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Attenuation caleulation in a forromagneto material placed in a mag-
metic field has been worked out in the present paper following operational
method. Expression for attenuation/wavelength ob(ained in the present
mothod is exaotly the same as that derived by Leslie (1950). The ex-
pression has been successfully used for computing attenuation in a
nickel tube at no biasing and the agreement with the result of Wegel
& Walther (1935) in the same material is found to be exoellent.

INTRODUOTION

Measuroment of attenuation in solids has been carried out by many workers,
namely Siegel (1944) Hillier (1949), Lesli (1950). The measurement of attonua-
tion in a ferromagnetio material has a special significance because of tho exten-
sive use of magnetic materials in industry  The atlenuation in magnetic material
is a drawback owing o the incremental permeability adding to the disturbing
factor, in the use of ferro-maguetic matorials for design purposes From theo-
retical point of view, propagation of acoustic wave through a magnetostrictive
material involves losses both of micro and maoro order due to internal friction,
eloctromechanical coupling and eddy current losses. As no attempt has yet been
maude to include all these, we shall solve the problem by setting up steady waves
in a ferro-magnetic rod or tube and fiding the attenuation losses due to internal
friction and heat arising from magnetostriction. Since we consider low ampli-
tudo vibrations, the alternating flux produced, owing Lo Villari effect, is neces-
sarily small. Therefore eddy loss can be neglected particularly if we consider a
thin rod or a tube.

SoLUTION OF Tu®E PROBLEM

For mathematioal convenience, it is common in problems on vibrations to
consider the relation between the stress, p, and the strain, e, in a solid to be of the
form :

where E and 7 are the associated elastic and viscous moduli.
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In the present problem the strain in the magneto-strictive bar consists of
two parts. Firatly that due to mechanical stressing and secondly due to magnetic
biasing.

So equation (1) may be written in the form

p—=E (emneh+fmuu)+77’gt”(0menh+ﬂmng) - (2)

The production of strain due to magnotic biasing (the biasing field being steady)
has been considered by Kar (1967) as a function of tho flux density B to be
emng = X B? - (3)
for values of B much less than its saturation value.

X is the proportionality constant, being positive and negative for magneto-
striotive expansion and contraotion, respectively. For nickel y is negative.

Thus the stress-strain relation (2) comes oul as

d
P = Bemon+XB%)+174; (emoc) e (4)

_gle 2y 4 ( é'_")
where s = longitudinal oco-ordinate, .
w = longitudinal displacement.
_ The equation of longitudinal motion in a thin bar or tube exhibiting strain-
rate effect is given by

dda _dp . (8

ar T ds
where p is the density of the bar.

Substituting the value of p from (5) in equation (6) we get

where Ay, 18 the magnetostriotion constant and is given by
Am = 2xEB. . (78)

Here B is taken as the mean flux density over ds and the total changes in the
flux-density may be taken to be due to the change in external magnetio field (H)
and due to the change in mechanical strain.
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It follows that the relation betweon these quantitios may be given by (Kar
1967)

2 [ o]

_d‘;z (B)

where 4 = the permeability at the point B. As the external magnetic field may

be taken constant over the small distance ds, we may take aH _ 0

ds
Thus equation (8) comes out as
dB dtew
ds = 4Am - g e ()
and equation (7) becomes
dlw dw dw
p N i E,. e +7 qrds (10)
where E, = (E+4mpA?y,) ... (10a)
Equation (10) is equivaent to
d’w  Diw
= O e (1)
where , = D(1+49,D)-#
C,=E,p wn (11a)
7 = 1/E, ... (11b)
and D = the operator :—:—t .
The operational solution of the equation (11) gives (Ghosh 1953)
$ .
ws = 1[/(3),_0[ cosh? %g—siﬁ?; (4—3&)] . exp(i(nt4-€) - (12)
1 1

when a periodic stress F.exp (int), (i = +/—1) of peak value F is applied at one
end (8 = 1) of the bar.

Here 1/(8)swq is the amplitude of vibration at the free end (s = 0) and give by,
F

g?‘;n“+lf71)[00ﬂll o oost & (4—3a)¥

¥(s Jsmo =
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where a=14+47n%  f=iymt = (12a)

n = angular frequency of vibration, and

tan € = tn.nhg tan —‘:(4—30:) - (12b)

In the prosent problem we are not interested about the phase and so we may
ignore the phase term in equation (12). For most metals the value of 72n? is
very small. So a may bo taken to be equal to unity.

Equation (12) thus reduces to
[]
= Y(8)g=y | © sh"l—sin"ﬂ] . exp (int .. (13
wg 1/’()no[0 o, c, p (int) (13)

Due to reverse magnetostriction or Villari offoct (Smith 1930) it follows that there
will be an induced voltage along the rod and this voltage at any point is propor-
tional to tho rate of change of strain at that point.

Therefore differentiating equation (13) first, with respect to s and then with
respoct to ¢ we get

P(8)gmp 110 ( ﬂsm.h 2ps —2 sin 2”)

d ) 0, 0, C, .
_— e .exp (int) ... (14)
dr ( ds (cosh”ﬂf-—sl 2(, )
The induced voltage at s is obtained as s
d
where P is the proportionality constant.
Equation (148) with the help of equation (14) gives
Y (S)om in (%_ sinh 2727 sin—i,ls)
Ve=P 1 1 - exp (int) ... (16)
B na\t p
(eosh"— — gin? F)
1

As the value of 8s/C, is very small we make the following reasonable assump-
tion

cnshﬁ ~ 1, sinh 2/5'8 ~ 28

=7
So
( 2p8% n in2ns
. 2 — 8 A
Ve =P¢(82)"" inlG C’ A . exp (int).

CO8
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Negleoting 28s/C,2 we have

in?
Ve = _P_'ﬂ%":ﬂi sin "’631 exp (int). ... (1B8)

" Thus it is seen that the induced voltago will be maximum or minimum acoording
as sin (n8/C,) is maximum or minimum.

.M, .
Now, sma,: is maximum when Z‘: =(2N+1) g, ie,

when 8=g—i.(2N-]—1)ﬂ where N =0,1,2,...; ... (16a)
Again sin %ﬁ is minimum whengy = Nm,ie, when s — anl—vl’« (16D)
1 1

where N =0,1,2, ... .

Thus the maximum and minimum values of induced voltage can be obtained
by using the conditions (16a) and (16b) in equation (15) as

Vaug =& ‘“S)gﬂ P oosh ﬁ @N41) T . oxp (int) . (1Ta)
A g

and

Vo= L ‘”‘%ﬂmﬂ . sinh ”i? exp (int). (17b)

1

Therefore from equations (17a) and (17b) we get

sinh £(21r) — sinh ’%(11)

(Vmin)s=grCrn—( Kmln)swer./n _

(Vmux)l-ancl/g,, - Ooshvﬁ (3§W>
=2 Binh(%')~’—’£'=w .. (18)

An inspoction of equation (13) shows that minimum values of displacement

(nodes) ocour at positions given by

ns

G,

where N’ =1, 3,5, ... and the amplilude in the simplest mode at reasonance at
the point & is

,
—N'§

2
| ] = ¥ledmo sinh 7% = Y sinh 70

where z, is the resonance frequency and fr = ¥n,n.*.
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Now let the frequency #, be changed in equation (13) to a value (me44) to
get amplitude at the same point s changed to 4/2| w;| then,

V2] ws| = A/20()py sinh T
20,

- 2 Tyt zé\f]‘
1//(3),_0[ oosh’ 20, 008 c,

(neglecting A/n, compared to unity)

As . 7 28
or, cos? c, = 1— sinh? z’ e,
. Pinyt
Expanding, A2 =_T17r
_ 7] nnrz
or, A =3

Therefore the frequency spread between the values for which the amplitude is
increased by 3db from that at resonance peak (minima) is

2A = yyny? w. (19b)
For a constantly driven system, the quality (@), resonance frequency
(ny) end band-width (A) at 3db point is related by (Mason 1964) .
Ry 1
Q=52 or, Q= ... (190)
24 T

Again the quality and aitenuation in a material is simply related by (Mason,
1964)

Ar="T nepers ... (19d)
Q@
where A is the attenuation ooefficient and A is the wave length of sound wave in
the material. Comparing equations (19¢) and (19d) we get
AN = mpynsd .. (19)

So, if the experiment be made such that the specimen rod be excited at simplest
mode of resonance (i.e , n = ny) we got from (18) and (19)

(Vuuw)swgr Oyn—(Vmmlo=ycyn  _ 424 e (20)
( Vmux)l-anf,‘llzﬂ 2

Equation (20) 18 the same as that obtained by Leslie (1950).
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871
From equations (19), (11b) and (10a)
A= _ T
E4-4mpdy,t
— _ qm
(@ Tomud B BY) @

Equation (21) represents the dependence of the atienuation per wave length with

u and B consequent upon change of magnetic biasing at a fixed periodic force
of exoitation.

Whon there is no biasing field, i.e, with no polarizing flux, Ay = 0 and
equation (21) becomes

[AXhaobms = " . (2la)

With a nickel rod if the periodic stressing is of frequency
21 % 102 csfsec. i.e  n = 21X 103X 2m,
taking 7 = 2% 10% poise,
E = 20 2x 101 dynes/om?,
we get attenuation/wavelength at no biasing to be oqual to 0041 nepers/wave-
length. The value of attonuation/wavelength at no hiasing field as obtained by
Wogel & Walther (1935) at the same excitation frequonoy was .0048 nepers/wave-

length for & nickel rod specimen of 1 e diamoter. Thus the agreement is ex-
vollent:

D1soUssIoN
Expression for attenuation per wave-longth m o nickel rod at different busing
field can be casity obtained by writing equation (4) as (Kar 1967)
P = Blemea—¥BY)+1 ; (cmsan): (4a)

Using this value of stress we get equation (21) transformed as

— nmn____. 22
A= (E—16muyx*E*B) @2
The equations (21) and (22) show that as uy*E?B? is a positive quantity the pre-
sonoe of biasing field increases the attenuation in a miokel-like material while it
decreases tho attenuation in others. The inorease of attenuation with biasing
field on, in nickel, is supporbed by the experiment&l work of Leslie (1950).
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