Notes on the covariance of Maxwell's equations

N. D SEN GUPTA
Tain Instilute of Fundamental Research, Bombay-5

(Received 6 July 1972)

It is shown that the Maxwell equations are covariant with respeet to the space-time transformation,
$x^{\prime}=\left(x-c^{2} t / w\right) \gamma, \quad t^{\prime}=(1-x / w) \gamma, \quad y^{\prime}=y, \quad z^{\prime}=z, \quad \gamma=-\left(1-c^{2} / u^{2}\right)^{1}$
$|w|>c$. A fow eonsecpuences of this are discussod

1. Introduótion

The covariance property of the Maxwell equation with respect to the fall darentz group is quite familiar. But it is also well known that the gioup of automorphism of Maxwell's equation is larger than this as it contains the conformal group (Cunningham 1910, Bateman 1910). This comprises of transformations which wre non-lincar in space-time Sen (1936) arrived at a vory important result that the linoarty of space-time transformations is a necessary consequence of the proneple of equivalence and continuity. Recontly Dutta et al (1970) have printed to the interesting fact that the linearity, is almost a mathematical consequonce of tho principle of rolativity. On the other hand, long back, Frank (1911) showesd that if one restricted oneself to the only linear group of space-time transformation, then the group, with respect to which Maxwell's equations were eovariant, was the Lorentz group togethor with the ordinary affine group. This consists of linear transformations ($\boldsymbol{r}, c l$) to ($\boldsymbol{r}^{\prime}, c l^{\prime}$) such that

$$
\begin{equation*}
\boldsymbol{r}^{\prime} \cdot \boldsymbol{r}^{\prime}-\boldsymbol{c}^{2} \boldsymbol{l}^{\prime 2}= \pm k\left(\boldsymbol{r} \cdot \boldsymbol{r}-\boldsymbol{c}^{2} t^{2}\right) \tag{1}
\end{equation*}
$$

where k is a positive constant. With the positive sign, the constant leads to the admission of the group of transformations, which is associated with the change of scale for length or tine or for both This is the common invariance group of all physical phenomena. But, with the negative sugn is associated, in genoral, linear space-timo transfurmations with complex coofficionts which are not physically meaningful. In this context it may not be irrelevant to montion that rocently there has been attempts to introduce complex spaco-time transformstions to investigate the possibility of faster-than-light particles. However, it has been shown by the author (Sen Gupla. 1966) that velocities greater than that of light may bo introduced in the linear space-time transformations which kec ρ
the relation (1) invariant with positive sign on the right hand side. Hence, the Maxwell equations should also be covariant under such transformations. The object of this short paper is to show this explicitly and discuss some of its physical consequences. Nevertheless, it is worth mentioning that the negative sign in (1) may still be admitted. In this case the space-time transformations are effeoted by multiplying thom with $\pm i$, so that their ratios, which are physically important quautities, are always real. The consequences of these transformations on general tensors are multiplications by $i,-i, 1$ or -1 consistent with the rank of the tensor. But these do not lead to any new physical content of the theory.

In recont years, there has been a good doal of discussion about particles and systems moving with velocity greater than that of light (in empty space). This upper bound of the velocity follows in a natural manner from the usual expression of the Lorentz transformation, which is one of the invarianco group of Maxwell's equations. It is worthwhile to investigate whether it is possible to oxpress the Lorentz transformations loy incorporating velocities greater than that of light. At this stage, it should be emphasized that in deriving the usual expression for the Lorentz transformation, in addition to the relation (1), it is assumed that in the limit when the relative velocity is small, the transformations should lead to those of Galilei. This may be imperative when one is not only interested in the Maxwell equations but also the equations of motion in elassical mechanies As a matter of fact, in a previous investigation the author (SenGupta 1966) showed that linear transformations of space-time, restricting only to the relation (1), might be exprossed with volucities greator than that of light. In the following seotion, after a briof discussion on these transformations, wo shall show the covariance of Maxwell's equations with respect to these transformations. The last section is a discussion on some of its consequences.

2. Thi Covariante of Maxwell's Equation

a) The space-time transformations

We shall confine our discussions to the accelerating part of the transformations, leaving out the spatial rotation; since it does not contribute anything new in the context of our present investigation. Let the space-time transformation be bo written in the form

$$
\begin{equation*}
x^{\prime}=\left(x-c^{2} t / w\right) \gamma, y^{\prime}=y, z^{\prime}=z, t^{\prime}=(t-x / w) \gamma ; \gamma=\left(1-c^{2} / w^{2}\right)(\ldots)^{-d} \ldots \tag{2}
\end{equation*}
$$

$|w|>c$. It is easy to see that

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-c^{2} t^{\prime 2}=x^{2}+y^{2}+z^{2}-c^{2} t^{2} . \tag{3}
\end{equation*}
$$

The coefficients are real only when $\boldsymbol{w}^{2}>\boldsymbol{c}^{2}$. They also form a group. It was for the first time introduced by the author (Sen Gupta 1966). Two successive
transformations as given by (2) with paramoters w_{1}, w_{2} lead to a transformation with the parameter w^{\prime} given by

$$
\begin{equation*}
w^{\prime}=\frac{c^{2}+w_{1} w_{2}}{w_{1}+w_{2}} \tag{4}
\end{equation*}
$$

On writing (2) in the form

$$
x^{\prime}=-\frac{\left(t-x w / c^{2}\right) c^{2}}{\left(w^{2}-c^{2}\right)^{\frac{1}{1}}}, \quad y^{\prime}=y, \quad z^{\prime}=x, \quad t^{\prime}=-\frac{x-w t}{\left(w^{2}-c^{2}\right)^{\frac{1}{2}}}
$$

one notes, but for the coefficients and the negative sign, the roles of space and fime in this transformation are interchanged with those of the Lorentz transformation, which in turn. is responsible for introducing the velocity greater than 1.hat of light. Neturally, the limiting transformation obtained from (2) by taking the linnit $(w / c) \rightarrow \infty$ is

$$
\begin{equation*}
x^{\prime}=x, \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=t-x / w . \tag{5}
\end{equation*}
$$

It is quite different from the Galilei transformation. The most general element of this limiting group obtained by incorporating a spatial rotation $\mathcal{T R}$ is

$$
\begin{equation*}
\mathbf{r}^{\prime}=\boldsymbol{\mathcal { V }} \mathbf{r}, \quad t^{\prime}=t-(\boldsymbol{n} \cdot \mathbf{r}) / w, \tag{6}
\end{equation*}
$$

where \boldsymbol{n} is the unit vector along the direction of velocity. The structure of this group has been studied by Levy-Loblond (1965) and the author (Sen Gupta 1966, $1968 a)$.
(b) The transformation of Maxwell's Equalion

Tho Maxwell equations may be writien as

$$
\left.\begin{array}{ll}
\nabla \times H-\frac{1}{c} \frac{\partial E}{\partial t}=j, & \nabla \cdot E=\rho \tag{7}\\
\nabla \times E+\frac{1}{c} \frac{\partial H}{\partial t}=0, & \nabla \cdot H=0 .
\end{array}\right\}
$$

Let us introduce the space-time transformation

$$
\begin{equation*}
r_{\|}^{\prime}=\left(r_{\| l}-c^{2} t / w\right) \gamma, t^{\prime}=\left(t-r_{\| l} / w\right) \gamma, r_{\perp}^{\prime}=\boldsymbol{r}_{\perp} \tag{8}
\end{equation*}
$$

For any vector $\boldsymbol{q}, \boldsymbol{q}_{\| l}=(\boldsymbol{n} \cdot \boldsymbol{q}), \boldsymbol{n}$ the unit vector along the direation of velocity and $\boldsymbol{q}_{\perp}=\boldsymbol{q}-\boldsymbol{n} \boldsymbol{q}_{\|}$. It can be easily cheoked that the Maxwell equation (7) can, be written in a covariant form by introducing the following transformation of the field quantities $\boldsymbol{E}, \boldsymbol{H}$;

$$
\left.\begin{array}{ll}
\boldsymbol{E}_{\|}^{\prime}=E_{\|}, & \boldsymbol{E}_{\perp}^{\prime}=\left\{\boldsymbol{E}_{\perp}+(c / w) \boldsymbol{n} \times \boldsymbol{H}\right\} \gamma \tag{9}\\
\boldsymbol{H}_{\|}^{\prime}=\boldsymbol{H}_{\|}, & \boldsymbol{H}_{\perp}^{\prime}=\left\{\boldsymbol{H}_{\perp}-(c / w)_{\mathrm{n}} \times \boldsymbol{E}\right\} \gamma
\end{array}\right\}
$$

and the charge-current

$$
\begin{equation*}
j_{\|}^{\prime}=\left(j_{\|}-c \rho / w\right) \gamma, \quad \rho^{\prime}=\left(\rho-c j_{\|} / w\right) \gamma \quad j_{\perp}^{\prime}=j_{\perp} . \tag{10}
\end{equation*}
$$

The above transformation shows explicitly that the Maxwell equations may also be writien in a covariant form by incorporating a velocity greater than that of light $I t$ is obvious from (9) that as usual $\boldsymbol{E} \cdot \boldsymbol{E}-\boldsymbol{H} \boldsymbol{H}$ and $\boldsymbol{E} \cdot \boldsymbol{H}$ are invariants The usual expression for the Poynting theorem is also valid in the transformed system, but the physical interpretations of the relevant quantities, namely $\boldsymbol{E} \boldsymbol{E}+\boldsymbol{H} \cdot \boldsymbol{H}$ and $\boldsymbol{E} \times \boldsymbol{H}$ should not be carried over without due alterations. On the contrary they need critical examination in the context of the physical procoss pertinent to the prollem

3. Discussion

It neods to be montioned that the transformations (2) may be obtained from the usual expression for the Lorentz transformation on replacing $v / c,(v<c)$ of the lattor by c / w Both the ratios heing less than unity, it leads to $w>c$. An interesting eonsoquence of this transformations on the charge-current is worthmentioning. In order to show this, let us take the simple case of oharge-current due to a point charge, moving with uniform velocity $\boldsymbol{n} u$, thus

$$
\begin{equation*}
\boldsymbol{\rho}=\rho_{0} \delta(\boldsymbol{r}-\boldsymbol{n} u t), \quad \boldsymbol{j}=\boldsymbol{n} \rho u / \boldsymbol{c} \tag{11}
\end{equation*}
$$

($\rho_{0}=$ constant) and the transformed charge-current

$$
\begin{equation*}
\rho^{\prime}=(1-u / w) \rho \gamma, \quad j_{\|}^{\prime}=\{(u / c)-(c / w)\} \gamma \rho, \quad \boldsymbol{j}_{\perp}^{\prime}=\boldsymbol{j}_{\perp} \tag{12}
\end{equation*}
$$

For particles moving with a volocity $|u|>c$, the above equations show that with (1) $w=u, \rho^{\prime}=0$ and $j_{\| l}$ is only a function of time; and (2) $w>u, \rho^{\prime}$ the charge changes sign, but the current changee direction only if $u<c^{2} / w$. This possibility of reducing the charge curront only to current deponding only on time was utilizod by the author in studying possible nature of the electromagnetic field produced by faster-than-light charged particles (Sen Gupta 1971a). In the mestigations of the Ceronkov radiation, (Iwanenko \& Sokolow 1953, Son Cupta 1965, 1971a,b), the change m the sign of the electric field, due to a particle moving in a homogenoous medium, whon the velocity increases from tho phase velocity of the electromagnetic waves in the medium, is quito well-known. It may bo offectively looked upon as an apparent change in sign of the charge As a matier of fact with the help of a transformation similar to that in (2) the author (Sen Gupta 1968b) was able to reduce the problom of the Cerenkov radiation to that of an antenna It is also worthwhilo to mention that Sommerfeld (1904a, b) and Schott (1912) in thoir invostigations on the electromagnetic ficld due to chargos moving with velocity greater that of light also noted this change of sign of the olectrio fiold.

Finally, the transformation (2) may be combined with the usual Lorentz iransformation ($v<c$), for the velocities in the same direction, the resulting velocity w^{\prime} is given by

$$
w^{\prime}=\frac{v+w}{1+v w / c^{2}} \geqslant c^{2} \quad(\text { for } w>c, \quad v<c) .
$$

In our exposition we have confinod ourselves to the transformation proporties of the Maxwell equations only. As noted in the introduction the classical equations of motion are not covariant with respoct to these transformations, as the elassical laws of motion are covariant only with the Galilei transformations, in the non-relativistic limit

Reffertaces

Baleman H 1910 Proc. Lond. Math. Soc. 8, 223.
Gommongham F. 1910 ibid., 8, 77.
Dutta M., Mukherjoo T. K. \& Son M. K 1970 International J Theo Phys. 3, 80.
I'rank P. 1911 Ann. Phys. Lpz. 35, 699.
Iwanenko D. \& Sokolow A. 1949 Klassicherkaya Teoria Polya, Mosenw and Leningrad; Gorman translation : Klassische Feldtheorie-- $\mathbf{N k a d o m i o}$ Vorlag, Borlun 1953 lavy-İnblond 1965 Ann Inst. Henri Poincare; Section A. Physigue Thsoriqup 3, 1.
Schott G. A. 1912 Electromagnetic Radıation, Cambridgo University Pross
Sion N. R. 1936 Indzan Jour. Phys. 10. 341.
Sen Gupta N. D. 1965 Il Nuovo Oimento (Sr.X) 37, 905
1906 ibid 44, 512.
1968(a) Indian J. Phys 42, 528.
1968(b) Jour. Phys. A (Sr.2) 1, 340.
1971(a) Nuclear Physics B27, 104
1971(b) Laser and Unconventzonal Optics Journal (EAS, Goteborg, Swedon),
No. 34 .
Sommorfold A. 1904(a) Amsterdam A K. Versl, 13, 431.
1904(b) Nach Kgl Gesell. Wuss. Gottingen, Math Phys. Klasse p. 99-130
(both roproducod in: Gesammelte Schreften, Bd 11 Jriodr, Vioweg \& Sohn, Braunachwoig, 1968).

