Near ultra-violet absorption spectrum, etc.

Band No.	Wave numbor (cm ⁺¹)	Difference	Visual intensity	Assignment	Mode of vibration
	35409+				
ı	35581	-173	ms	0-173	
2	35605	-149	ms	0 - 149	
3	35754	0	8	0,0	
4	35936	182	vs	0+182	Totally symmetric vibration.
5	35984	230	VS	0 + 230	C-OH bending.
6	36044	290	R	0+451 - 173 or	
				0+451-149	
7	36107	353	ma	$0+2 \times 182$	
8	36162	408	ms	0+230+182	
9	36205	451	н	0+451	z ₁ component of 606 eg+ vibration of benzene.
10	36658	904	8	0 -+- 904	C-C bending.
13	36846 36867*	1092	Ĥ	0- -904- 182	
12	36959	1205	8	0 + 1205	2-II planar bending.
13	37095	1341	\mathbf{ms}	0+451+904	
11	37154	1400	ms	0+1205+182	

TABLE 1

Frequencies observed in solid state.

ms - medium strong, s-strong, vs-very strong.

REFERENCES

Maisen F A., Gmsburg N. & Robertson W. W 1945 J. Chem. Phys. 13, 309.
Suryanarayana V. & Ramakrishna Rao V. 1956 J. Sci. Industr. Res., 15B, 260 and 548.
Sen S K 1956 Indian J. Phys 30, 553.

Indian J. Phys. 213-244, (1970)

Comment on a note on the linear flow of a viscous incompressible conducting fluid past an infinite flat plate with constant suction in the presence of a transverse magnetic field

By V. V. RAMANA RAO

Department of Engineering Mathematics, Andhra University, Waltair (Received 7 August 1970)

Recently Dube (1969) has studied the effects of the transverse magnetic field and constant suction on the flow of an incompressible electrically conducting fluid when the free-stream velocity varies linearly with time. It should be pointed out that his solutions for velocity and the skin-friction as given by equations

213

214 V. V. Ramana Rao

14 and 15 respectively, in his paper are wrong. Also his conclusion on the behaviour of the skin-triction is incorrect. This communication presents the correct solutions for the velocity and the skin-friction. It is further concluded that for a fixed time, the skin-friction decreases with the increase of intensity of the magnetic field

Taking the inverse transform of equation 13 of his paper, we get

$$u = \frac{c}{8} \left[8t - 4t e^{\frac{y}{2}(\sqrt{1 + 4M^2} - 1)} \left\{ e^{-y\sqrt{1 + 4M^2}} \operatorname{erfr} \left(\frac{y}{4\sqrt{t}} - \sqrt{t(1 + 4M^2)} \right) \right\} + \frac{ye^{\frac{y}{2}(\sqrt{1 + 4M^2} - 1)}}{\sqrt{1 + 4M^2}} \left\{ e^{-y\sqrt{1 + 4M^2}} \operatorname{erfc} \left(\frac{y}{4\sqrt{t}} + \sqrt{t(1 + 4M^2)} \right) - \operatorname{erfc} \left(\frac{y}{4\sqrt{t}} + \sqrt{t(1 + 4M^2)} \right) \right\} \right]$$

$$(1)$$

The non-dimensional skin-friction τ_0 is given by

$$\tau_{0} = \left(\frac{\partial u}{\partial y}\right)_{y=0} = c \left[\left(1 - \frac{\sqrt{1 + 4M^{2}}}{2}\right) t + \frac{1}{4\sqrt{1 - 1 + 4M^{2}}} \operatorname{erf}\left\{\sqrt{t(1 + 4M^{2})}\right\} \right] + \frac{1}{2} \left(\frac{t}{\pi}\right)^{4} e^{-(1 + 4M^{2})t} + \frac{t\sqrt{1 + 4M^{2}}}{2} \operatorname{erf}\left\{\sqrt{t(1 + 4M^{2})}\right\} = \dots (2)$$

The calculated values of the skin-friction from the expression 2 for c = 4, t = 0, 0.04, 0.09, 0.25 and $M = 0, \sqrt{2}$ are given in table 1

Table 1								
<i>t</i> =	0	0.04	0 09	0.25	-			
0	0	0 537	0 877	1.720				
$\sqrt{2}$	0	0 424	0.667	1 331				
				· · · ·· ···				

From the table it is evident that for a fixed time t, the skin-friction τ_0 decreases with the increase of intensity of the magnetic field.

REFERENCE

Dube S. N. 1969 Indian J. Phys. 43, 550.