm cell at $70^{\circ}C$. (c) 100 cm cell at $48^{\circ}C$. (d) 100 cm cell at $140^{\circ}C$.

Figure 4 Microphotometric records of the ultraviolet absorption spectra of:
(a) 8.5×10⁻⁴ M solution of 2,6-dibromopyridine in ethyl alcohol at 35°C
(b) 9.3×10⁻⁴ M solution of 2,6-dibromopyridine in cyclohexane at 35°C.

DISCUSSION

Under widely different conditions of temperature and pressure and lengths of the absorbing vapour column the spectra of both 2,5- and 2,6-dibromopyridines m the vapour state appear to consist of only one strong system of absorption bauds in the 2500-2900 Å region The absorption spectra of the solutions of the two compounds in both cyclohexane and ethyl alcohol more or less rotain the vibrational structure observed in the corresponding vapour spectrum. In the case of solution in cyclohexane the band system due to each molecule undergoes a small red shift with respect to that of the corresponding vapour. On changing the solvent to proton donor ethyl alcohol, the 0,0 band shows a similar red shift. Since the $\pi \to \pi^*$ system always undergo bathochromic shifts irrespective of the nature of the solvent, the above facts probably indicate that the band system may be due to $\pi \to \pi^*$ transition in both the molecules. The existonce of a second system of bands attributable to $n \to \pi^*$ transition could not be detected in the vapour spectra or the solution spectra of the two compounds. This observation is similar to that reported by Stephenson (1954) for the 2-bromopyridine molecule.

Wave No		Intensity					
	L* 100 cm		L = 30 cm		from the	Assignment	
((m))	$t = 40^{\circ}$ C	<i>l</i> =120°C	$t = 0^{\circ}C$	$t = 30^{\circ}$ C	t−70°C	band	
34837	w	mw		m	w	- 302	0-302
34918	m	ms		m	m	- 221	0 - 221
35074	រោទ	s			m	- 55	0 - 221 + 149
35139	V٩	VS	w	m	9	0	0,0
35288	w	-			vw	+ 149	0 149
35363	VN	s	w	m	ч	+ 224	0-1-224
35556	m				m	+ 417	0- -417
35659	m	ţ			m	+ 520	0+520
35793	m				mw	+ 654	0+654
35864	s	cut off			н	- - 725	0+725
35943	m				m	+ 804	0+804
36038	ın				mw	+ 899	0 + 899
36077	ns				m	+ 938	0 + 938
36166	V8				8	+1027	0 + 1027
36287	m				mw	+1148	0+1148; 0+417+725
36392	V8				8	+1253	0+1253; 0+520+725
36579	m				mw	- -1440	$\left. \begin{smallmatrix} 0+1440; \ 0+2 \times 725 \\ 0+417+1027 \end{smallmatrix} \right\}$
36651	ms				m	+1522	0+1522, 0+725+804
36673	w				w	+1534	0+520+1027
36750	w				w	-+- 1611	0 +- 2 × 804. 0 +- 725 - - 899
36903						+1764	$\left. \begin{smallmatrix} 0+725+1027\\ 0+520+1253 \end{smallmatrix} \right\}$
37081						+1943	0 + 938 + 1027
37178						+2039	$0 + 2 \times 1027$
37414						-+ 227 5	0 + 1027 + 1253
37597						+2458	$_{0+2 \times 1027+654 \atop 0+1027+1440}^{0+2 \times 1027+654} brace$
37812						+2673	$0+2 \times 1027 + 654$
38406						+3267	$0+2 \times 1027 + 1253$
38869						+3730	$0 + 3 \times 1027 + 725$

Table 1. Ultraviolet absorption bands at 2,5-dibromopyridine in the vapour state $(\pi \rightarrow \pi^* \text{ transition})$

 $L^* =$ Length of the absorption tube,

Electronic spectra of 2,5- and 2,6-dibromopyridines etc. 485

· · ·	Solution in cy (9:3 × 10 ⁻⁴ M	clohexano at 35°C)	Solution in ethyl alcohol $(8.5 \times 10^{-4}M \text{ at } 35^{\circ}\text{C})$				
Wave No. in cm ⁻¹ & Intensity	Difference from the 0,0 band	Assignment	Wave No in cm ⁻¹ & Intensity	Difference from the 0,0 band	Assignment		
34882 w	- 208	0-208	34865 w	- 200	0200		
35090 s	0	0,0	35005 s	0	0,0		
35295 s	- - 205	0 + 205	35263 в	+ 198	0+198		
35803 ms	+713	0+713	35780 m	+ 715	0-+715		
36035 ms	+ 945	0- -945	36024 m	+ 959	0 + 959		
36113 ms	+1023	0- -1023	36096 ms	+1031	0 + 1031		
36250 m	-+- 1160	0+1160	36493 nis	+ 1428	$\begin{smallmatrix}0+1428\\0+2\times715\end{smallmatrix}\Big\}$		
36505 ms	+1415	$\left. \begin{smallmatrix} 0+1415 \\ 0+2 imes 713 \end{smallmatrix} \right\}$	36822 vs	+1757	0-+ 1031- -715		
36825 vs	1735	0 + 1023 + 713	37122 m	+2057	$0 + 2 \times 1031$		
37136 in	+2046	$0+2 \times 1023$	37825 ms	+2760	0+2 imes 1031+715		
37850 в	+2760	$0+2 \times 1023 + 713$					

Table 2 Ultraviolet absorption bands of 2,5-dibromopyride in solutions $(\pi \rightarrow \pi^* \text{ transition})$

Table 3	Probable	corrolation	between	\mathbf{the}	ground	state	and	excited	state
		fundamenta	als of 2,5-	dibr	omopyri	idine			

Gound state fur	ndamentals (cm-1)	Excited state	Probable		
Infrared absorption	Ultraviolet absorption (Vapour state)	- Jun((amentals Ultraviolet absorption (cm ⁻¹) (Vapour state)	meturo or mode		
-		149			
	221	224			
	302	_			
_		417	φ (CC)		
_		520	ϕ (CCC)		
680		654			
750		725			
828		804			
918	_	899			
990		938			
1090	<u> </u>	1027	β (CN)		
1170		1148	β (CH)		
1310	—	1253	γ (CC, CN)		
1491	_	1440			

D. Marjit

		1	Intensity	,		Defference	
Wave No. (cm ⁻¹)	L* =	100 cm	L = 30 cm			from the	Assignment
	t == 40°C	<i>t</i> =120°C	$t = 0^{\circ}C$	$t = 30^{\circ}C$	$t = 70^{\circ}$ C	band	
35425	w	mw	vw	vw	vw	- 285	0-285
35545	w	mw	vw	vw	vw	- 165	0
35710	VB	6	w	w	8	0	0,0
35870	w				w	+ 160	0+160
35980	ms	ţ			m	+ 270	0 + 270
36181	m				mw	- - 471	0+471
36287	н				ms	+ 577	0 + 577
36592	ins	out			m	882	0+882
36619	m	off			mw		0+909
36713	8				ms	+1003	0+1003
36794					m	+ 1084	0 + 1084
36889					m		0 + 270 + 909
36937	m				m	+1227	0 + 1227
37191	m				m		0 + 577 + 909
						1	0 + 471 + 1003
37281	m				mw	- ⊢ 1578	0 + 577 + 1003
37625	m				mw	+1915	0 + 909 + 1003
37708	mw				mw	+1998	$0 + 2 \times 1003$
37868	m				m		$0+2 \times 1084$
38279	w				1111W	2569	$0+2 \times 1003 + 577$

Table 4. Ultraviolet absorption bands of 2,6-dibromopyridine in the vapour state $(\pi \rightarrow \pi^*$ transition)

 $L^* =$ length of the absorption tube

Table 5. Ultraviolet absorption bands of 2,6-dibromopyridine in solutions $(\pi \rightarrow \pi^* \text{ transition})$

So (!	lution ın cyclo 9 3×10 ^{- 4} M at	hoxano 35°C)	Solution in ethyl alcohol (8.5 \times 10 ⁻⁴ M at 35°C)			
Wavo No. in cm ⁻¹ & Intonsity	Difference from the 0,0 band	Assignment	Wave No. in cm ⁻¹ & Intensity	Difference from the 0,0 band	Assignment	
35652 s	0	0,0	35627 в	0	0,0	
35948 m	+ 296	0+296	35896 m	+ 269	0 + 269	
30234 ms	+ 582	0 + 582	36208 ms	+ 581	0+581	
36652 m	+1000	0+1000	36586 m	-+ 959	0+959	
36905 ч	+1253	0 + 1253	36822 A	+1195	0 + 959 + 269	
37224 m	+1572	0 + 1000 + 582	37166 m	+1539	0 + 959 + 581	
37825 в	- -2173	_				

Ground state	o fundamentals	Excited state	Probable	
Infrared absorption	Untraviolet absorption (Vapour state)	- Indiamentals Ultraviolet absorption (Vapour state)	nature of mode	
	165	160		
_	285	270		
-	_	471		
		577	α (CCC)	
914	_	822		
930		909		
1018	_	1003	Ring	
1094		1084	β (CH)	
1276		1227	γ (CC, CN)	

Table 6. Probable correlation between the ground state and excited state fundamental of 2,6-dibromopyridine

Table 7. Infrared frequencies of dibromopyridmes in cm^{-1} (3% solution in dry ether)

2.5-dibromopyridine	2,6-dibromopyridine	2,5-dibromopyridine	2,6-dibromopyridme
601 vvw			1144 т
610 w		1170 s	1173 m
	638 ms	1200 ms	
680 m			1217 w
710 m	710 m	1240 m	_
	725 m	1250 w	1276 m
750 m	740 vs	1310 s	1288 ms
760 w	-	1320 s	-
768 w		1330 m	_
780 m	780 s	1342 w	1346 в
796 в			1376 vs
810 m	812 s		1401 vs
828 m	825 s	_	1408 s
860 ms	840 vs		1438 vs
880 ms	881 m	1470 w	-
898 w		1491 m	1484 ms
918 w	914 s	1510 w	
940 ms	930 s	1527 s	1521 w
990 ms	984 s	1540 в	1540 vs
1004 vs	1018 s	1580 m	
	10 36 s	1600 m	_
1080 B	1074 s	1613 w	
1090 vs	1094 vs	1805 vvw	
	1112 #	1952 vvw	

2,5-dibromopyridine

In the vapour state 2,5-dibromopyridme yields about twenty eight sharp absorption bands From a study of the temperature dependence of the intensities of the bands the 0,0 band of the system has been taken at 35139 cm⁻¹. The bands to the shorter wave length side of the band origin in the vapour spectra have been analyzed in terms of the excited state fundamentals 149, 224, 417, 520, 654, 725, 804, 938, 1027, 1148, 1253 and 1440 cm⁻¹. The most prominent frequency appearing in progression or in combination with other frequencies is 1027 cm⁻¹. Probable correlation of some of the excited state frequencies with the ground state infrared frequencies is given in table 3.

The frequencies 221 and 302 cm⁻¹ observed on the long wave length side of the 0,0 band in the ultraviolet absorption spectrum of the vapour probably represent ground state fundamentals.

In the absorption spectra of solutions of 2,5-dibromopyridine in cyclohexane and ethyl alcohol the strongest bands on the long wave length side at 35090 cm⁻¹ and 35065 cm⁻¹, respectively, have been taken as 0,0 band. Thus in other solvent the 0,0 band undergoes a small red shift with respect to the 0,0 band of the vapour which is characteristic of the $\pi \to \pi^*$ transition.

2,6-dibromopyridine

The spectrum of 2,6-dibromopyridine in the vapour state shows about twenty absorption bands in the region $35000-38500 \text{ cm}^{-1}$. The band at 35710 cm^{-1} which persists with relatively undiminished intensity at low pressures of the absorbing vapour has been taken as the 0,0 band of the system. The other bands are found to involve excited state fundamentals 160, 270, 471, 551, 882, 909, 1003, 1084 and 1227 cm⁻¹ and two gound state fundamentals 165 and 285 cm⁻¹ Probable correlation of some of the excited state frequencies with the ground state infrared frequencies is shown in table 6

In the absorption spectra of solutions of 2,6-dibromopyrdme in cyclohexano and ethyl alcohol, the 0,0 bands have been assigned to the strongest bands at 35652 cm⁻¹ and 335627 cm⁻¹ respectively. In this case also the 0,0 band undergoes a small red shift characteristic of the $\pi \to \pi^*$ transition.

Acknowledgment

The author is grateful to Dr. S. B. Banerjee for his continued guidance and to Professor C. S. Kastha, D.Sc. for his kind interest in the work.

REFERENCES

Andon R. J. L. Cox J D. & Herrington E. F. G. 1954 Trans. Farad. Soc. 50, 918.
 Bag S. C. 1971 Induan J. Phys. 45, 155.
 Brealoy G. J. & Kasha M. 1955 Am. Chem. Soc. 77, 4462.

Herrington E F. G. 1950 Disc. Farad Soc 9, 26

Ikokawa N. & Sato Y. 1956 Pharm. Bull. (Japan) 4, 136.

Kasha M 1950 Disc Farad. Soc 9, 14

Kyte C T Jeffery H & Vogel A. I. 1960 J. Chem. Soc. 4451

Maijit D, 1970 Indian J. Phys 44, 339.

MISIA T. N. 1960 Indian J. Phys. 34, 381.

Paudey B R 1967 Indian J. Pure Appl. Phys. 5, 288.

Rush J. H. & Sponer H. 1952 J. Chem Phys. 20, 1847

Spiors C. W. F. & Wibaut J P 1937 Rev Trav. Chim. 56, 573

Stephenson H P. 1954 J. Ohem. Phys. 22, 1077.