H. S. Sahota

where $\beta_{M_1}^{\kappa}(\lambda = 1)$ is the conversion coefficient without penetrations B_1 and B_2 are ponetration coefficients for magnetic multipole conversion coefficients and λ is the penetration factor defined as ratio of penetration matrix element to the gamma ray matrix element. Taking the values of the quantities $\beta_{M_1}^{\kappa}(\lambda = 1)$, B_1 and B_2 from the work of Hager & Seltzer (1068, 1969) and giving different values to λ we plot a graph between $\beta_{M_1}^{\kappa}(\lambda)$ and λ .

From the graph corresponding to our value of the conversion coefficient determined above we find λ essentially equal to unity. Thus the conversion process is taking place without any dynamic nuclear effects present in it. This is confirmed from the study of the L_1 and L_2 conversion coefficients as well.

The author is thankful to Professor B. S. Sood for useful facilities and encouragement in his work.

Reference

Geiger J S, Graham R. L. & Evans G. T. 1960 Nucl Phys. 16, 1. 1961 Nucl. Phys. 28 387.

Hager R. S & Seltzer E. C 1968 Nuclear Data A4, 1.

1969 Nuclear Data A6, 1

Iwashita T., Inamura T., Ikemota Y. & Kageyama S. 1963 J. Phys. Soc. Japan 18, 1358.

Mangal P C. & Trohan P. N. 1969 J Phys. Soc. Japan 27, 1.

Potins V R, Agin G. P. & Mandeville C. E. 1970 J. Phys. Soc Japan 29, 539

Indian J. Phys. 44, 610-612 (1970)

Binding energy of hyper nuclei from K⁻-capture

BY T. ROY AND I K. DAFTRI

Department of Physics, Jadavpur University, Calcutta-32 (Received 4 March 1971)

(Plate-16)

Experimental determinations of binding energies of hypernuclei have been made during the last decade. Yet there are reports of some observed uncertainties in the binding energies of hypernuclei. Thus it seems desirable to find the binding energies of hypernuclei just to increase the statistics and sharpen the mean values

In this note a study is made of mesic decays of hyperfragments produced by K^- -reaction at rest in an emulsion which yields data on the binding energies of Li^7_{Λ} and B^{10}_{Λ} The average binding energies of Li^7_{Λ} and B^{10}_{Λ} was found to be 5 92 MeV and 8.90 MeV which agree with the binding energies summarized by Levisetti & Slater (1963), Slater (1959), and Gilbert (1956) as 5 5 MeV and 8 MeV.

During a systematic scanning of an emulsion plate $4.3' \times 4.3' \times 400\mu$ thick exposed to K--particle beam, with momenta 800 MeV/c at the CERN Proton

610

synchroton, a number of events have been observed among which the case of $\text{Li}^{7}\Lambda$ h.f. and $B^{10}\Lambda$ h.f. are mentioned here. These are designated as event 1 and event 2 respectively.

.

$$\begin{array}{c} \operatorname{K}^{-} + \operatorname{O}^{16} \to \operatorname{Li}^{7}{}_{\Lambda} + 2\operatorname{He}^{4} + \operatorname{H}^{1} + \pi^{-} + Qc \\ \\ \operatorname{Li}^{7} \to \operatorname{Be}^{7} + \pi^{-} \end{array} \right\} \quad \text{Event 2}$$

In event 1 as shown in the plate 16 K^- -particle is captured by O¹⁶ nucleus at the point A. Li⁷_A h.f. produced decays at rest and gives the Bo⁷ track AB. Prongs (T1) and (T3) represent the negative pions. (T4) and (T5) represent the He⁴ particles and prong (T2) the H¹ particle. Also during the production of new particles some energy is lapsed in the formation of δ -rays which is represented by Qc in the above reaction. These data are given in table 1.

Track	Identity	Range (microns)	Energy (Mev)	Momentum (Mev/c)
(T2)	 H'	1112.10	14.45	28.738
(T)	π~	480.10	4.08	2.399
(T 3)	π-	648,20	4.80	2.760
(T_4)	He ⁴	1492 11	38.85	51.899
(T 5)	He⁴	488 00	20 43	27.931

Table 1

The identities of different prongs were obtained from ionization, range measurements and from end point of each prong

The above reaction satisfies (a) conservation of charge and (b) conservation of energy. The momentum unbalance of the reaction is 45.93 ± 1.2 . Mev/c.

The binding energy is most conveniently computed from the equation

$$m_f' + m_\Lambda - B_\Lambda = \sum_i m_i + Q = m_f \qquad \dots \tag{1}$$

where the various *m*'s are the rest energies of particles involved in the event. and Q is the total kinetic energy release. f' represents the core of nucleus in which the particle Λ^0 is bound, f is the h.f. whose binding energy we want to find out and *i* labels as decay particles.

$$f = m_{f}' + m_{\Lambda} - m(\pi^{-})$$
(2)
= 5562.30+1091.92-120-50
= 6533.72
$$Q_{0} = f - \sum_{i} m_{i}$$

= 6533.72-6466.16
= 67.56 Mev.
$$B_{\Lambda} = Q - Q_{0}$$

= 73.20-67.56
= 5.64 Mev

The binding energy found from other events has been found in the same manner and is as follows.

$\begin{array}{ccc} Possible & Expected \\ identification & B(Mev) \\ Li^7\Lambda & 5.5 \end{array}$	<i>Experimental</i> <i>B</i> (Mev) 5.64, 6.49, 5.65
--	---

Average binding energy of $\text{Li}^7\Lambda$ is found to be 5.92 Mev.

$$\begin{array}{c} K^{-}+{}^{12}C \rightarrow \operatorname{Be}{}^{10}+2\operatorname{H}{}^{1}+\pi^{-}+Qc \\ \\ \mathrm{Be}{}^{10}\Lambda \rightarrow \pi^{-}+\mathrm{B}{}^{10} \end{array} \right\} \quad \text{Event 2.} \end{array}$$

The event 2 as shown in plate is the case of $Be^{10}\Lambda$ which is produced when a K⁻-particle beam is captured by the C¹² nucleus in the emulsion and decays at rest to give B¹⁰ and negative π -meson. Prongs (B) and (C) represent the π mesons. (D) and (F) are H¹ particles, and prong (HE) represents the B¹⁰ nucleus. The data are given below.

Track	Identity	Range (microns)	Energy (Mev)	Momentum (Mov/c)
(B)	π-	2368.01	10.31	6.4139
(C)	π^-	188 00	2 36	0.9536
(<i>D</i>)	H1	2312.00	22 52	44.1926
(F)	H^1	7496 01	44 39	86 8433

Table 2

The above reaction obeys the energy and charge conservation. The momentum unbalance has been found to be 58.51 ± 1.2 .

The binding energy is found in the same manner as in the previous case. binding energy turns out to be 8.64 Mev.

We thank the CERN Emulsion Plate Division for sending suitable plates for our work.

References

Gilbert C. 1956 Phys. Rev 103, 248, Levisetti R. & Slator W. E. 1963 Nuovo Cimento 15, 181. Slater W. E. 1958 Nuovo Cimento Supp. 10, 1. 1959 Nuovo Cimento 21, 213,

Indian J. Phys. Volume **44**, No. 11, 1970 PLATE 16

Figure 1. Event 1.

Figure 2, Event 2.