Letters to the Editor

Indian J. Phys. 44, 367-368 (1970)

Dielectric relaxation of 1-and 2-naphthaldehydes from microwave absorption measurements

BY F. F HANNA AND K. N. ABDEL-NOUR Microwave Laboratory, National Research Centre Dokki, Cairo, U.A.R

(Received 5 August 1970)

 ϵ' and ϵ'' were measured in benzene solutions at wavelengths 0 22, 3.24, 10 and 25 cm to an accuracy of 2% using apparatus described by Garg *et al* (1965), Laquer & Smyth (1948) and Pitt & Smyth (1959). The static dielectric constant ϵ_0 was measured at 10 KHz using a Schering bridge The measurements were carried out at 20°, 40° and 60°C ϵ_{∞} is obtained from a Cole-Cole plot and the reduced absorption $\eta'' = \epsilon''/\epsilon_0 - \epsilon_{\infty}$ is calculated and plotted against log λ . The absorption curves obtained were analysed into two Debye terms using a computer IBM 1620. The analysis gives two relaxation times τ_1 and τ_2 where τ_1 belongs to the rotation of the molecule and τ_2 belongs to that of the group.

Table 1 shows the results obtained which are much higher than the comparative values given So, the substances were repurified and the measurements repeated using solutions of same concentrations; same results were obtained assuring the given values.

So, the larger values of τ_1 and τ_2 in this case may be due to the formation of associates through hydrogen bonding. As the hydrogen bonds in 1-substituted napthalenes are weaker than the 2-substituted ones, this may be the cause of higher values of τ_1 and τ_2 in the 2-naphthaldehyde than those of 1-naphthaldehyde. Also τ_1 and τ_2 are very temperature dependent especially in the 2-naphthaldehyde which may be due to the same cause as before. The dipole moment of both molecules were calculated and found to be higher in the case of 2-naphthaldehyde than 1-naphthaldehyde as expected.

It is to be noted that the behaviour of the —CHO group in 1-naphthaldehyde is different from the —OH group in 1-naphthol. It is stated by Knobloch (1965) that in the case of 1-naphthol, c''/X is not concentration dependent due to the formation of intramolecular hydrogen bridge with the hydrogen atom in the 8th position. While in the case studied here of 1-naphthaldehyde it is clear from the large values of τ_1 that intermolecular hydrogen bonds are present.

F. F. Hanna and K. N. Abdel-Nour

TABLE 1. Relaxation times, dipole moments, activation energy and activation entropy in benzene solutions

	t°℃				Comparativ ut 20°	e values C	
Substance		τ ₁]' soc	$ au_2$ P soc		P sec	P sec	- ΔΗ ΔS K cal/mole Cal/mole /deg
1-Naphthal-							
dohyde	20	40.2	4 80	0.40	2.52 -OH 26 0	2.1(a)	1 25 - 6 8
x == 0 0096	40	33 5	3 93	0 45	-OCH ₃ 24 3	1.70)	
mole fraction	60	27.8	2 90	0.50			
2-Naphthal-							
dehydo	20	45.2	8.80	0.30	3.26 -OH 20 6	$1.7^{(a)}$	
x = 0.0092	40	33.4	6.60	0.35	-OCH ₃ 19.7	1.1%)	-3.1
mole fraction	60	24.8	4 50	0.35			

(a) Knoblock (1965), (b) Klages & Knobloch (1960)

The activation energy (ΔH) and activation entropy (Δs) are calculated (Glastone et al 1941) and given in table 1.

REFERENCES

Garg S. K., Khp H. & Smyth C. P. 1965 J. Chem. Phys. 43, 2341.
Glastone S., Laudler K. & Eyring H. 1941 The Theory of Rate Process, New York
Klages G. & Knobloch P. 1960 Z. Naturf. 209, 580.
Knobloch P. 1965 Ber. Bunsenges. Physik. Chem. 69, 296.
Laquer H. L. & Smyth C. P. 1948 J. Am. Chem. Soc. 70, 4097.
Pitt D. A. & Smyth, C. P. 1959 J. Phys. Chem. 63, 582.