Heat transfer from two parallel coaxial disks rotating at different speeds with a source on the axis of rotation

S (.) Rajvansiif
Depatitment of Mathematics, M. R. Engineerng College, Juvpur

(Recezved 7 March 1972, revised I(May 1972)

Abstract

Heat transfor from two parallel coaxial disks rotating at diffecent speeds th the presence of a soutee on the axis of rotation has been investigated The solution has been obtained in the form of double series expansion The effect of rotation on temperature protile and Nussell's number has been discussed

1ntroduedion

Sourec flow between two purallel disks rotating with the same velocity has been studned by Brentner \& Pohlhausen (1962) and Kreith \& Peube (1965, 1966). Kreith d. Viviand (1967) considered the axisymmetric flow betwern two disks, rotating at different angular velocities with a line souter at the eentre The equations of motion are solved by double series expansion about a known solution at a large radius. The results are valid for small rotational Tayfor numbers of the disks and at a distance $r \geqslant(\mathrm{Re})^{3}$.

In the present paper the nature of heat transfer has been investigated between two parallel coaxial disks rotating at different speeds. A line source has been assumed to be present on the axis of rotation The surfaces of the two disks are taken to be at constant temperatures. The fluid is incompressible, so that the momentum equations are independent of the heat transfer phenomena. Tomperature distribution has been obtained as a double series expansion The energy equation is simplified by expanding temperature in powers of downstroum coordinate. The resulting equations have been noived for small Prandtl number The offect of rotation on temperature distribution has been shown graphically. Nusselt's numbers for both the disks have also been calculated.

Statigmant of Problem

Consider the flow of a viseous fluid between two parallel rotating disks with a source on the axis of rotation. We shall work with eylundrical polar coordinater $(\bar{r},(), \bar{z})$. Let the meddle point of the axis of rotation be the origin. 'Jhe surfaces ,' ', ve shall hs are defined hy $\bar{z}-\dagger a$ and $z--u$, respectively. The upjer propagntion. constant angular volocity ω_{2} and the lower ono with ω_{1}. The
flow rate of the source is Q. The boundary conditions on the velocity profile are

$$
\left.\begin{array}{l}
\bar{u}=\bar{w}=0, \text { at } \bar{z}= \pm a, \tag{1}\\
\bar{v}=\bar{r} \omega_{1}, \text { at } \bar{z}=-a, \bar{v}=\bar{r} \omega_{2}, \text { at } \bar{z}=+a, \\
\int_{-a}^{a} 2 \pi r u \mathrm{~d} \bar{z}=Q,
\end{array}\right\}
$$

where $\bar{u}, \bar{v}, \bar{w}$ are the oomponents of velocity along \bar{r}, θ, \bar{z} directions.
'Lhe axisymmetric form of onergy equation in oylindrical polar coordinutes is

$$
\rho c_{p}\left(\left.\bar{u}\left(\frac{\partial \bar{T}}{\partial \bar{r}}+\bar{w} \frac{\partial \bar{T}}{\partial \bar{z}}\right)=k\left(\begin{array}{c}
\partial^{2} \bar{T} \tag{2}\\
\partial \bar{r}^{2}
\end{array}+\frac{1}{\bar{r}} \frac{\partial \bar{T}}{\partial \bar{r}}+\frac{\partial^{2} \bar{T}}{\partial \bar{z}^{2}}\right) \cdot \right\rvert\, \bar{\phi},\right.
$$

where c_{p}, k, ρ and T are speoific heat, thermal conductivity, density and temperature, respectivoly. Viscous dissipation ($\bar{\phi}$) of the fluid in axisymmotric case is given by

$$
\begin{align*}
& \Phi=2 \mu\left[\left(\frac{\partial \bar{u}}{\partial \bar{r}}\right)^{2}+\left(\frac{\bar{u}}{\bar{r}}\right)^{2}+\left(\frac{\partial \bar{w}}{\partial \bar{z}}\right)^{2}+1\left(\frac{\partial \bar{v}}{\partial \bar{z}}\right)^{2}+\right. \\
&\left.+\frac{1}{2}\left(\frac{\partial \bar{w}}{\partial \bar{r}}+\frac{\partial \bar{u}}{\partial \bar{z}}\right)^{2}+\frac{1}{2}\left(\frac{\partial \bar{v}}{\partial \bar{v}}-\frac{\bar{v}}{\bar{r}}\right)^{2}\right] . \tag{3}
\end{align*}
$$

where μ is the coofficient of viscosity. The boundary conditions for temperature are
and

$$
\left.\begin{array}{l}
\bar{T}=\bar{T}_{1} \text { at } \bar{z}=-a \tag{4}\\
\bar{T}=\bar{T}_{2} \text { at } \bar{z}=-a
\end{array}\right\}
$$

Appropriate dimensionless variables are defined by the following relations

$$
\left.\begin{array}{l}
\bar{r}=a r, \bar{z}=a z, \bar{u}=\frac{u \nu}{a}, \bar{v}=\underset{a}{v \nu}, \bar{w}=\frac{w \nu}{a}, \tag{5}\\
\bar{T}=\frac{\nu^{2}}{a^{2} c_{p}} T, \quad \bar{\phi}=\frac{\rho \nu^{3}}{a^{4}} \phi,
\end{array}\right\}
$$

where

$$
\frac{\mu}{\rho}
$$

S. C. Rajvanshi

ns (2). (3) and (5) give
$+\cdots \frac{\partial T}{\partial z}-\frac{1}{P}\left(\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{\partial^{2} T}{\partial z^{2}}\right.$
$\left.\frac{\partial u}{\partial r}\right)^{2}+2\binom{u}{r}^{2}+2\left(\frac{\partial w}{\partial z}\right)^{2}+\left(\begin{array}{c}\frac{\partial v}{\partial z}\end{array}\right)^{2}+\left(\frac{\partial w}{\partial r}+\frac{\partial u}{\partial z}\right)^{2}+\left(\begin{array}{cc}\partial v & v \\ -\partial 1 & - \\ r\end{array}\right)^{2}$,
(Prandte number) $=\stackrel{\mu c}{\boldsymbol{k}} \boldsymbol{k}$.
Latiod bomadary condhtions on the fluid and temperature are

Solution of lequations

ding Kieilh \& Viviand (1967) the forms of u, v and w are taken as the

$$
\begin{aligned}
& r f^{\prime}(z)+(\mathbf{R e} \cdot)^{2}\left[\frac{\left(\mathbf{R e}^{d}\right)}{r} f_{1}^{\prime}(z)+\frac{\left(\mathbf{R e}^{3 / 2}\right.}{r^{3}} f_{3}^{\prime}(z)+\ldots \quad \ldots\right], \\
& -Q f_{-1}(z)+2 \frac{\left(\mathbf{R e}^{2}\right.}{r^{2}} f_{3}(z)+\ldots \ldots,
\end{aligned}
$$

me denoles differential coefficient with respect to $z . \quad f_{n}(z)$ and $y_{n}(z)$ are nless functions to be determined from momentum oquations Theso have been determinod by Kroith if Vjviand (1967) for smull values

$$
\begin{aligned}
& u=w=0 \text {, at } z-\mid 1, \quad \text { ? } \\
& \int_{-1}^{1} u \mathrm{~d} z=2 \underset{r}{(\mathrm{Re})}, \\
& p=\alpha_{1} r \text {, at } z=-1, v=\alpha_{\mathbf{a}} r, \text { at } z=-1 \mathrm{I},
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}=\underset{\nu}{\omega_{1} \iota^{2}, \quad \alpha_{2}=-\frac{\omega_{2} u_{\nu}^{2},}{\nu} \quad(R t)=\frac{Q}{4 \pi a_{\nu}}, ~} \\
& \therefore \bar{T}_{1}, \text { and } s_{2}=\frac{a^{2} c_{p}}{\boldsymbol{p}} \bar{T}_{2}
\end{aligned}
$$

of α_{1} and $\alpha_{2} \quad$ Casal (1950) states that the expansions in the case $\alpha_{1}=0$, are convergont for $\left|\alpha_{2}\right|<017$. Equations (6) and (9) give

$$
\begin{align*}
& +2\left(6 f_{-1}^{\prime}{ }^{2}+(\operatorname{Re}) g_{-1}^{\prime} g_{1}^{\prime}+(\mathrm{Re}) f^{\prime \prime}{ }_{-1} f^{\prime \prime \prime}\right)+\underset{r^{2}}{(\operatorname{Re})^{2}}\left(g_{1}^{\prime}{ }^{2}-\mid-4 g^{\prime}{ }_{-1} I^{\prime}{ }_{3}+2 f^{\prime \prime}{ }_{-1} f^{\prime \prime \prime}{ }_{1} \quad \ldots\right. \tag{10}
\end{align*}
$$

where terms upto ($1 / r^{2}$) have been retained on right hand side. Equation (10) readily suggests that the form of T should be

$$
\begin{equation*}
T(r, z)=r^{2} T_{-2}(z)+T_{0}(z)+\frac{1}{r^{2}} T_{2}(z)+\ldots \tag{11}
\end{equation*}
$$

We substitute (11) mto (10) and equate the coefficients of equal powers of , on hoth sides This gives us a set of ordinary differential equations The first 1 wo differential equations are

$$
\begin{gather*}
T_{-2}^{\prime \prime \prime}=\mathrm{P}\left(2 f^{\prime}{ }_{-1} T_{-2}-2 f_{-1} T^{\prime \prime}{ }_{-2}-g^{\prime} ._{1}^{2}-f^{\prime \prime \prime}{ }_{-1}^{2}\right), \tag{L2}\\
T_{0}^{\prime \prime \prime}=-T_{-2}^{\prime}+\mathrm{P}\left(2(\mathrm{Re}) f_{1}^{\prime} T_{-2}-2 f_{-1} T_{0}^{\prime}-12 f_{-1}^{\prime}{ }^{2}-2(\mathrm{Re}) g_{-1}^{\prime} \ell_{1}^{\prime}--2(\mathrm{Re}) f_{-1}^{\prime \prime} f^{\prime \prime \prime}{ }_{1}\right) \tag{13}
\end{gather*}
$$

The modified boundary conditions for temporature are

$$
\left.\begin{array}{l}
T_{-2}(\pm 1)=0, \tag{1-1}\\
T_{0}(-1)-s_{1}, \quad T_{0}(+1)=s_{2}
\end{array}\right\}
$$

Equation (12) is a non-linear ordinary differential equation Jts solution is ol 1ained by a perturbation method in powern of Prandtl number P in the form

$$
\begin{equation*}
T_{-2}=T_{-2 \cdot 0}+\mathrm{P}^{T_{-2,2}}+\mathrm{P}^{2} T_{-2,2}+\ldots \tag{15}
\end{equation*}
$$

We substitute (15) in (12) and equate like powers of P on both sides This gives a set of linear ordinary differential equations. These equations together with modufied boundary conditions give

$$
\begin{equation*}
T_{-2}=\frac{1}{8} \mathrm{P}\left(\alpha_{1}+\alpha_{2}\right)^{2}\left(1-z^{2}\right)+0\left(\mathrm{P}^{s}\right) \tag{16}
\end{equation*}
$$

Proceeding in a similar manner, the solution of equation (13) is

$$
\begin{aligned}
T_{0} & =\frac{1}{2}\left[\left(s_{2}-s_{1}\right) z+\left(s_{2}+s_{1}\right)\right]+\mathrm{P}\left[\left(\alpha_{1}+\alpha_{2}\right)^{2} \phi_{1}+\left(s_{2}-s_{1}\right) \phi_{2}\right. \\
& \left.+(\operatorname{Re})\left(\alpha_{1}^{2} \phi_{3}+\alpha_{1} \alpha_{2} \phi_{4}+\alpha_{2}^{2} \phi_{5}\right)\right]+\mathrm{P}^{2}\left[(\operatorname{Re})\left(\alpha_{1}+\alpha_{9}\right)^{2} \phi_{0}\right]+0\left(\mathrm{P}^{\mathrm{Pa}}\right) \quad \text {.. } \quad(17) .
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi_{1}=\frac{1}{96}\left(z^{4}-\left(6 z^{2}+5\right),\right. \\
& \phi_{2}=\frac{1}{\left.50400^{(}\right)} \alpha_{1}^{2}\left(5 z^{7}-35 z^{6}-21 z^{5}+175 z^{4}+35 z^{3}-525 z^{2}-19 z+385\right) \\
& +\frac{1}{50400} \alpha_{2}^{2}\left(5 z^{7}+-35 z^{6}-21 z^{5}-175 z^{4}+35 z^{3}+525 z^{2}-19 z-385\right) \\
& -\frac{1}{25200} \alpha_{1}^{-} \alpha_{1}\left(5 z^{7}-21 z^{5}+35 z^{3}-19 z\right), \\
& \phi_{3}=-\frac{1}{240}\left(z^{6}-12 z^{5}+9 z^{4}-40 z^{3}-21 z^{2}+52 z+11\right), \\
& \phi_{4}=\frac{1}{120}\left(z^{6}+9 z^{4}-21 z^{2}+11\right), \\
& \phi_{5}=-\frac{1}{240}\left(z^{6}+12 z^{5}+9 z^{4}+40 z^{3}-21 z^{2}-52 z+11\right), \\
& \phi_{6}=\frac{1}{80}\left(z^{6}-5 z^{4}+15 z^{2}-11\right) .
\end{aligned}
$$

In obtaining the results given in (15), (16) the values of $f_{-1}(z), g_{-1}(z), f_{1}(z)$ and $g_{1}(z)$ have heen taken from Kreith \& Viviand (1967).

Disoussions

We miroduce another dimensionless temperature in the form

$$
\begin{equation*}
T^{*}=\frac{T-s_{1}}{s_{2}-s_{1}} \tag{19}
\end{equation*}
$$

Equations (11), (16), (17) and (19) give

$$
\begin{align*}
T^{*}= & \frac{1}{8} \mathrm{E}_{2} \mathrm{P} r^{2}(\alpha+1)^{2}\left(1-z^{2}\right)+\frac{1}{2}(1+z)+\mathrm{P}\left[\mathrm{E}_{2}(\alpha+1)^{2} \phi_{1}+\phi_{2}+\right. \\
& +\mathrm{E}_{2}(\mathrm{Re})\left(\alpha^{2} \phi_{3}+\alpha \phi_{4}+\phi_{5}\right) \mid+\mathrm{P}^{2} \mathrm{E}_{2}(\mathrm{Re})(\alpha+1)^{2} \phi_{6} \tag{20}
\end{align*}
$$

where $\mathbf{E}_{2}($ Eckert number $)=\frac{\alpha_{2}^{2}}{s_{2}-s_{1}}=\frac{\omega_{2}^{2} a^{2}}{c_{p}\left(T_{2}-T_{1}\right)}$,
and $\quad \alpha=\frac{\alpha_{1}}{\alpha_{2}}$

The dimensionless temperature in absenee of souree (\bar{T}^{*}) can be oltained by taking (Re) $=0$ in equation (20) Hence we have

$$
\begin{equation*}
T^{*}-\bar{T}^{*}=\mathrm{PE}_{2}(\mathrm{Re})\left(\alpha^{2} \phi_{3}+\alpha \phi_{4}+\phi_{\overline{5}}\right)+\mathrm{P}^{2} \mathrm{E}_{2}(\mathrm{Re})(\alpha+1)^{2} \phi_{0} \tag{2}
\end{equation*}
$$

The variation of $\left(T^{*}-\bar{T}^{*}\right) / \mathrm{E}_{2}(\mathrm{Re})$ against z has been shown in figure 1 , for differont values of α. For numerical work we have taken $P=1$ We note from the

figure that $T^{*}-\bar{T}^{*}$ is symmetrical, when the two disks rotate with equal angular velocity in the same or in opposite directions. For $\alpha=1, T^{*}<\bar{T}^{*}$ at every point of the region. For $\alpha=-1, T^{*}=\bar{T}^{*}$ near both the disks, and at other points of the region $T^{*}=\dddot{T}^{*}$ For $\alpha=0,-0.6, T^{*}>\bar{T}^{*}$ near the upper disk only and at other points of the region $T^{*}<\bar{T}^{*}$ This indicates that if the two disks rotate with different angular velocities, then $T^{*}-\bar{T}^{*}$ is positive only near the disk which rotates with greater angular velocity.

The Nusselt's number of the lower disk is given by
$(\mathrm{Na})_{\bar{z}=-a}=2 a\left(Q^{*}\right)_{\bar{z}=-n} / k\left(\bar{T}_{2}-\bar{T}_{1}\right)$,
where $\quad\left(Q^{*}\right)_{\bar{z}=--} \quad \frac{1}{\pi\left(\bar{r}^{2}-\bar{r}_{0}^{2}\right)} \int_{\bar{r}_{\mathrm{n}}}^{j} 2 \pi \bar{r}(q)_{\bar{z}=-a} \mathrm{~d} \bar{r}$,
and $\quad(q)_{\bar{z}=-a}=-k\left(\frac{\partial T}{\partial \bar{z}}\right)_{\bar{z}=-a}$
such that \bar{r}_{0} is the distanoe of a given point on the disk from the axis of ritation,
lirom equatioms (5), (11), (16) (17) and (29) we have:

$$
\begin{align*}
& (\mathrm{N} 1)_{2--a}-1-\frac{1}{4} \mathrm{PE}_{2}(\alpha \mid \mathrm{I})^{2}\left(r^{2}-1 \mu_{0}{ }^{2}\right)-\mathrm{P}\left[\left.\begin{array}{l}
1 \\
6
\end{array} \mathrm{E}_{2}(\alpha-\mid \mathrm{J})^{2} \right\rvert\, \underset{1}{4} \dot{7}_{5} \alpha_{1}{ }^{2}\right. \\
& -\frac{34}{1575} \alpha_{4^{2}}{ }^{2}-\frac{2}{1575} \alpha_{1} \alpha_{2}-\frac{16}{15} \mathrm{E}_{2}\left(\mathrm{Re}(\mathrm{r})\left(1-x^{2}\right)\right]+\frac{2}{5}(\mathrm{Re}) \mathrm{P}^{2} \mathrm{~F}_{2}(\alpha+1)^{2} . \tag{23}\\
& (\mathrm{Nu})_{\bar{z}}=+c=-1+\frac{1}{4} \mathrm{PE}_{2}(\alpha+1)^{2}\left(r^{2}+\gamma_{0}^{2}\right)+P\left[{ }_{6}^{1} \mathrm{C}_{2}(\alpha+1)^{2}\right. \\
& \left.+\frac{34}{175} \alpha_{1}^{2}-\frac{4}{175} \alpha_{2}{ }^{2}+\frac{2}{175} \alpha_{1} \alpha_{2}+\frac{16}{15} \mathrm{E}_{2}(\text { Rc })\left(1-\alpha^{2}\right)\right] \\
& \frac{\Delta}{5}\left(R_{\theta}\right) P^{2} \mathrm{E}_{2}(\alpha+1)^{2} . \tag{24}
\end{align*}
$$

The effect of different speceds of rotation on the Nusselt's number of the disk $\bar{z}=-1$ has been shown in figures 2 and 3.

Figuro 2

Figuro 3

For numerical work we have assumed (Re) $=1000, \mathrm{P}=1, \mathrm{E}_{2}=0.02, \alpha_{2}=0.1$ The graphs have been drawn for $\left(r_{0} /(\operatorname{Re})^{\frac{1}{2}}\right)=1$ and 10 . We note from figures 2 and 3 that with decrease in the value of α_{1} the slope of the curve decreases Λ $\alpha_{1}--0.1$, it wall be alnost parallel to the axis representing $\left(r /(\operatorname{Re})^{1}\right)$,

Heat transfer from two parallel etc.

Acknowledgements

The author is grateful to Dr. P. D. Verma for suggestions and encouragement during this investigation. 'Thanks are also dae to the referee of the paper for suggestions.

Reflezenoms

 Wright-]'ntierson AlBB, Ohu.
C'usal J' 19ijo Comptes Rendus de l'Acaliémie des s'ciencps 230, 178

