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Attenuation calculation in a forromatpieto material placed in a mag- 
metic field has been worked out in the present paper following operational 
method. Expression for attenuation/wavelength oblained in the present 
method is exactly the same as that derived by Leslie (1950). The ex­
pression has been successfully used for computing attenuation in a 
nickel tube at no biasing and the agreement with the result of Wegel 
& Walther (1935) in the same material is found to be excellent.

I n t e o d u o t i o n

Measurement of attenuation in solids has been carried out by many workers, 
namely Siegel (1944) Hillier (1949), Lesli (1960). The measurement of attenua­
tion in a ferromagnetic material has a special significance because of the exten­
sive use of magnetic materials in industr}  ̂ The attenuation in magnetic material 
is a drawback owing to the incremental permeability adding to the disturbing 
factor, in the use of ferro-magnotic materials for design purposes From theo­
retical point of view, propagation of acoustic wave through a magnetostrictive 
material involves losses both of micro and macro order due to internal friction, 
electromechanical coupling and eddy current losses. As no attempt has yet been 
made to include all those, we shall solve the problem by setting up steady waves 
in a ferro-magnotic rod or tube and finding the attenuation losses due to internal 
friction and heat arising from magnetostriction. Since wo consider low ampli­
tude vibrations, the alternating flux produced, owing to Villari effect, is neces­
sarily small. Therefore eddy loss can bo neglected particularly if we consider a 
thin rod or a tube.

S o l u t i o n  o f  t u b  P r o b l e m

For mathematical convenience, it is common in problems on vibrations to 
consider the relation between the stress, p, and the strain, e, in a solid to be of the 
form :

(1)

where E and y are the associated elastic and viscous moduli.
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In the present problem the strain in the mogneto-striotive bar oousists of 
two parts. Firstly that duo to mechanical stressing and secondly due to magnetic 
biasing.

So equation (1) may be written in the form

p — E (Sm0Ch~l“ fiiinn) +  ̂ '^(^eoh~l“^ag) (2)

The production of strain due to magnetic biasing (the biasing field being steady) 
has been considered by Kar (1967) as a function of the flux density B to be

®inaB =  (3)

for values of B much less than its saturation value.
X is the proportionality constant, being positive and negative for magneto- 

striotive expansion and contraction, respectively. For nickel x is negative.
Thus the stress-strain relation (2) comes out as

2> = (4)

(6)

where 5 longitudinal co-ordinate,
w == longitudinal displacement.

The equation of longitudinal motion in a thin bar or tube exhibiting strain- 
rate effect is given by

d*t»>_dp
d«* “  ds

where p is the density of the bar.

Substituting the value of p from (5) in equation (6) we get

' ’ • 'dt* “  d«« d 8 )+ ’* d«,(
d’jo

,ds®

. . .  (6)

... (7)

where Am is the magnetostriction constant and is given by 

Am =  ^X^^‘ ... (7a)

Here B  is taken as the mean flux density over ds and the total changes in the 
flux-density may be taken to be due to the change m external magnetic field {B) 
and due to the change in mechanical strain.



1967)

On the attenuation of longitudinal wave etc, 6 6 7
It folloAVS that the relation between these quantities may bo given by (Kar

dB
d/i

r dH
(8 )

where fi — the permeability at tlio point B. As the external magnetic field may

be taken constant over the small distance ds, we may take —  — 0
ds

Thus equation (8) comes out as

dB d*ci>

and equation (7) becomes

d̂ Oi
 ̂ ■ d(*

— F _1_«
d(.d«»

where =  {E-\-47rjU,\̂ m)

Equation (10) is equivaent to

d®ctj Di^cj

.. (9)

(10)

(10a)

(11)

where =  D(1+% D)“ *

G, =  EJp ... (11a)

Vi =  VlE  ̂ (11b)

and D =  the operator .

The operational solution of the equation (11) gives (Ghosh 1953)

o>, =  ^(s)e_o  ̂ cosh* ^  — sin’® ^  (4 —3a) j . exp(i(nt+e) ... (12)

when a periodic stress ^.exp {int), {i =  V " " l )  peak value F  is applied at one 
end (s =  1) of the bar.

Here ^(«)«-o i® Ibe amplitude of vibration at the free end (s =  0) and give by,
F

^(«)a-o — ffi
^''(a**n2+^i)Looah®^- cos® (4—3a)]*nl



where a =

n =  angular frequency of vibration, and

[, A®
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tan e =  ta iih ^  tan ^  (4—3ot)

(12a)

(12b)

Tn the present problem we are not interested about the phase and so we may 
ignore the phase term in equation (12). For most metals the value of is
very small. So a may bo taken to be equal to unity.

Equation (12) thus reduces to

=  ir{8)B„Q ĵ cosh  ̂^  — sin̂  ^  j *. exp (int) (13)

Due to reverse magnetostriction or Villari effect (Smith 1930) it follows that there 
will bo an induced voltage along the rod and this voltage at any point is propor­
tional to the rate of change of strain at that point.

Therefore differentiating equation (13) first with respect to s and then with 
respect to t we get

P . 2/?s n _. 2ns '. / p . , -s/js n . zns \
 ̂ - 0 7 - 0 , ^  -G T )

ns \*2 coBh2/:”-sin2
d / dtOj \_
dr \ ds ) ~ ' ■ -- .

Oj Oi/
The induced voltage at s is obtained as

where P  is the proportionality constant.

Equation (14a) with the help of equation (14) gives

exp (int) (14)

(14a)

ir{s)s^Q in (B . , 2ps n . 2ns\

exp (int) (15)
2 (o o s h « g -B in « ^ J  

As the value of is very small we make the following reasonable assump­
tion

So
/ 2/g ŝ n . 2ns \ 

P f  (a),.„ in \ ~ G ,^ '^  o r  >r.= exp (int).
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... (16a)

Nogleotinjg 2fi8lC^ we have

T7 _  P\lr{s)s„ în  ̂ , na
~  -----  sin ^  exp {mt).

Thus it is seen that the induced voltage will be maximum or minimum aooording 
as sin {nsjCi) is maximum or minimum.

■XT ■ V,S . . fis 7TNow, s m ^  IB maximum when ^ =  (2N+1) ^ , t.c ,
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Q
when * ~  2w ■ (^-^“1"̂ )  ̂ where N =  0 , 1 , 2, . .. ... (16a)

Again sin ^  is minimum when^ =  NnA.e , when s — ... (10b)
^ 1  n  ̂ '

where JV =  0,1, 2, ... .

Thus the maximum and minimum values of induced voltage can be obtained 
by using the conditions (16a) and (16b) in equation (15) as

f i . „„sh ^ (2JT+1)) ^ , exp (i„t)

and
Pi/r{s)ŝ Q m fi . , fiNiT

l̂ min =  - ' -Q - ■ smh ——  exp (mt).

Therefore from equations (17a) and (17b) we get

rF 1 rr  \ sinh^(27r)-Binh^(7r)
V y mlph=-B7rCi/n— \  ̂m\n)s=irC\/n

(T'm.x).- anCitzn

(17a)

(17b)

{j)
=  2 Btah( ^  \

\ 2n / n
(18)

An inspection of equation (13) shows that minimum values of displacement 
(nodes) occur at positions given by

0 ^ ~  ‘ 2
where N' =  1, 3, 6, ... and the amphtude in the simplest mode at reasonance at 
the point a is

I ce I =  sinh ^  Sinh

where nr is the resonance frequency and Pr =
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Now lei the frequency nr be changed in equation (13) to a value to
get amplitude at the same point s changed to \/21 | then,

=  1^(«).-o[ ooah®

(neglecting A/wr compared to unity)

2 Aa , . , n 7l̂ n ®aeoB̂  1 — —
t7i 26i

Expanding, A2 :
4

or, A

Therefore the frequency spread Vjeiweon the values for which the amplitude is 
increased by 3db from that at resonance peak (minima) is

2A =  riiUr̂ (19b)

For a constantly driven system, the quality (Q), resonance frequency 
( f i r )  and band-width (A) at 3db point is related by (Mason 1964)

Q or, Q ~  — -—2A nr
(19c)

Again the quality and attenuation in a material is simply related by (Mason, 
1964)

AA =  - nepers
Q

.. (19d)

where A  is the attenuation coefficient and A is the wave length of sound wave in 
the material. Comparing equations (19c) and (19d) we get

AA — nTfiTir̂  ... (19)

So, if the experiment be made such that the specimen rod be excited at simplest 
mode of resonance (i.c , n — Ur) we get from (18) and (19)

(̂ mm)fli»27rC'i/n (^miii)B°7rCi/Ti _
(y maa)«-87rCi/2n 2

Equation (20) is the same as that obtained by Leslie (1950).

(20)
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From- equations (19), (11b) and (10a)

, 671

Tfnn

TjTTn
{E->rlQ7Tiix̂ Ê B̂ ) (2 1 )

Equation (21) represents the dependerioe of the attenuation per wave length with 
jL and B consequent upon change of magnetic biasing at a fixed periodic force 
of excitation.

When there is no biasing field, i.e , with no polarizing flux, A,a — 0 and 
equation (21) becomes

I ^ (21a)

With a nickel rod if the periodic stressing is of frequency 
21 X  10» cs/seo. i.e rt =  21X  10®x 27t,

taking ly =2x10^  poise,
=  20 2 X 10̂ 1 dynes/om®,

we get attenuation/wavelength at no biasing to be equal to 0041 nepers/wave- 
length. The value of attonuation/wavelength at no biasing field as obtained by 
Wogel & Walther (1935) at the same excitation frequency was .0048 nepers/wavo- 
length for a nickel rod specimen oi 1 cm diameter. Thus the agreement is ex­
cellent

Disotjssion

Expression for attenuation per wave-length m a nickel rod at different biasmg 
field can be oasity obtained by writing equation (4) as (Kar 1967)

(4a)p =  ¥®meoh— +  ̂  Ĵ (emech)- 

Using this value of stress we get equation (21) transformed e

M  =
TjTin______, (22)

The equations (21) and (22) show that as is a pos.tr.e quantity the pre-
souos of biasing fidd increases the attenuation m a nioke -like 
dcoresses the attenuation in others. The increase of attenuation w i^  biasmg 
field on, in niokel. is supported by the eaperimenlal work of Leshe (1950).
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