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The effoct of strong blowing on a conduoting flow between a sliding
und a stationary cylinder is oxamined in the prosence of a variable
radial magnetic field and variable injection velocities. Closed-form
solutions ere obtained for the problem including hoeat transfer, gravity

and both axisl and radial prossure gradients

In the massive blowing

regime the asymplotic solution possessos two-layered structure whose
nature depends on oriontation of the system and the axial pressure
gradient. Tho results of the analysis show that the shear layer blow
off from the blown surface occurs for large values of injeclion Reynolds

number and Hartmann number

NOMENCLATURE

magnetic mduction veotor
variable magnetic induction

B* non dimensional referencoe magne-

tic induction
eloctrie field vector
azimuthal component of electric
field
Troude number, vat/gh
nondimensional enthalpy, (H—Hy)/
(H u—Ht)
maguetic field veotor

H,* induced. magnetic field in the axial

direotion
gap between the two cylinders
thermal conductivity
owrrent density veotor
Hartmann number,
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square of the ratio of voloeities,
U¥v?y

nondimensional pressure, Pq/pv?y

pressuie

atmospheric pressure

Prandt] number, v/K

Roynolds number hased on sliding
velooity, Uhjy

injection Reynolds number, vyh/v

magnetic Reynolds number, uoUhb

radial coordinato

radius of the outer cylinder

radius of the inner cylinder

sliding velocity

injection velocity at the inmer
cylinder

injection velocity at the outer
oylinder
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w* nondimensional sliding velocity, o oleotrical conductivity of the fluig
u|U 7 nondimensional radial coordinate,
v,* nondimensional injection velooity, (r—r3)/(To—71)
V[vy A transverse curvature paramoter, hir
V. velocity veotor A nondimensional axial pressure gra.
2z  inner variable . h2dp|dx
p  density of the fluid dient, paramoter, —“;_115/[’/'-5

£

v kinematic visoosity nondimensional parameter, R/NF

1y absolute viscosity of the fluid 6  inclination of the system with {he
¢ magnotic permoability horizontal
INTRODUCTION

The study of the effect of strong blowing on flow fields is of considerable interest
in aerodynamics and has been examined by a number of investigators (White
et al 1958, Yuan & Finkelstein 1956, Terrill 1955, 1964, Rasmussen 1970). Speci-
fically, the strong blowing of mass into the boundary layer has long been consi-
dered as & possible means of protection of the nosos of reentry vehicles from high
heat fluxcs(Barber 1965). Tn rocont year the mags addition has also taken many
forms includmg transpiration cooling, mass transfer cooling and film cooling
Thesoe threc models have been reviewed by Rudraiah (1966). An experimontal
investigation of fluid injoction at the stagnation point has been made by Barber
and this has shown that there exists three regimes of flow interaotion na:]';ely,
boundary-layer regime, viscous regime and shock regime Similar studies, dos-
cribing some of the major physical features involved n the interaction of blowing
with a shear layer, have been previously made, considering simplified flow model
like Couetto-Poiseuille shear flows (Cramer 1959, Inman 1959, Lilley 1959, Art-
zukh & Kashkarov 1966). Recently Inger (1969) has re-examined the above
problem including the presence of heat transfer and both axial and radial pressure
gradionts. In particular, he has emphasized the behaviour of the solution in the
strong blowing regime He finds that shear layer blow-off from the blown surface
ocours for sufficiently strong injection and the flow in this asymptotio regime has
two-layered structure, whose basic character depends critically on whether or
not an axial pressure graident is presont. In magnetohydrodynamics tho effect
of strong belowing on conducting flows has been investigated by Shrestha (1967),
Rudraiah & Chandrasckhara (1969) for different physical situations and different
geometrical configurations. These investigations pertain to the study of the ef-
foct of injection on the boundary layer. The strong blowing of a conducting
fluid into space-craft body in the presence of a solar magnetic field, is of partioular
interest in the space research problems. In laboratory this problem is also of
partioular interost in the design of MHD slider bearing system. These problems
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are mn:bhems,ti?a,lly oompliéamd. m realistic flow configurations Tn such cir-
cumsta.mfes, 8 sm\y‘s]e ﬂov?' model i ideal to understand some of the major physical
foatures involved in the interaction of blowing with & conducting shear layer and
magnotic field. An ideal model for this purpose is the well-known Couvstte-
Hartmenn shear flow since the solution of this problem can be expressed in closed
form and it possesses a qualitative similarily to Hatmann boundary layer type
of flows including the total pressure (i.e , the sum of the hydrostatic and magnetic
prossure) gradient cffects. This problem with inertia and viscous effects and with
strong blowing has not been given much attention in magnetohydrodynamios.
Thorefore, the aim of the present discussion is to study the interaction of strong
blowing on the forced convective flow of conducting fluid, between a sliding
and a stationary cylinder, oriented at differont angles to the horizontal. The
resulis of this analysis emphasize the hohaviour of the solution in the strong blow-

mg regimo and the solution is obtained in the unificd form applicable to hoth
{wo-dimensional and axi-symmotric flows

FORMULATION OF THE PROBLEM

A uniform incompressible conducting flmd of density p, viscosity ur and
cleotrical conductivity o flows through an annular channel formed by two infinitely
long porous concentric cylinders of radii ry and 7. Tho outer cylinder 7, slidos
with an uniform axial velocity u = U relative to the stationary inner cylinder.
The fluid is injected radially with uniform velocity v through tho inner cylinder
and due to the conservation of mass, the fluid also flows outward through the slid-
mg eylinder with some radial velooity ve. An external variable magnotic field of
tho form By = A/r 16 applied in the radial direction (figure 1) (The generation of
such a magnetic field in the laboratory has been suggosted by Globe 1959). The
flow is axisymmetric and we are considermg the variable injection velooty (i.e.,
» = ¢/r) in the radial durection, the oquations of continuity of fiuid and magnetic
field A.V = 0 = A.B show that all the physical quantities of the flow are functions
of 7 only savo for pressure which mey have an arbitrary constant axial pressure
gradient

Defining the normalized distance y = (r—74)/(ro—7¢) and & transversecurva-
ture parameter A = h/r; such that (r/r;) = 1+A7, the axi-symrmetric three dimen-

Inner cylindar

(shiding)

W

Figure 1. Physical model.
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sional problom reduces 1o two-dimentional case in the litnit A0 The goVerning
equations of motion, introducing the dimensionless velocity, pressure, magnetic
field and enthalpy variables

w_ ¥ * . U P
W g oy P
p_ B HoHy  f v

. g= "t
Ak Hy—H;’

mio the Navier-Stokes equations and the energy equation are

A+Agw* =1, ()
By ‘(11'2,* = ‘dilq—{(l+7t7l) E}%}—(A—e sm 0)(1 +Ay) — {jﬁ% v (@)
i 30— oo 3 =P )

2,2 Py cosl | v,2P M2N2u*? 1
+—HFH; . 7—-+_)\T(I_I‘,——W(1+M]) o (4)

The boundary conditions are
u¥(0) = g(0) =0, w(1) =g(1) =1
v (0) =1, v¥(1) = 1/1+A
and these give P(1) = Py/pv?,

The momentum oquation (3) has purely an inviscid character even in the
presence of magnetic field and gravitational force because of the nature of the
injection velocity v* = 1/14+A7. Since wo are dealing with practically forced
eonveetion problem, where the velocities involved are not small, we have ineluded
the ohmic and viscous dissipation effeots in the energy equation (4). In the
hydrodynamic case of Tnger (1969), dissipation of energy is mainly because of the
radial shear stress and the normal pressure However, in the present magneto-
hydrodynainic case in addition to these dissipations we have ohmio dissipation.
In the absence of blowing and transvorse curvature, dissipation term erises
entirely due to ohmioc heating in equation (4)

PRESSURE DISTRIBUTION

Examining equation (3) we find that the radial pressure change is brought
about due to induced and applied magnetic fields, gravity and the momentum
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change associated W?th the turning of the injected fluid. Since the induoed
magnetic field term, is involved in equation (3), we should caloulate the indwoed
magnotio field H* before integrating equation (3). The oquation for Ho*, is

obtained from the magnetio induction equation under the assumption of small
Rm, in the form

du* <1+M >d‘H *  QH*
—Ry o= tot o GfigT x
™ X e + ET e (D)
The boundary conditions on Hz* are

H*1) =0, dg.;* )= — BEmd - (0)

The above boundary conditions are obtained as follows The eurrent density

J has only 6 coraponent, 8o that the current in the annular channel is analogous to

that in an infinite solenoid and may be assumed to produce no field for 4 > 1.

Thus the continuity of tangential component of magnetic field requires thatFHz*(1)

= 0. The remaining boundary condition is obtained by assuring that the walls

of the cylinders are perfoct conductors and hence the tangential component of the
electric field B, will be zero at tho walls From

J=0a(B+pVxXH)==yxH
and using equation (5) we obtain
*
d{;{}- (1) = —BpnA/14+2 o (7

Solving equation (6) for H,* and then substituting it in equation (3) and inte-
graling we obtain an expression for P,—P. Since the expression for Py—P
is complicated we have presented non-dimensional prossure profiles in figure (2).

M:6, Rz05, N:05, F LeAel, Rel
Rh=|0' 8:=0 -
Rp=5s 0:0524 ————
R=S5) O=) 0l —»

Ae2
10
0

Figare 2. Picssure distribution across the channel.
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From figure (2) we find that in the absence of magnetic field and € = 0. the
magnitudoe of the pressure is nearly 50 peroent greater compared to Inger’s profiles
This increasc in pressure 18 entirely due to gravity and we note that as 6 increases
there is considerable reduction in pressure. However, increase in transverse
curvature parameter A, for a given angle of orientation, reduces the pressure
slightly. We also note that there is a slight inorease in pressure for & given M
and different Ry and similar trend is observed as M and N are increased for a given
Rp. The overall pressure-rise, in all these situations, is cvenly distributed across
the channel for all values of A.

VELOCITY DISTRIBUTION
The expression for the axial velocity w*, obtained by solving the momentum

equation (2), using the boundary conditions (5), is

1_(47{;}[@ ){(] -|-/\)2—-(]+A)AZM }
¥ = - - - C - 142 )AIM—(]—I—A )"B/" +
= A AR {( +27 vl
I+2)  —(1+2)

+ (A0 Lo e - ®

and the axinl shear stress at the inner oylinder is

(%’i)mz _ (A;;“M) {(1-1-,\)2_(14—/\)‘2/*}{ — -n%':lz'“ﬂ}

+ ,_f_\—_fg‘i“_‘ﬁ, (2A—2y), e (9)
2 2\¢ —(R2--4 M2
where A, = ,Bl’"ﬂ;”ziiM ) , A= _lﬁ_(Rb_Z"_/),,

(M <0, A, <0) and & =4A2—2R, A—M*

We note that equation (8) reduces to the two-dimensional case in the limit
A= 0 and it is in the form

e
14 2R (L texp Ay}

oXp A, —OXp Agn}—
oxp A,—oxp A {exp A;7—exp Ay}

Uy =

A—jk;zﬂﬂ (1—exp A7) e (10)
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Equetien (10) reduces to the Hydrodynamio result of Inger (1969) in the limit
M~»0 when 0 =0,

ie. “**—"’:{1"'_1;\7}{?;‘%%1“}‘ _‘};;'- . (L)

Some typical velocity profiles are presented in figures 3, 4 and 5 for zero axial
pressure gradient. Wo find that the volooity profiles (figuro 3) are similar in nature
to the velocity profiles in the hydrodynamic case The combined effeot of mag-
netic field and blowing for small values of the transverse curvaturo parameter is
to reduce the magnitude of the velucity and push the boundury layer towards
the rigid boundaries. However, for large values of the transverse curvature
parameter the combined effect of magnetio field and blowing is to increase the

Euly AuD, 830"

Figare 3, Typeal axial volocity profiles.
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YFigure 9s, 3b, Typical axml velooity profiles.
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IMigure 4, 5, Typical axial volocity profiles

magnitude of the volocity and flatten the veloeity profiles.  Figure 3a shows the
offect of large valuos of magnotic field on the velocity distribution for a given value
of B, 1t is observed that the veloety profiles are flattened and the houndary
layer is pushed towards the rigid boundaries which is analogous to that of suction.
Figure 3b shows the effoct of large blowing on the velocity distribution. 1t is
seen that in the presence of magnotic fiold the velocity profiles are flattened even
in the case of large blowing wlich is due to the fact that the magnetic ficld gene-
rates electric current which retards the flow  Figure 4 shows the coffeet of angho
of orientation on the ve.ocity distribution in the absence of blowing. Tt is ob-
served that increase in the angle of orientation incroasecs the velocity, whereas,
increase in magnetic field for a given angle of orientation reduces the velooity.
Tn the case of adverse prossure gradient (figure 5) the solution exhibits the flow
reversal for A = 0 under the action of strong blowing even in the presence of mag-
netic field. The oritical value of A for separation (du*/dp),—, = 0 is obtlained
from equation (9) in the form

({‘1;1‘1 S+esind | [ 1+27—0 T “} (’llfﬁﬂ)
= (3= {e 0™ =0t oy

{atar—aa P Pte_ (3 o) {q ™ o

A =

This is plotted in figure 6 and we observe that the effect of blowing is to de-
orease Ay, We also obsorve that under very strong blowing conditions, flow
veversal is caused by small adverse pressure gradients when 0 = 0. However,
A,.p approaches asymptotiocally to a definite value when 6 < 0. For a given value
of M, increase m A inoreases A,,; whereas, for & given value of A increase in M/
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reduces the value of Age,,-  Thus both transverse curvature and favourable pres-

suro gradient (A < 0) intensity the inner surfaco shear (du*/d),q, While magnetio
field and blowing tend to reduoe it.

Asep

Rp
Figure 8. Axial prossure gradient variation for difforent values of A.

Wo now study the struocture of the solutions (8) in the massive blowing limit
Ry > 1for a given A. Appropriate to this limit equations (8) and (9) excluding

the oagse A 5 O(R,), oan be written in the following approximate forms;

LTt L[ O S SRR EY)

_ 7](2—}-_1\'4)(Av-_e sin 6)

SRy M - (18)

du* — (A—esin 0)(24A) N _2(A—esin6)

(Ti'q‘),,,o’[ SR Jhexp { - Fros 040} oRet A"

(14)

(du*) ~[ (A—esin 0) ] A 2014 2)(A—esin 0) . (15)
Ay g1 SRp+MEA | A 3R+ MR’

When M = 0, we have

du* | _ @+2A ~ B ga4n)-—A, . (18

(‘aﬂ-),,-.,—[}"”“”z- Joxp(— £ 1og142) - (18)

du* AR+A) | Bo _ AQHA) w (7

(717),,.1""[” —23.,‘]1+,1 . un

7 -
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wheore the terms of the ordor A/Ry? and higher are neglected. These relations (13)
and (14), show that the wall shear and axial velocily over some distance from the
stationary oylinder tend to vanish for large values of Ry and M, suggesting thet the
shear layer becomes effectively blown off the surface. Further at the moving
oylinder (i.e. y = 1) the shear stress increases with increase in Rp and M for a given
A.  We find, comparing with the hydrodynamic results, that the effect of magnetic
field is to increasc the shear stress in tho inner shear layer A close examination
of this asymptotic solution roveals that this solution possesses two-layered strue-
ture. whose naturo depends on Rp snd the axial pressure gradient,

Wo can idontify an outer solition m each of these oquations (13) and (24),
which is valid in the entiro flow region oxcopt for small thin region near the moving
surface, since the first term on the right side of these equations is oxponentially
small for suffiointly large values of Ry and ¥ When A = 0 and 6 = 0 this outer
solution for u* is exponentially small and all of its derivatives vanish to any al-
gobric order m Ry and M. However, if A # 0 or 6 > 0 the outor solution becomos
a constant shear motion which depends algebraically on the blowing rate and the
magnetic field This type of motion 1s qualitatively similar to MHD laminas
flows under the action of large wjoction, in a wmformly porous chamnel and between
porous disks studiod by Shrestha (1967), Rudaah & Chandrasckhara (1969)
The mner solution which is valid in the thin rogion near the moving surface is
obtained by introducing an inner variable z — (A,/A) log (14+2)/(1+2y) into
oquation (13) and it takes tho form

u"':e-’+(—2l;¥£€_-;;?;;'ﬁ’ {e—z—l }+0(A1—2) . .. (18)
wherez(n =1) = 0,2(5 = 0) = co. This inner solution has a completely algebraic
dependenco on Ry and M for all values of A and. is independent of A in the leading
asymptotic expansion Tn fact equation (18) is the complele asymptotic massive
blowing solution throughout the flow region when A = 0 and @ = 0, for tho leading
term satisfios both the bounday conditions »*(z =0) =1 and u*(z = c0) =0
Whon A < 0 or 8 > 0 this is no longer true and the full solution now consists of
the inner solution (18) properly matched to tho constant shear outer solution
These conclusions are qualitativoly illustrated in figures 7(a) and 7(b).

ENERGY EQUATION

Simoe the oxpression for enthalpy is complicated we have not given the ex-
pression however it 18 numerically evaluated and some typical non-dimensional
enthalpy profiles are presented in figure (8). These profiles, in general, are similar
in shape and physical trends to the velocity profiles We find that inorease in
2 increases the heat transfer while increase in Ry reduoces the heat transfer. We
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also note that the effect of increase in M and 6 is to reduco the heat transfer while
other parameters rernain constant

*

u »
' A0, 8:0 v
Av1.0>0
Inner and complete
solution
Complete saution
1
Outer solution Outer solution slope
AN ) znb.M’/x
! ™ =y
Figwe 7). 7h)  Schematie of asymplotic massivee blowimg solutaon,
[RRSNTY

0.4

02

50N, 0260 Z
22
&

Figurce 8.

CONOLUSIONS

Total cnthalpy profiles.

In the present analysis we have vonsidered an idealized simple model of MHD
Couette-Hartmann shear flow to invostigate the offect of massive blowing in the
presence of a radial variable magncic ficld for different orientations of the physi-
cal model. This model in fact exhibits all the physical characteristics associated
with injection of fluid to the boundary layer flows
characteristios some of the important foatures like the existence of two-layered
structure of the solution are also identified in the massive blowing regime. In

Tn addition to the above
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the massive blowing regime the solution exhibits a singular behaviour when the
axial pressure gradient is zero and 6 = 0 and the inner solution elone is a complete
solution. However, when A < 0 and 6 > 0 the complete solution consists of g
oconstant shoar outer region which depends on Rp and M, properly matched to an
innor solution which is associated with a thin region near the moving surface,
The overall effect of the magnetic field and the inclination 6 is to push the point
of maximum velocity gradient towards the stationary disk, to inorease the pressuie
and to reduce tho heat transfer at the walls. Thus our results are of some use in
the transpiration cooling devioes which are commonly used in the space research
probloms. Wo also conclude that since the gravity and the magnetio ficld in-
creasos tho pressure, rosults are of some help in the design of MHD porous slider
bearing in the senso that the radial injection of the fluid, the gravity and the
magnetio field increase the lubrication effect by effectively pumping the fluid
between the bearing surfaces.
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