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The effect of istroiig blowing on a conducting flow between a 
and a stationary cylinder is examined in the presence of a variable 
radial magnetic field and variable injection velocities. Closed-forin 
solutions are obtained for the problem including heat transfer, gravity 
and both axial and radial pressure gradients In the massive blowing 
regime the asymptotic solution possesses two-layered structure whose 
nature depends on orientation of the system and the axial pressure 
gradient. The results of the analysis show that the shear layer blow 
off from the blown surface occurs for large values of injection Reynolds 
number and Hartraaim number

Nomenclature

B  magnetic induction vector 
B, variable magnetic induction 
B *  non dimensional reference magne­

tic induction 
E  electric field vector 
Eg azimuthal component of electric 

field
P Rroude number, Vw^jgh 
(j nondimensional enthalpy, {H—Hi)j

H  magnetic field vector
induced magnetic field in the axial 

direction
gap between the two cylinders 
thermal conductivity 
current density vector 
Hartmann number.

N  square of the ratio of velocities, 
Û lv\

P  nondimensional pressure, Palpv^w 
p  pressuie 
Pq atmospheric pressui'e 
Pr Prandtl number, vjK  
H Reynolds number based on sliding 

velocity, Vhjv
injection Reynolds number, v ji jv  
magnetic Reynolds number, perUh 
radial coordinate 
radius of the outer cylinder 
radius of the inner cylinder 
sliding velocity
injection velocity at the inner 

cylinder
injection velocity at the outer 

cylinder

Rb
Em
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u* nondimensional Bliding velocity,
ufU

Vw* nondimensional injection velocity, 
vivv)

F. velocity vector
z inner variable
p density of the fluid
V kinematic viscosity
/If absolute viscosity of the fluid 
/I magnetic permeability

electrical conductivity of the fluid 
nondimensional radial coordinate

( r -n ) t (u - n )
transverse curvature parameter, hfri 
nondimensional axial pressure gra­

dient parameter,

nondimensional parameter, MjNF 
inclination of the system with the 

horizontal

Introduction

The study of the effect of strong blowing on flow fields is of considerable interest 
in aerodynamics and has been examined by a number of investigators (White 
et al 1968,'Yuan & Finkelstcin 1956, Terrill 1955, 196-f, Rasmussen 1970), Speci­
fically, the strong blowing of mass into the boundary layer has long been consi­
dered as a possible means of prtitecstion of the noses of reentry vehicles from high 
heat fluxcs(Barber 1965). In recent year the mass addition has also taken many 
forms including transpiration cooling, mass transfer cooling and film cooling 
These three models have been reviewed by Rudraiah (1966). An experimental 
investigation of fluid injection at the stagnation jioint has been made by Barber 
and this has shown that there exists three regimes of flow interaction namely, 
boundary-layer regime, viscous regime and shock regime Similar studies, des­
cribing some of the major physical features involved m the interaction of blowing 
with a shear layer, have been previously made, considering simplified flow model 
like Couetto-Poiseuille shear flows (Cramer 1959, Inman 1959, Lilley 1959, Art- 
zukh & Kashkarov 1966). Recently Inger (1969) has re-examined the above 
problem including the presence of heat transfer and both axial and radial pressure 
gradients. In particular, he has emphasized the behaviour of the solution in the 
strong blowing regime He finds that shear layer blow-off from the blown surface 
occurs for sufficiently strong injection and the flow in this asymptotic regime has 
two-layered structure, whose basie character depends critically on whether or 
not an axial pressure graident is present. In magnetohydrodynamms the effect 
of strong belowing on conducting flows has been investigated by Shrestha (1967), 
Rudraiah & Chandrasekhara (1969) for different physical situations and different 
geometrical configurations. These investigations pertain to the study of the ef­
fect of injection on the boundary layer. The strong blowing of a conducting 
fluid into space-craft body in the presence of a solar magnetic field, is of particular 
interest in the space research problems. In laboratory this problem is also d  
particular interest in the design of MHD slider bearing system. These problems



aro mathematically complicated in realistic flow configurations In such cir- 
cnmstances, a simple flow model is ideal to understand some of the major physical 
features involved in the interaction of blowing with a conducting shear layer and 
magnetic field. An ideal model for this purpose is the well-known Couotte- 
Hartmann shear flow since the solution of this problem can be expressed in closed 
form and it possesses a qualitative similarity to Hatmann boundary layer tjqie 
of flows including the total pressure (i.e , the sum of the hydrostatic and magnetic 
pressure) gradient effects. This problem with inertia and viscous effects and with 
strong blowing has not been given imieb attention in raagnotohydrodynamios. 
Therefore, the aim of the present discussion is to study the interaction of strong 
blowing on the forced convective flow of conducting fluid, between a sliding 
and a stationary cylinder, oriented at different angles to the horizontal. The 
i nsults of this analysis emphasize the behaviour of the solution in the strong blou'- 
mg regime and the solution is obtained in the unified form applicable to boih, 
two-dimensional and axi-symmetric flows

T ’ORM U LATlf)!^  o i '  T H E  PllO B LE M

A uniform incomprossible conducting fluid of density p, viscosity jif and 
electrical conductivity cr flows through an amiular channel formed by two infinitely 
long porous coiioentric cylinders of radii and rt. The outer cylinder r,, slides 
ivith an uniform axial velocity u — XJ relative to the stationary inner cylinder. 
The fluid is injected radially with uniform velocity v through the iiuier cylinder 
and due to the conservation of mass, the fluid also flows outward ihrougli the slid­
ing cylinder with some radial velocity Ve- An external variable magnetic field of 
the form Br ^  Ajr is applied in the radial direction (figure 1) (The generation of 
sueh a magnetic field in the laboratory has been suggested by Globe 1959). The 
flow is axisymmetric and we are considering the variable injection velooty (i.e,, 
V — cjr) in the radial direction, the equations of continuity of fluid and magnetic 
field A.F -■ 0 — A..B show that all the physical quantities of the flow are functions 
of r only save for pressure which may have an arbitrary constant axial pressure 
gradient

Defining the normalized distance if =  (r—rt)/(ro—r*) and a transverseourva- 
iure parameter A — hjri such that (r/r*) — l+Aiy, the axi-symmetne three dimen-
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Figure 1. Physical model.



p - , V* =  f  , f' to
-S H - H ,

■® ~ Ajh’

sional problem reduces to two-dimeiitional case in the limit A— The governing 
equations of motion, introducing the dimensionless velocity, pressure, magnetic 
field and enthalpy variables

- P
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... (1)
. . .  ( 2 )

... (3)

(4)

into the Navier-Stokes equations and the energy equation are

Rt
dtt*
dTj

d
di/

(I+A j;)?;* 1,{(1 + A t;) | - ( A - e s i i i0 ) ( ] + A r ;)  -
.  dw*

d^
dP , , c o b O

+  - A ( i + A - , } r +  - pdi]

p ^ d{7 d i f . , . ,  1 PrvJM ^+^V)-^l I .ti\
^'^0 d , - - a r i '  ; = — H „ - s ] —

vJPr ooa0 , vJP rM ^N V *  „  ,
" F - +  "

The boundary conditions are

'*̂ *(0) -  ^(0) -  0, 7/,*(l) =  gr(l) =  1

v*{0) =  1, «*(!) =  1/1+A

and these give P (l) ~  PJpv\

The momentum equation (3) has purely an invisoid character even in the 
presence of magnetic field and gravitational force because of the nature of the 
injection velocity v* =  l/l+ A i/. Since we are dealing with practically forced 
convection problem, where the velocities involved are not small, we have included 
the ohmic and viscous dissipation effects in the energy equation (4). In the 
hydrod5mamic case of Inger (1969), dissipation of energy is mainly because of the 
rEidial shear stress and the normal pressure However, in the present magnoto- 
hydrodynamic case in addition to these dissipations we have ohmic dissipation. 
In the absence of blowing and transverse curvature, dissipation term arises 
entirely due to ohmic heating in equation (4)

Pressure distribution

^Examining equation (3) wo find that the radial pressure change is brought 
about due to induced and applied magnetic fî elds, gravity and the momentum



Hiange assooiAted with the turning of the injected fluid. Since the induced 
magnetic field term, is mvolved in equation (3), we should calculate the induced 
jnagnotic field before integrating equation (3). The equation is
obtained from the magnetic induction equation under the assumption of small 
Hm, in the form

Effect o f strong hloioing on conducting flow etc. 685

du* _ /  1+Aiy
d?/ \ A /

dH.---- •«' 1
dr/2 ^  d?/ ... (5)

The boundary conditions on H/p* are

-  0,
( f » )

i-\\ _
d 7/ -  r-fA

The above boundary conditions are obtained as follows The current density 
J lias only 0 component, so that the current in the annular channel is analogous to 
that in an infinite solenoid and may bo assumed to produce no field for Tf >  \. 
Thus the continuity of tangential component of magnetic field requires thatf/a:*(l) 
=  0. The remaining boundary condition is obtained by assuming that the walls 
of the cylinders are perfect conductors and hence the tangential component of the 
fOectric field Eg will be zero at the walls From

and using equation (5) we obtain 

df} (1) =  -J?^A/1+A (7)

Solving equation (6) for and then substituting it in equation (3) and inte­
grating we obtain an expression for P^—P. Since the expression for P q—P 
is complicated we have presented non-dimensional pressure profiles in figure (2).

Figui'O 2. Pi(HHure distribution across the channel.



From figure (2) we find that in the absence of magnetic field and 0 =5 0. the 
magnitude of the pressure is nearly 50 percent greater compared to Inger’s profiles 
This increase in pressure is entirely due to gravity and we note that as B increases 
there is considerable reduction in pressure. However, increase in transverse 
curvature parameter A, for a given angle of orientation, reduces the pressure 
slightly. We also note that there is a slight increase in pressure for a given M 
and different and similar trend is observed as M  and 'N are increased for a given 

The overall pressure-rise, in all these situations, is evenly distributed across 
the channel for all values of A.
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Velocity bistkibutiok

The expression for the axial velocity obtained by solving the momentum 
equation (2), using the boundary conditions (5), is

AJA Aa’/A ■
(1+A) - (1 + A )

(8)

and the axial shear stress at tlio inner cylinder is

\ d?; /„,=o V
A —e sin 0 ,x ,/xU --------Aj- A ,

S -------) ((1+A )“- (1 + A ) ‘ -  f\ ;:7 :7 w A -T .'( l+ A ) - (1 + A )  ■

(9)

, ,  ,whore Â  — -------- g------ 2
( A i <0 ,  A2<0 )  and .Sf =  4A=‘-2i2ft A -

We note that equation (8) reduces to the two-dimensional case in the limit
A—> 0 and it is in the form 

A —e sin 0

w’"x-+o =
{1+exp AJ

exp Aj—exp A2
{exp Ally—exp Agi/}—

A —e sin B
w

( l - 0 X p  X^Tf) . . .  (10)
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I) reduces to the Hydrodynamic result ofEquation (10) reduces to the Hydrodynamic result of Ingei’ (1969) in the limit 

Jlf~> 0 when  ̂=  0,

. . .  (11)

Some typical velocity profiles are presented in figures 3, 4 and 5 for zero axial 
pressure gradient. Wo find that the velocity profiles (figure 3) are similar in natui'e 
to the velocity profiles m the hydrodynamic case The combined effect of mag­
netic field and blowing for small values of the transverse curvature piirameter is 
to reduce the magnitude of the velocity and push the boundary layer towards 
the rigid boundaries. However, for large values of the transverse curvature 
parameter the combined effect of magnetic field and blowing is to increase the

Figgj’t) 3, 'J’ypical axial velocity profiles.

Figure 3b, Typical axial velocity profiles.
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Figure 4, 5, " r̂ypical axial velocity

magnitude of the velocity and flatlicn tlm velocity profiles. Figure 3a shows the 
offeet of largo values of magnetic field on the velo(hty distribution for a given value 
of Ki, It is observed that the velocity profiles are flattened and the boundary 
layer is pushed towards the rigid boundaries which is analogous to that of suction. 
Figure 3b shows the effect of large blowing on the velocity distribution. It is 
seen that in the presence of magnetic field the velocity profiles are flattened even 
in the case of large blowing w ĥich is duo to the fact that the magnetic field gene­
rates electric current which retards the flow Figure 4 shows the effect of angle 
of orientation on the ve.ocity distribution in the absence of blowing. Tt is ob­
served that increase in the angle of orientation increases the velocity, whereas, 
increase in magnetic field for a given angle of orientation reduces the velocity. 
In the case of adverse pressure gradient (figure 5) the solution exhibits the flow 
reversal foi* A — 0 under the action of strong blowing even in the presence of mag­
netic field. The critical value of A for sejiaration (dit*/dr/)„^o =  0 is obtained 
from equation (9) in the form

This is plotted in figure 6 and we observe that the effect of blowing is to de­
crease Asej,. We also observe that under very strong blowing conditions, flow 
leversal is caused by small adverse pressure gradients when 6? =  0. However, 
Abbp approaches asymptotically to a definite value when 0 <  0. For a given value 
of M ,  increase in A increases Agepi whereas, for a given value of A increase in M



reduces the value of Aec,j. Thus both transverse curvature and favourable pres­
sure gradient (A <  0) intensity the inner surface shear (dit*/d7/)„»o, while magnetic 
field and blowing tend to reduce it.
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iiigure o. Axiai prossure graaienc variation tor Ciiiorent values of A.

We now study the structure of the solutions (8) in the massive blowing limit 
^  1 for a given A. Appropriate to this limit equations (8) and (9) excluding 

the case A >  0(i2L<), can be written in the following approximate forms;

[exp ( -^ M o g  l ^ ) _ e x p  ( -^ 4 o g ( l+ A ) ) ]

^J2+A'^)(A~e sin 0) 2 i?H ^ 2 /A/ du* \

. du* \ I (A-esin^?) 1 Â  2 (l+AKA-esm
I dii / , - i “ L 21ib+M ÎA J A 2Ru+M'̂ IA

When M  =  0, we have 

/dtt*\ _ f i  , A (2 + ^ ]^ B 5__ A(l+A)
' dy I L 2Rb Jl-j-A iib

"

\ r, , (A-esin(9)(2+A) 1, f A ,̂ ,, , 2(A-esin0)

... (14) 

(15)

(10)

(17)



whore the terras of the order and higher are neglected. These relations (13) 
and (14), show that the wall shear and axial velocity over some distance from the 
stationary cylinder tend to vanish for large values of R t  and suggesting that the
shear layer becomes effectively blown off the surface. Further at the moving 
cylinder {i.e. tj — '[) the shear stress increases with increase in R t  and M  for a given 
A. We find, comparing with the hydrodynamic results, that the effect of magnetic 
field is to increase the shear stress in the inner shear layer A close examination 
of this asymptotic solution reveals that this solution possesses two-layered struc­
ture, whose nature depends on Rh and the axial pressure gradient

We can identify an outer solution m each of these equations (13) and (24), 
which is valid in the entire flow region except for small thin region near the moving 
surface, since the first term on the right side of these equations is exponentially 
small for sufficintly large values of R i  and M  When A — 0 and d =  0 this outer 
solution for u* is exponentially small and all of its derivatives vanish to any al- 
gebrie order in Rb and M .  However, if A 0 or 6̂ >  0 the outer solution becomes 
a constant shear motion which depends algebraically on the blowing rate and the 
raagiKdio field This type of motion is qualitatively similar to MHD laminai 
flows under the action of large injection, in a uniformly porous ohamiol and between 
porous dish'S studied by Shrestha (1967), Rudaiah & Chandrasekhara (1969) 
The imior solution which is valid in the thin region near the moving surface is 
obtained by introducing an inner variable s: — (Aj/A) log (1+ A )/(l-f  A?/) into 
equation (13) and it takes the form

ft90 B. C. Chandrasekhara, S. B. Lalsangi and N. Rudraiah

(2+A)(A-(^sin d)272bH-ilf2/A (18)

where z{t} — 1) =  0, z{i) — 0) — oo. This inner solution has a completely algebraic 
dependence on Rb and M  for all values of A and is independent of A in the leading 
asymptotic expansion Tn fact equation (18) is the complete asymptotic massive 
blowing solution throughout the flow region when A =  0 and 0 =  0, for the leading 
term satisfies both the bounday conditions u*{z =  0) =  1 and u*{z =  oo) =  0 
When A 0 or 0 >  0 this is no longer true and the full solution now consists of 
the inner solution (18) properly matched to the constant shear outer solution 
Those conclusions are qualitatively illustrated in figures 7(a) and 7(&).

E n e r g y  E q u a t io n

Since the expression for enthalpy is complicated we have not given the ex­
pression however it is numerically evaluated and some typical non-dimensional 
enthalpy profiles are presented in figure (8). These profiles, in general, are similar 
in shape and physicjal trends to the velocity profiles We find that increase in 
A increases the heat transfer while increase in Rb reduces the heat transfer. We



also note that the effect of increase in M  and 0 is to reduce the heat transfer while 
other parameters remain constant
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Figure 8. Total enthalpy profilew.

Con clusions

In the present analysis we have eonsidei'od an idealized simple model of MHD 
Couette-Hartmann shear flow to investigate the effect of massive blowing in the 
presence of a radial variable magne - ic field for different orientations of the physi- 
ral model. This model in fact exhibits all the physical characteristics associated 
with injection of fluid to the boundary layer flows In addition to the above 
characteristics some of the important features like the existcfnce of two-layered 
structure of the solution are also identified in the massive blowing regime. In



the masBive blowing regime the Bolution exhibits a singular behaviour when the 
axial pressure gradient is zero and d =  0 and the inner solution alone is a complete 
solution. However, when A ^  0 and 0 >  0 the complete solution consists of a 
constant shear outer region which depends on and J f , properly matched to an 
inner solution which is associated with a thin region near the moving surface. 
The overall effect of the magnetic field and the inclination 6 is to push the point 
of maximum velocity gradient towards the stationary disk, to increase the pressme 
and to reduce the heat transfer at the walls. Thus our results are of some use in 
the transpiration cooling devices which are commonly used in the space research 
problems. Wo also conclude that since the gravity and the magnetic field in- 
creases the pressure, results are of some help in the design of MHD porous slider 
bearing in the sense that the radial injection of the fluid, the gravity and the 
magnetic field increase the lubrication effect by effectively pumping the fluid 
between the bearing surfaces.

A okn  ow leid g em en t
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