On the attenuation of longitudinal wave propagated along a magneto-strictive material

S. K. Ghosh and Sandiu Kumar Bera
Department of Physics, Jadavpur University, Calcutta 32

(Received 12 October 1972)

Abstract

Attenuation calculation in a forromagnete material placed in a magmetic field has been worked out in the present papor following operational method. Expression for attenuation/wavelength obtained in the present method is exaotly the same as that derived by Leslie (1950). The expression has been successfully usod for oomputing attenuation in a niokel tube at no biasing and the agreement with the result of Wegel \& Walther (1935) in the same material is found to be exoellent.

Introdtotion

Measuroment of attenuation in solids has been carried out by many workers, namely Siegol (1944) Hillier (1949), Lesli (1950). The measurement of attonuation in a ferromagnetio material has a special significance beoause of the extensive use of magnetic matcrials in industry The atlenuation in magnetio material is a drawback owing to the incremental permeability adding to the disturbing factor, in the use of ferro-magnetic materials for design purposes From theoretical point of view, propagation of acoustic wave through a magnetostrictive matcrial involves losses both of micro and maoro order due to internal friction, electromechanical coupling and eddy current losses. As no attempt has yet been made to include all these, we shall solve tho problem by setting up steady waves in a forro-magnetic rod or tube and fiñding the attenuation losses due to internal friction and heat arising from magnetostriction. Sinoe we consider low amplitudo vibrations, the alternating flux produced, owing to Villari effect, is neoessarily small. Therefore eddy loss can be neglected particularly if we consider a thin rod or a tube.

Solution of the Problem

For mathematioal convenience, it is common in problems on vibrations to consider the relation between the stress, p, and the strain, e, in a solid to be of the form :

$$
\begin{equation*}
p=E . e+\eta \frac{\mathrm{d} e}{\mathrm{~d} t} \tag{1}
\end{equation*}
$$

where E and η are the associated elastic and visoous moduli.

In the present problem the strain in the magneto-strictive bar consists of two parts. Firstly that due to mechanical stressing and secondly due to magnetic biasing.

So equation (1) may be written in the form

$$
\begin{equation*}
p=\boldsymbol{E}\left(e_{\text {mech }}+e_{\text {mug }}\right)+\eta \frac{\mathrm{d}}{\mathrm{~d} t}\left(e_{\text {meoh }}+e_{\text {mag }}\right) \tag{2}
\end{equation*}
$$

The production of strain due to magnetic biasing (the biasing field being steady) has been considered by $\operatorname{Kar}(1967)$ as a function of the flux density B to be

$$
\begin{equation*}
e_{\operatorname{mag}}=\chi B^{2} \tag{3}
\end{equation*}
$$

for values of B much less than its saturation value.
χ is the proportionality constant, being positive and negative for magnetustrictive expansion and contraotion, respectivoly. For nickel χ is negative.

Thus the stress-strain relation (2) comes out as

$$
\begin{align*}
p & =E\left(e_{\text {mech }}+\chi B^{2}\right)+\eta \frac{\mathrm{d}}{\mathrm{~d} \bar{t}}\left(e_{\mathrm{eolh}}\right) \tag{4}\\
& =E \frac{\mathrm{~d} \omega}{\mathrm{~d} s}+\chi E B^{2}+\eta \frac{\mathrm{d}}{\mathrm{~d} \bar{t}}\left(\frac{\mathrm{~d} \omega}{\mathrm{~d} s}\right) . \tag{5}
\end{align*}
$$

where $\quad s=$ longitudinal oo-ordinate,

$$
\omega=\text { longitudinal displacement. }
$$

The equation of longitudinal motion in a thin bar or tube exhibiting strainrate effect is given by

$$
\begin{equation*}
\rho \frac{\mathrm{d}^{2} \omega}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} p}{\mathrm{~d} s} \tag{6}
\end{equation*}
$$

where ρ is the density of the bar.
Substituting the value of p from (5) in equation (6) we get

$$
\begin{equation*}
\rho \cdot \frac{\mathrm{d}^{2} \omega}{\mathrm{~d} t^{2}}=E\left(\frac{\mathrm{~d}^{2} \omega}{\mathrm{~d} s^{\mathrm{s}}}\right)+\lambda_{m}\left(\frac{\mathrm{~d} B}{\mathrm{~d} s}\right)+\eta \frac{\mathrm{d}^{3} \omega}{\mathrm{~d} t, \mathrm{ds}^{2}} \tag{7}
\end{equation*}
$$

where λ_{m} is the magnetostriction constant and is given by

$$
\begin{equation*}
\lambda_{m}=2 \chi E B \tag{7a}
\end{equation*}
$$

Here B is taken as the mean flux density over $\mathrm{d} s$ and the total ohanges in the flux-density may be taken to be due to the change in external magnetio field (H) and due to the ohange in mechancal strain.

It follows that the relation betweon these quantities may be given by (Kar 1967)

$$
\begin{equation*}
\frac{\mathrm{d} B}{\mathrm{~d} \bar{s}}=\mu\left[\frac{\mathrm{d} H}{\mathrm{~d} s}+4 \pi \lambda_{m} \frac{\mathrm{~d}^{2} \omega}{\mathrm{~d} s^{2}}\right] \tag{8}
\end{equation*}
$$

where $\mu=$ the permeability at the point B. As the external magnetic field may be taken constant over the small distance ds, we may take $\frac{\mathrm{d} H}{\mathrm{~d} s}=0$

Thus equation (8) comes out as

$$
\begin{equation*}
\frac{\mathrm{d} B}{\overline{\mathrm{~d}} s}=4 \pi \mu \lambda_{m} \cdot \frac{\mathrm{~d}^{2} \omega}{\mathrm{~d} \bar{s}^{2}} \tag{9}
\end{equation*}
$$

and equation (7) becomes

$$
\begin{equation*}
\rho \cdot \frac{\mathrm{d}^{2} \omega}{\mathrm{~d} t^{2}}=E_{1} \cdot \frac{\mathrm{~d}^{2} \omega}{\mathrm{~d} s^{2}}+\eta \frac{\mathrm{d}^{3} \omega}{\mathrm{~d} t \cdot \mathrm{~d} s^{2}} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{1}=\left(E+4 \pi \mu \lambda^{2} m\right) \tag{10a}
\end{equation*}
$$

Equation (10) is equivaent to

$$
\frac{\mathrm{d}^{2} \omega}{\mathrm{~d} s^{2}}=\begin{gather*}
D_{1}{ }^{2} \omega \tag{ll}\\
C_{1}{ }^{2}
\end{gather*}
$$

where

$$
\begin{align*}
& \mathrm{D}_{1}=\mathrm{D}\left(1+\eta_{1} \mathrm{D}\right)^{-1} \\
& C_{1}=E_{1} / \rho \tag{11a}\\
& \eta_{1}=\eta / E_{1} \tag{llb}
\end{align*}
$$

and

$$
\mathbf{D}=\text { the operator } \frac{\mathbf{d}}{\mathbf{d} t} .
$$

The operational solution of the equation (11) gives (Ghosh 1953)

$$
\begin{equation*}
\omega_{s}=\psi(s)_{s=0}\left[\cosh ^{2} \frac{\beta s}{C_{1}}-\sin ^{2} \frac{n s}{\bar{C}_{1}}(4-3 \alpha)\right]^{\ddagger} \cdot \exp (i(n t+\varepsilon) \tag{12}
\end{equation*}
$$

when a periodic stress $F \cdot \exp ($ int $),(i=\sqrt{ }-1)$ of peak value F is applied at one end ($s=l$) of the bar.

Here $\psi(s)_{s=0}$ is the amplitude of vibration at the free end $(s=0)$ and give by,

$$
\psi(s)_{g=0}=\frac{F}{\frac{\beta l}{\bar{C}_{1}}\left(\alpha^{2} n^{2}+E_{1}\right)\left[\cosh ^{2} \frac{\beta^{2}}{\bar{C}_{1}}-\cos ^{2} \frac{n l}{\bar{C}_{1}}(4-3 \alpha)\right]^{4}}
$$

where

$$
\begin{equation*}
\alpha=1+\frac{1}{8} \eta_{1}{ }^{2} n^{2}, \quad \beta=\frac{1}{2} \eta_{1} n^{2} . \tag{12a}
\end{equation*}
$$

$n=$ angular frequency of vibration, and

$$
\begin{equation*}
\tan \epsilon=\tan h \frac{\beta s}{C_{1}} \tan \frac{n s}{C_{1}}(4-3 \alpha) \tag{12b}
\end{equation*}
$$

In the present problom we are not interested about the phase and so we may ignore the phase term in equation (12). For most metals the value of $\eta_{1}{ }^{2} . n^{2}$ is very small. So α may be taken to be equal to unity.

Equation (12) thus reduces to

$$
\begin{equation*}
\omega_{g}=\psi(s)_{\mathrm{g}=0}\left[\cosh ^{2} \frac{\beta s}{C_{1}}-\sin ^{2} \frac{n s}{C_{1}}\right]^{\mathrm{d}} . \quad \exp (\mathrm{int}) \tag{13}
\end{equation*}
$$

Due to reverse magnetostriction or Villari offoct (Smith 1930) it follows that there will be an induoed voltage along the rod and this voltage at any point is proportional to the rate of change of strain at that point.

Thorcfore differentiating equation (13) first with respect to s and then with respoct to t we get

The induoed voltage at s is obtaned as

$$
\begin{equation*}
V_{s}=P \cdot \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} \omega_{\mathrm{g}}}{\mathrm{~d} s}\right) \tag{14a}
\end{equation*}
$$

where \boldsymbol{P} is the proportionality constant.
Equation (14a) with the help of equation (14) gives

$$
\begin{equation*}
V_{s}=P \stackrel{\psi(s)_{s=0} \text { in }}{-\frac{\left(\frac{\beta}{C_{1}}\right.}{\left.\sinh \frac{2 \beta s}{C_{1}}-\frac{n}{C_{1}} \sin \frac{2 n s}{C_{1}}\right)}} \frac{2\left(\cosh ^{2} \frac{\beta s}{C_{1}}-\sin ^{2} \frac{n s}{C_{1}}\right)^{t}}{t} \cdot \exp \text { (int) } \tag{15}
\end{equation*}
$$

As the value of $\beta s / C_{1}$ is very small we make the following reasonable assumption

$$
\cosh \frac{\beta s}{C_{1}} \simeq 1, \quad \sinh \frac{2 \beta s}{C_{1}^{-}} \simeq \frac{2 \beta s}{C_{1}} .
$$

So

$$
V_{s}=\frac{P \psi(s)_{g=0} \text { in }}{2} \frac{\left(\frac{2 \beta^{2} s}{C_{1}{ }^{2}}-\frac{n}{C_{1}} \sin \frac{2 n s}{C_{1}}\right)}{\cos \frac{n s}{C_{1}}} . \exp (\text { int }) .
$$

Negleoting $2 \beta s / C_{1}{ }^{2}$ we have

$$
\begin{equation*}
V_{B}=-\frac{P \psi(s)_{s=0} i n^{2}}{C_{1}} \sin \frac{n s}{C_{1}} \exp (i n t) \tag{15a}
\end{equation*}
$$

Thus it is seen that the induoed voltage will be maximum or minimum acoording as $\sin \left(n s / C_{1}\right)$ is maximum or minimum.

$$
\text { Now, } \sin \frac{n s}{C_{1}} \text { is maximum when } \frac{n s}{C_{1}}=(2 N+1) \frac{\pi}{2} \text {, i.e }
$$

when

$$
\begin{equation*}
s=\frac{C_{1}}{2 n} \cdot(2 N+1) \pi \quad \text { where } \quad N=0,1,2, \ldots \tag{16a}
\end{equation*}
$$

Again $\sin \frac{n s}{C_{1}}$ is minimum when $\frac{n s}{\bar{C}_{1}}=N \pi$,i.e, when $s=\frac{C_{1} N \pi}{n}$
where $N=0,1,2, \ldots$.
Thus the maximum and minimum values of induced voltage oan be obtained ly using the conditions (16a) and (16b) in equation (15) as

$$
\begin{equation*}
\left.V_{\max }=\frac{P \psi(S)_{s=0} \text { in } \beta}{C_{1}} . \text { onsh }{ }_{n}^{\beta}(2 N+1)\right)_{\varepsilon^{-}}^{\pi} \cdot \exp (\text { int }) \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{\min }=\frac{P \psi(s)_{g=0} \text { in } \beta}{C_{1}} \cdot \sinh \frac{\beta N \pi}{n} \exp (\text { int }) \tag{17b}
\end{equation*}
$$

Therefore from equations (17a) and (17b) we get

$$
\begin{gather*}
\frac{\left(V_{\min }\right)_{\delta=\mathrm{g} \pi C_{1 / n}-\left(V_{\min }\right)_{\delta=\pi} C_{v} / n}^{\left(V_{\max }\right)_{s=3 \pi} C_{1 / 2 n}}=\frac{\sinh \frac{\beta}{n}(2 \pi)-\sinh \frac{\beta}{n}(\pi)}{\operatorname{oosh} \frac{\beta}{n}\left(\frac{3 \pi}{2}\right)}}{}=\frac{\sinh \left(\frac{\beta \pi}{2 n}\right) \sim \frac{\beta \pi}{n}=\underline{\eta_{1} n \pi}}{}
\end{gather*}
$$

An inspection of equation (13) shows that minimum values of displacement (nodes) ocour at positions given by

$$
\frac{n s}{C_{1}}=N^{\prime} \cdot \frac{\pi}{2}
$$

where $N^{\prime}=1,3,5, \ldots$ and the amplitude in the simplest mode at reasonanee at the point s is

$$
|\omega|=\psi(s)_{s=0} \sinh \frac{\beta_{r} s}{C_{1}}=\psi(s)_{s=0} \sinh \frac{\eta_{1} n_{r}^{2} s}{2 C_{1}}
$$

where n_{r} is the resonanoe frequency and $\beta_{r}=\frac{1}{2} \eta_{1} n_{T}{ }^{2}$.

Now let the frequency n_{r} be changed in equation (13) to a value ($n_{r}+\Delta$) to get amplitude at the same point s changed to $\sqrt{ } 2\left|\omega_{s}\right|$ then,

$$
\begin{aligned}
\sqrt{ } 2\left|\omega_{s}\right| & =\sqrt{ } 2 \psi r(s)_{s=0} \sinh \frac{\eta_{1} n_{r}^{2} s}{2 C_{1}} \\
& =\psi(s)_{s=0}\left[\cosh ^{2} \frac{n_{1} n_{r}^{2} s}{2 C_{1}}-\cos ^{2} \frac{\Delta s}{\tilde{C}_{1}}\right]^{+}
\end{aligned}
$$

(neglecting $\Delta / n_{\boldsymbol{r}}$ compared to unity)
or,

$$
\cos ^{2} \frac{\Delta s}{C_{1}}=1-\sinh ^{2} \frac{\eta_{1} n^{2} s}{2 C_{1}}
$$

Expanding,

$$
\Delta^{2}=\frac{\eta_{1}^{2} n_{r}^{4}}{4}
$$

or,

$$
\Delta= \pm \frac{\eta_{1}^{2} n_{r}^{2}}{2}
$$

Therefore the frequency spread betweon the values for which the amplitude is increased by 3 db from that at resonance peak (minima) is

$$
\begin{equation*}
2 \Delta=\eta_{1} n_{r}{ }^{2} \tag{19b}
\end{equation*}
$$

For a constantly driven system, the quality (Q), resonance frequency $\left(n_{r}\right)$ and band-width (Δ) at 3 db point is related by (Mason 1964)

$$
\begin{equation*}
Q=\frac{n_{r}}{2 \Delta} \quad \text { or, } \quad Q=\frac{1}{\eta_{1} n_{r}} \tag{19c}
\end{equation*}
$$

Again the quality and attenuation in a material is simply related by (Mason, 1964)

$$
\begin{equation*}
A \lambda=\frac{\pi}{Q} \quad \text { nepers } \tag{19~d}
\end{equation*}
$$

where A is the attenuation ooefficient and λ is the wave length of sound wave in the material. Comparing equations (19c) and (19d) we get

$$
\begin{equation*}
A \lambda=\pi \eta_{1} n_{r}^{2} \tag{19}
\end{equation*}
$$

So, if the experiment be made such that the specimen rod be exoited at simplest mode of resonance (i.e, $n=n_{r}$) we get from (18) and (19)

$$
\begin{equation*}
\frac{\left(V_{\min }\right)_{\theta=2 \pi}}{\left(V_{\max } C_{1 / n}-\left(V_{\min \pi}\right)_{8-\pi} C_{1 / 2 n}\right.} \frac{C_{1 / n}}{2}=\frac{A \lambda}{2} \tag{20}
\end{equation*}
$$

Equation (20) is the same as that obtained by Leslie (1950).

From equations (19), (11b) and (10a)

$$
\begin{align*}
A \lambda & =\frac{\eta \pi n}{E+4 \pi \mu \lambda_{m}^{2}} \\
& =\frac{\eta \pi n}{\left(\bar{E}+16 \pi \mu \chi^{2} \bar{E}^{2} \bar{B}^{2}\right)} \tag{21}
\end{align*}
$$

Equation (21) represents the dependence of the attenuation per wave length with μ and B oonsequent upon change of magnetic biasing at a fixod periodic foroe of excitation.

Whon there is no biasing field, i.e, with no polarizing flux, $\lambda_{m}=0$ and equation (21) beoomes

$$
\begin{equation*}
\mid A \lambda]_{\mathrm{no}-\mathrm{buba}}=\frac{\eta \pi n}{E} \tag{21a}
\end{equation*}
$$

With a nickel rod if the periodic stressing is of frequency
taking

$$
\begin{aligned}
& 21 \times 10^{3} \mathrm{cs} / \mathrm{sec} . \text { i.e } \quad n=21 \times 10^{3} \times 2 \pi \\
& \eta=2 \times 10^{4} \text { poise } \\
& E=202 \times 10^{11} \text { dynes } / \mathrm{om}^{2}
\end{aligned}
$$

we get attenuation/wavelength at no biasing to be oqual to 0041 nepers/wavelength. The value of attonuation/wavelength at no biasing field as obtained by Wogel \& Walther (1935) at the same excilation frequonoy was . 0048 nepers/wavolength for a nickel rod specimen of 1 cm diamoter. Thus the agreement is excellent

DIsoussion

Expression for attenuation per wave-longth in a nickel rod at different biasing field can be casity obtained by writing equation (4) as (Kar 1967)

$$
\begin{equation*}
p=E\left(e_{\mathrm{mech}}-\chi B^{2}\right)+\eta \frac{\mathrm{a}}{\mathrm{~d} t}\left(e_{\mathrm{mech}}\right) \tag{4a}
\end{equation*}
$$

Using this value of stress we get equation (21) transformed as

$$
\begin{equation*}
A_{\lambda} \lambda=\frac{\eta \pi n}{\left(E-16 \pi \mu \chi^{2} E^{2}\right.} \overline{\left.B^{2}\right)} \tag{22}
\end{equation*}
$$

The equations (21) and (22) show that as $\mu \chi^{2} E^{2} B^{2}$ is a positive quantity the presence of biasing field increases the attenuation in a nukel-like material while it decreases the attenuation in others. The inorease of attenuation with biasing field on, in nickel, is supported by the experimental work of Leslie (1950).

S. K. Ghosh and S. K. Bera

Refferencess

Ghosh S. K. 1953 Ind. J. Phys. 27, 543.
Hillor K. W. 1949 Proc. Phy. Soc., B62, 701
Kar K. C. 1967 Introductzon to Theoretical Physics Vol. 2 Institute of Theoretical Physice, 2nd edn, 400-401.
Loshe F. M. 1950 Brit. J. App. Phy. 1, 1104.
Mason, W P. 1964 Physical Acoustrcs, (Vol. 1A), Acadomic Press 57-276.
Smith F. D. 1930 Proc. Phy. Soc. 42, 181.
Wegel R. L. \& Walther H 1935 Physica 6, 141.

