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Heat transfer from two parallel coaxial disks rotating at

different speeds with a source on the axis of rotation

S C. Rasvansnt
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(Recewed T March 1972, revised 16 May 1972)

Heat transfor from two parallel coaxial disks rotating at dilferent specds
i the presence of a source on the axis of rotation has heen investigated
The solution has been obtained in the form of double series cxpansion
The effect, of rotation on temperature profile und Nusselt’s number has
heen discussed

INTRODUCTION

Souree low between two purallel dislks rotating with the same velocity has  been
studied by Bretner & Pohlhawsen (1962) and Kreith & Peube (1965, 1966). Kreith
& Viviand (1967) considered the axisymmetric llow between two disks, rotating
ul different angular velocitics with a line sowmee at the centre  The equations of
motion are solved by double series expansion ahout a known solution at a large
radius, The results are valid for smull rotational Taylor numbers of the disks
und ot a distance 7 3> (Re)t.

In the present paper the nature of heat transfer has been investigated between
two parallel coaxial disks rotating at different speeds. A line source has been
The surfaces of the two disks
are taken to be at constant temperatures. The fluid is meompressible, so that

assumed Lo be present on the axis of rotation

the momentwn equations are independent of the heat transfer phenomena.
Tomperature distribution hag been obtained as w double series expunsion  The
energy cquation 1s simplified by expanding temperature in powers of downs{team
coordinate. The resulting equations have been soived for small Prandil number
The olfeet of rotation on temperature distribution has been shown graphically.
Nusselt's nambers for both the disks have also been caleulated.

StaroMENT oF PrOBLEM

Consider the flow of a viscous fluid between two parallel rotating disks with
a source on the axis ol rotation,  We shall work with cylindrical polar coordinates
(., 0,%). Let the mddle point of the axis of rotation he the origin.  The surfaces
<+ twve shall s are defined hy 2 — 4 and 2 — —u, respectively. The upper
propagation, constant angular velocity w, and the lower one with w,. The
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flow rate of the source is @. Thoe boundary conditions on the velocity profile aro

5 =Fawy, ub &= —a, v =Fuw, al z = +a, v (1)
a
[ 2nrudz = Q, J
“a
where %, 9, @ are tho oumponon{,s of velocity along 7, 0, Z dircetions.

The axisymmetric form of onergy equation in oylindrical polar coordi-
nates is

~ T T \_ (T 13T  &T\ - R
pl‘p('lb a7 4"11-0? ) --k( a7 +?’—ai {_—E?)I ) e (2)

where ¢p, &, p and ' ure specific heat, thermal conductivity, density and tem-
perature, respectively. Viscous dissipation (¢) of the fluid in axisymmotric case
is given by

o) HE ) ()

SR ) e

whero g is the coofficient of viscosity. The boundary conditions for temperature

are
T 1 at Z2 = —a,
- . v (4)
7 T, at z =  a.

Appropriate dimensionless variubles are defined by the following relations

I

and

i

F=ar, =0z, & = ﬂ,ﬁ: vv,,,ﬁz ﬂ,
a a a
(8)
3 3
T= Y_m =
atcy ' ¢ a‘¢’ J
where "
p

3
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ns (2). (3) und (5) gave

te 5 =P

) ) () e ) )

a1 1 /02T L or o
(01"-‘ r ar 22

(Prawdt] namber) = ,u;,! .

htied boundury conditions on the fluid and temperature are

w=1w-=0,atz_— | I, 3
1
fude =2 “‘T"), )
o= oy, wb g = —1, v = oy, al z=— -} 1,
T —syabz =1, 7T — s at z=-]-1, (8)
. e L wy?, Re) — _Q
B v %2 v (Re) 4mav ’
2, and sy = -J’ T,

SOLUTION OF EQUATIONS

g, Kreith & Viviand (1967) the forms of «, » and w are taken as ihe

o @+ @t B e B ey,

—2f (7)+-’(R‘i)._f(z){ )

( Ru)i

3G Freps [ 0+ B g+ ]J

e denoles differential coefficient with rospect to z.  f,(2) and g¢,(z) are
nless functions to be determined from momentum equations  Theso
have been determined by Kreeith & Viviand (1967) for small valuces
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of a; and @,  Casal (1950) states that the expansions in the case @, = 0, are con-
vergent for |a,| < 017. Equations (6) and (9) give

T OT _ 1 (0T |, 1 aT |, @1\ _ s\ 5 v a
u ar-+’ll)-6: —ﬁ(-—a—ri - o »(3—5:)— [ R )

2 Rol g R a0+ B ity g2, o)

where torms upto (1/7?) have heen retained on right hand side. lquation (10)
readily suggests that the form of 7' should he

T(r,2) = 12T _y(2) + To(z) 4—%1'2(2)4—... an

We substitute (11) mio (10) and equate the cocfficients of equal powers of 2 on hoth
sides  This gives us a set of ordinary differentinl cquations  The first {wo (if-
{erential equations arc

1"y = PR T =2 Vg’ "), e (12)
"y = —T_y - PR(Re) 7. 4 —2f 4 T'g—12f_*—2(Re)y g/ —2R)f*_, ") ...(13)

The modified boundary conditions for temperatuie are

T_y(£1) =0, }
oo (1)
To(—1) = sy To(-+1) =8

lquation (12) is a non-lincar ordinary differential equation  Tts solution is ob
tained by a perturbation method in powers of Prandtl number P in the form

P_y=T g+ P T 5 P 1. ... (1B)
We substitute (16) in (12) and cquate like powers of P on hoth sides  This gives

a set of linear ordinary differential cquations. These egquations together with
modified boundary conditions give

T, = %P(a(.l-{-ag)’(]—z’)—i—ﬁ(l’“). . (16)
Proceeding in a similar manner, the solution of equation (13) is

Ty = (83— 81)=+ (82 +91) 1+ Pl +p)* @1+ (5a—1)0s
+(Be) a2 Gy +aty0tBy + .G ) ]+ PH(Re) (o +atq) g] +-0(P7) e Q7
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where
by =L (A—6:2455)
“1 =756 =T ).

thy = r,Tioo o257 — 3520 — 21254 17524 - 3525 — 52522 — 1921 385)

+ 56‘!;"()'(» ot (527 - 3529 — 2125 — 17524 1 3523 52522 — 10z — 385)
- 2-5; 00 ot 0 (5527 — 2128 - 3523 —19z),
Gy = — »2-}{0 (20— 12254 920 — 405 — 21224 622+ 11),
1 6 4 2
Py = (28} 920 —21224-11),

120
A 24]7(,:1' 1225402414023 — 212 —52:4-11),

1
$s = g9

20—5z4 - 1522 —11).

In obtaining the rerults given in (15), (16) the values of f_y(z), g_1(2), fr(z) and g,(z)
have heen taken from Kreith & Viviand (1967).

Disoussions
We miroduce anothor dimensionless temperature in the form

~ T—y

T - ) (19)
S2—%)
Equations (11), (16), (17) and (19) give
% = L BP 3t DAL~ 4] (1+2)+ P[E(a+1)%
+EyRe)(aldy+ag, +d5) |+ P Ey(Re)(a+1) ¢, - (20)
where Ey(Eckert number) = %t et
* S2—81 ep(Te—T4) "’
and a= %

%y
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T'hé dimensionless temperature in absence of source (T#) can be obtained hy

taking (Re) = 0 in equation (20) Hence we have

T*—T* = PEyRe)(a?dy-F-ag, +¢5)+P2E(Re)(a+ 1)2p,.

=1

The variation of (7% —7"%)/E,(Re) against zhas been shown in figure 1, for differont

values of a. Tor numerical work we have taken P = |

We note from the

2
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Figure 1

(1}

figure that 7% —T* is symmetrieal, when the Lwo disks rotate with equal angular
veloeily in the same or in opposite directions. Fora = 1, T* < T* at every point
ol the region. Fora = —1, T%* > T* near hoth the disks, and at other points
of tho region T* < T* TFor a — 0, —0.6, T*> T*ncar the upper disk only and at
other points of the region 7™* -2 T*  This indicates that i the two disks rotate
with different angular velocities, then T*—T* is positive only near the disk

which rotates with greater angular velocily.

The Nusselt’s number of the lowor disk is given by
(Na);_ _, = 2a(Q);_ _, /bT:—T),
where  (Q*)._ _ ! [ 2nfg)_ _ dF,

—7F(F_=_' Fus) Ta

nd  (@);_ _,= k(% ). .

such that #, is the distance of a given point on the disk from the axis of rotation,
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I'rom equatioms (5), (11), (16) (17) and (22) we have :

; . . . 4
(N, — =1 — | PRya [ \0hr)—P[ | Byl 17| 2 a?

H o, 2 - 2 o o
TR 157.-“:% )1‘1:.-(1%(')(!~-1")]-I- 5 (Re) PRy +-1)% (23)

(Nuj;_ =1 [ PRFIR0 1@ P (Tl 112

R LIPR I Y LA ]
oyt 7 g (R )
-g(Re)mEE(aﬂ)ﬂ. e (24)
The effect of different speeds of rotation on the Nusselt’s number of the disk
z = —1 has heen shown in figures 2 and 3.
002
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Figuro 2 Figuro 3

For numerical work wo have agsumed (Re) = 1000, P = LE, = 0.02, o, = 0.1
The graphs have been drawn for (ro/(Re)!) = 1 and 10. We note from figures
2 and 3 that with decrease in the value of &, the slope of the curve decreases Al
ay — = 0.1, it will he alinost paralle] to the axis representing (r/(Re)i),
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