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lijinuiiaj' Rouicjo flow of .second oidei fluid between two atatioiiary 
inliiiite jjorona disks Jias been studied The sohiticjii lias been determined 
in the form of a double sia-ies exjDansion. I'lie ellect ol' nou-N(^wtoniaii 
parameters on velocity prolile, pressure and .shear stress has been dis
cussed.
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1. Tntroduotton

Livesey (1902) investigated the incompressible radial flow between two parallel 
stationary disks using tlu' integral approach and the asumjition of a parabolic 
velocity profile Savage (1904) olitainc'd the solution by expanding velocity 
components and pre.ssure in terms of the downstream coordinate. But he has 
omitted the no-slip condition on the disk r.. -- 0. Similar jiroblems have also been 
studied by Peube (1903), Chen & Peube (1904), Geiger ei al (1904).

t̂ low between porous boundaiies is of practical as well as theoretical interest. 
4’he problems of gaseous diffusion, boundary cooling and lubrication of porous 
boaimgs are a few examples. Elkouh (1909) obtained a solution for source flow 
between parallel stationary porous disks Ho has given the effect of cither equal 
suction or equal injection The solution is in the form of a perturbation from the 
creeping flow solution, valid for small values of the v̂ all Reynolds number {Hw), 
and of the reduced source Reynolds number {Re*). {Rw) is based on equal suction 
or injection velocities at the disks. In a subsequeni. paper Elkouh (1971) has 
investigated laminar source flow between parallel porous disks with equal suction 
and injection. The solution is in the form of an infinite series expansion -about 
the solution at infinite radius and is valid for all suction and injection rates. 
Khan (1968) has investigated the laminar source flow between two parallel coaxial 
porous disks rotating at tlui same speed taking into account suction at one disk 
and an equal injection at the other.

Ill the present pajicr, the source flow of the second order fluid between two 
parallel coaxial inlinitc porous disks with eijual permeability has been investigated.
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The constitutive equations of an incompressible second order fluid as suggested 
by Riviliii & Erickson (1955) are ;

and

Aij =- vt,j-hvj,i,
(1)

(2)

(3)

whore Tij is the stress sensor, gtj is the metric tensor, Vi is the velocity vector, ai 
Ls the acceleration v ector, is the pressure, ô, 0a are the fluid parameters and 
comma in tlie suflix denotes eovariant differentiation.

The series expansion method used by Elkouh (1909) has been adopted to 
obtain the solution. The effect of non-Newtonian parameters on radial velocity 
jiertiirbatioiis and pressure drop has been exhibited graphically. It is noted that 
the visco-elasticity and cross viscosity increase the magnitude ol the radial velo
city perturbatioiio. The lesults obtained in this paper are valid at a distance 
/• >  -\/{Re) from the source, whore (Be) denotes source Reynolds number.

2. E quations of Motion

The momentum equation for the incompressible flow ari'

pVjVi,} Ttj,j ... (4)

and the equation of continuity is

'y«,i =  0. ... (5)

We shall use cylindrical polar coordinates (f, %) and consider blie axially syni-
metne stoad̂  ̂ flow bolN\een two infimte stationary poious disks z — —a and 
3 — -\-a. The line aouicc is situat ed on the a;-axis. Let the volumetric floAv rate 
of the source and magnitude of the constant injection velocity at the disks be 
Q and W, respectively The boundary conditions are .

h((r, i a )  0,

di«) =  T

and J 2TTf^^—27Tr‘̂ W ~  Q,

which is the overall conservation of mass equation

We introduce the following non-dimensional quantities :

(6)

r =  fja, z =  zfâ  u =  puaj^^, w — pwaf(f>̂
\
j

(7)



Equations (6) aiid (7) ^ve the houndary eondiiionM in the following form

u{r, -i: 1) =  0,

w[r, ± 1 )

/  uL\z-{Rw)r ;
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2(726)

(72if;)(wall Reynolds number) =  -

(/2e)(soiuv-o flow Reynolds number) ~  *

where {Itw) is taken positive for nijeobiou and negative for suction. The radial 
and axial velocity components are related to a stream function »// in the following 
form

(«)

1
U  W  —r dz

1 ^
r dr (9)

For small values ol {Re)jr^, let us expand ijj and p as follows :

//• =  J rHRto)f_,{z) f  («e)[/„(s)-|- );■ (-)+  ( &  ) / , ( * )+ . . .  ] .  (10)

and

l> =  i  l■\Rw)h_^^z)+h{z)+{Jie)[K^z)\nr^ ) V ) + - ]  (H)

I'Vom, (10) and (11) Ave infer that the solution so obtained will be valid for 
r >  y/iRe) We transform eipiations (1) to (5) in cylindrical polar coordinate 
flyst-om, and use (7), (9), (10), (11) and equate the coefficients of like poAÂ ers 
of r. This gives us an infinite set of simultaneous ordinary differentia] equa
tions. For' the sake of brevity we rccoi’d only two systems below. However 
solution in lolloAviug section has been given upto system IV.

System, I  ,

=  4- (12a)
7t'_, =  2 (fi,«)(2 /!:+8 )r_ir '^ „ (12b)

iuid

ft '- - (B « , ) ( f  _ ,4 -(K «>)f-i/.i)4 -i:(K <a)[(il«> )(-/-.r '-x+8/'-,r -i 
+ 8 r '- . / ' - i + 8 r “- i+ 2 / ‘ '' i / - , )4 -2 (B a )(r - ,r o + r _ ,r 'o )]+  

.S '(K .«)[7 (B .«)f„,r.i+ (B e)(f'.,f„4 -/"-.r '„)J - (13)
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(15)

jSiysfem J1 :

and ^  0. ... (14b)

Tn the above equations the primes denote the differential coefficients "witb 
respect to The equation of continuity is identically satisfied bjr equation 
(9) Equations (8), (9) and (10) give the modified conditions as

. r „ (d r l ) - 0 ,  - 1 ,0 ,1 ,2 , . . .  ,

/ n ( ± l ) - 0 .  7 / . -1 ,2 , . . . ,

/- i (d il)  ^  ± 1 ,

and / o ( l ) - . / o ( - l )  =  2-

We choose /o(-“ l) — —1, so that /„ (!)  — 1

We note that the differential equations in above systems and the governing 
boundary eouditions are independent of (-Be), hence the solutions of the above 
sybtems will be independent of (Br). However, (Re) appears as a parameter in 
the solution of syatom TV.

3. Solutions fob Small (Rw)
The sets of differential equations in the above systems have been solved by 

expanding the different functions in powers of Eiv (for small values of the suction 
or injection Reynolds number) Thus

(Rw)^u,.a-o
in which are indepoudent of (Rw).

The corresponding boundary conditions for/^,# are

.r» )fl(il)  =  d, for 71 — —1, 0, 1,2, and all at 

fn,aii  1) == 0, 1,2, and all a,

/ W ± l ) - ± 1 ,  7 ? - - 1 , 0 ,

/n ,«(±l) =  0, 71 = —1,0 and a >  1.

Solution of System I  :

Integration of equation (12b) gives

-  G_^+(2ir+.8f)(Bu;)(f _j®),

(10)

ill)

(IS)



wlK'vr () _̂ IS a oonslanl liquations (12a) anrl (18) give
r  -  < ? - , 4 r - , i

+ 8 (« ,« ) r i .r . i i  -  (19)
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Lot us further asBiinu'

a_, =  2 {Jiwra ,.,. (20)

Wo suhstituto ocimiti.ms (10) and (20) in (19) and equate tlui coefficients of like 
|jowors of (Rw). Wo get a set of ordinary linear differential equations. The 
solution of these differential equations subjected to the modified boundary condi
tions (17) is

(21)

3(2A' |-,S')(z« - 2 s=41). ... (22)

/  -.j_;-gi^s(fi3^'‘’ -ir>40,^«-[-110H2;=«-15708s^-f2215r;-= f 3288)

4  I ~  /Cs(4.'5.r»-(i8fc«+2022s''-2172s''‘ -|-789)4 22-3j) f 1 3 3 2 s '  

|-228(l:‘'-n u i:2 _ 1 2 3 ) - ~  if'‘5(10s«-4!)2^-| ()8s=—29)

'T4(H) '''’ ‘ ■('02“- 2 l 4  +  12«“- l ) - j ^ ’^jjA'&(l!3(te“-367« ‘ -| 684=='-267), ...

and

h . -  -3 + (A « .)  [_^ *+ ^ (2 A + ,S ')(1 0 .s* -l)]  I (fiw)“ [ - 151
2695

(23)

■’'35d 195.':;3-54-)-( -^^X315;:;«-3150s^H 1756^2-136)18 9-  j ^-Z2(35(bj^~210?j2H-51)- ^  i82(175s«^105s2+3)

-  KS (7002^-4202^2+57) ] + 0 (Ewf . . .  (24)
It is observed that this solution is affected by non-Newtonian parameters 

lilkouh (1969) pointed out that second order perturbation solution of system I 
in ease of Newtonian fluid is reasonably accurate for |(Ww>)|î  3 0 approxi
mately.
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î ohiHon of Sf/fttem II :

Proceeding in a manner similar to tliat. adopted in obtaining the solution of 
system T, we get

/o»o “
1

280 10'-

(26)

(26)

/o.2 =" — ,̂-̂ -̂jjĵ ,•-(812̂ “ -lS475s«-|-7(K)92:«-108570^‘ +56704s2-5fi63)+ 

^-T^^^^=(23S^“--: ‘̂l84^»+(i83+5'-'7156z“+2571)+

+  &(245z*-2610z«4-6408z’ -59e6s2+1923)-j^j^7ir«z

X(205z»-987z*+1359«2-677)- ^  -S%(56z«-189z^-|-2ia5®-79)

-^|j^«'.9z(fl852“-2919z*+37832“-15 4 9 ), (27)

and

K  -  - 3 - | g ( i ; » ) | i - 7 ( / i : 4  .s’ ) J-(« i« )^ [  ,-^ ^ g  + ^ ( 3 0 9 i : . |  ii,s-
d-1404A2-280>SH-1224A/S) j +0(iM®- (28)

Solutio7i of Sysfevi TIT :

A, „ =  -  |-12z“-5 )+ ^ z(^+ -S )(z> -2z“+ ) ), ... (20)

■A.1 =  -f5:il„sZ(85zi»-1155z'+4960z“-8778z«+690U“-2003) lo4:nUU

A>.{335s8-279br.«-| 76022^-81 SGŝ -f 3015)+ Sz 

X(1702«-1377s« + 33392'> - 3 2 2 7 2 2 + 1 0 4 5 ) -A%( 1152®-540z<^+74722-310)

~  -̂?j^>S'^2(1652«~5072i+0392‘‘i -237)-^-^^ AaS\2(3052’ -49772H 6399z“-2607),

(30)

h.

-18900z*+9400z*+507)+-j*j^<S''(44l2"-189z‘ +9452»+59)

7f:»(75600z‘ -4536n2!!-1877)-^ljS"(15120s*-9072z'+27) 

-  j^£:S(226800z*-130480?«-2619) ] +0(lfi<>)*. (31)



SofvhoH of St/sinh f\ ' '

I'm  - -,„,L,r;(l(iSs'»-l!)2rK»-7524;«-1524f>2'' |-UTMfĉ -fiSOI) 4o I 2 (h)
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]
2800

1

Kz{ I ■ - 096.̂ « I- 2706z4 -  3004̂ 2 4-114)

I 144()s4-1364;c2 | 400)-.^-^ 7i:22:(2r>54'-1197;:-*4-1021

-<>S7)^ *823(1052"-507;=“4 03022-237)-^  A'&(302«-1202“H 16222-00),

und
(32)

78 3
■2695+175 ft'(31S~''-10'')(te'>+445s‘>- 13)

I- .9(315s«-1050s'' I 495s2 | 42)-• -^^A:''(175s«-105 s2 ( 6) 3oO 1 /o

.S»(175s''-105z"-l-2)-|| 0 ( 7 5 2 ' '- 15s"4 2)+0(R)(.) (33)

OIkmi Clic-Pcn (I960) in Ins experimental investigation tor flow between non- 
])orous disks, assumed (fie) >  1000 On the assmnptioii that {Re) is of the same

ordei- as used by Che-Pen, the terms eontamin^ in (32) and (33) have been * 
ne^leeted

On integrating equation (13) we have
h -= -(ft.i')(f_ ,+ J /_ ,''(fi.«))+ Jr(JJw )[(fl« ')(2 /„,f'_ ,-/_ ,f_ ,+6 /'_ ,.r  .

h3r‘ - i ) -hi(fie)/"-i/"oJ-h S(Rw)\ \( fiw )/'“_ ,+ , |-|-coiiBt ... (34)
>vher(‘ the constant is determined fi om a knowm pressure at a point in the flenv

Above expressions are in agreement wdth Elkouh (1909) on taking K “  S — 0. 
Equations (21), (25), (29) and (32) represent the solution of laminar source flow 
between non-porous disks, while equations (22). (23), (26), (27) and (30) are due 
Lo interaction betv\'(*en the flow" of system T and the sonreo flow

4. V elocity IDistiubution

The component, of radial velocity, in terms of the average radial velocity 
18 given by
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whoro < u >  =  ] w h  -^ l  r{Iiw)+^^^

As we have taken {Re) to be very large, that is, is indepeiidont of (i^e), 
the radial velocity distribution is only a function of and {Re*) (~  {Re)lr^). 
Equation (35) will be valid at largo distance from the source. The series repre
sentation for u* can converge only for r j> \^{Re). For r <  ^/{Re), that is, in the 
neighbourhood of the source, the solution given by (35) will not be valid In the 
absence of porosity the flow in the neighbourhood ol source vill be entirely radial. 
The offoefc of non-Newtonian parameters has been shown graphically on various

Fiq I AGAINbT Z -----------NON-NEWTONlAN.-

Figure 1.

F ig u r e  2 .
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J?’iguro :t.

Fig. 5 AGAINST Z ----------- -NON-NEWTONIAN,-----------NEWTONIAN

Figure 6.
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perturbation terms. For numerical work {Rw) has been taken to be I Figure 
] ■sbô  ̂H the eiffoct of visco-elasticity and cross-viscosity on and compared with 
IS'cwLtmiaii profile The magnitude of/'^,i in second order fluid is always greater 
than that in Newtonian viscous fluids This difference goes on decreasing as we 
move from the central region towards the upj>er disk, till it becomes zero, and 
then it again shows a variation and the iirofllcs coincide again at thi‘ upper disk 
d’h(i effects of non-Newtonian parameters on other' ladial I'clocity perturbations 

f'lH)' 2M) depicted in figures 2,3.4 and f> respectively.

5- tSTai; AMLIN JiS

'riic stream function i// is givrsi l>y equation (10) This equation is rrnvnttcn 
ill the Ibllowing loriii .

. . (3h)

where i/r -  iJfliRv) aiul R -  rjy/'{Re).

The Htreainliiios have been drawn in figure (> for {Rw) ----- 0.5, K  41,L and 
S 0 3 from R -  1 to it — 0. it is noted that the injected fluid part ides vill 
lirsi move towards the mid-plaii(‘ and then will be moving parallel t*o the mid- 
plane.
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0. Pkessuue Dxstkibution

Kquatioiib (11), (24), (28), (31), (33) and (34) give the presaure diatribution 
p{r,z). The constant of integration has been determined by the assumption 
tbafc the pressure at a point {H, -f-1) in the- How is known The pressure drop 
in the j adial direction is dehnod an

: 'P{t’,Z)^p{M, Z). (37)

Fig 7 PRESSURE DROP IN RROIAL DIRECTION FOR Rw=-OSO,
R,=IO*-----------NON-NEWTONIAN (K=-0 I, S=Z5),

----------- NEWTONIAN

Figure 7.

Here we note a significant difference between Newtonian and noii-Nowtonian 
case In Newtonian case the pressure drop in radial direction is independent of 
axial distance, that is, remain constant on all planes perpendicular to ,':-axiH, as 
shown by Elkoiih (19(19). In the present case it is dependent on axial distance 
and therefore will Ihj different on different planes iierpendicular to s-axis The 
difference, ol pressure drop in Newtonian and non-Newtonian case has been shown 
ligure 7 For numerical ŵ ork we have taken (Me) = 10̂ , It 200 and [Ew)
— -0.50, K — —0 1, S 0.25 The magnitude of pressure drop in the prc'sent 
case i.s im)]“o than that in ih(‘ NowTonian fluids.



7. Skin Friction

The iimi-dimenHional radial slioav Bt̂ vess is by

m (dll , dw\ . [ d ( Ou , dii\ , D / dw , dw\
’ -  ^  + . i r ) - '-M  0. ( “ flr- I + n i  (“ a7-< 5 . )

dn Ou- dw ()u'i I dll / dw dun dwjdv. , dw\-i
+ ^ d 7  dz'^^Tr +  L -> l f e + a f )  J-

wborr

From equal iojiB (0) and (38) Tfg at upper disk is given by

Laminar source flow etĉ 3.’5

(3S)

(38)

447
77

~30A''-h^5A'-342/r^-l-27.^2-117A^^^|'j-{- ™ 3 - ( / e 7 e ) | - ^ ^ ( / i + A ') j

~l4ir I 'Isi ' 8'*'S’--12*»«A'.Sf I +<-̂  I Ip
4 - ( « « ’) ( - _^,  -306A'-70.S(-2412/P-4;)2iS'2-2844A'.S'j |

+  y i  (^^^2--)”|~+294A:-|-r)4,S+I728A:i>+288,S'2+2016K-A' j j  -  

-/<:(««.)[ J4«»>){-34 ! '7 (̂2A' ( ,S)J|+ -3+ (A .r)

•I-’ I  (A' f  .S')| +  - ^ 7 7 * -5fi4A'-791 A’-|-3000K:“~13!)r>A’}̂}1
Tlie skin friction t at the upper disk is defined as :

T — —{TrT)z=i

.. (39)

... (40)

The expression for skin friction agrees with Elkouh (1969) if K — S ^  0. The 
following table shows the effect of non-Newtonian parameters on t * {  =  r/r) 
for different values of r*{— r/y'(JSc)). For numerical work we have taken {Bw) 
^  0.25 and JT -  =  0, ^  -0.01, S -  0.025,
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T ol)l(i I

{ K  - S  (1) -0.01. S

1 r, 1.5822 1 5789
2 0 1.0090 1 0071
2 n (1 8210 0 8200
:i 0 0 OS 10 0 0841
:i .5 <t 0013 0 0009
1 (1 0 .5109 0 5157

0 025)

IfoK' WO find Hull lih(' skin friction iu thc casc of noii-NeMdonian is less thcji iJml of Newtonian case Ac KN DGEMEN'VOne of Iho aiiiliors (ECO) wishes to thank the Ministry oC Education and Social AVclfariy (ilovemmont of India, for awarding* a Scholarship uliich cnahlcd him to carry out this u'ork. Authors are grateful to D r. P . D  Vernia for suggestions. iriianks are also due to the referee for suggestions to improve the original draft of tiic paper
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