Absorption and dispersion of ultrasonic waves
 in organic liquids
 A V ' Naraslmham and B Manikiant
 Department of Physucs, Indian Institute of Thechonology, Madras, India.

(Received 18 Wrach 1972)

Abstract

Absorption and dispersion of ultrasonic waves in organc hquads are intimately connected with the complex and frequency dependent bulk viscosity coefficient of the liquid, the real part accounting for absorption while the imaginary part for dispersion Earher relations for the two components of the bulk viscosity are connected through an equation of a circle It is, however, found from existing experimental data that these relations are not strictly valid and some corrections are to be made to these equations in terms of a parameter the value of which varies between 0 and 1 Values of this parameter are calculated in the case of some liquids at various temperatures Relations connecting the modilied expressions for the bulk viscosity are also worked out. Relaxation time nasociated with the bulk viscosity is evaluated.

1. Introduotion

It is well known that a liquid possesses 1 wo viscositites. one is the bulk (or volume) uscosity, desugnated by η, and the other is the more familiar shear viscosity, η. These properties appear in the equations of hydrodynamics and the bulk viseosity, analogous to the bulk modulus of a solid, is defined as $\eta_{d}+\frac{8}{8} \eta_{s}$, where $1 / d$ is the coeflicient of dilatational viscosity. The absorption and dispersion of an ultrasonic wave in a liquid is attributed to a large extent to this liquid property, which is represented as complex, ie., $\eta_{v^{*}}=\eta_{1}-i \eta_{2} \quad \eta_{\mathrm{J}}$ is responsible for the absorption of the wave while η_{2} accounts for its dispersion and both are fre-quency-dependent One of the authors (Narasimham 1969) has earlier derived expressions, using step function response of a system to an applied sinusoidal fored, for the two components of the bulk viscosity, which are related to each other through a Fourier transformation and can be expressed as

$$
\begin{equation*}
\eta_{1}(\omega)-\eta_{1}\left(\alpha_{1}\right) \cdots\left[\eta_{1}(0)-\eta_{1}(\infty) \left\lvert\,-\frac{1}{1+\omega^{2} \tau^{2}}\right.\right. \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{2}(\omega)=\left[\eta_{1}(0)-\eta_{1}(\infty)\right] \cdots \frac{\omega \tau}{1+\omega^{2} \tau^{2}} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\eta_{\eta^{*}}{ }^{*}-\eta_{1}(\infty)=\left|\eta_{1}(0)-\eta_{1}(\infty)\right| \frac{1}{1+i \omega \tau} \tag{3}
\end{equation*}
$$

where ω is the frequency of the wave, $\eta_{1}(0)$ and $\eta_{1}(\infty)$ are the values ol the in-phase emponent of the bulk viscosily at $\omega \rightarrow 0$ and $\omega \rightarrow \infty$. respectively, and τ is the relaxation time associated with one of the dilatational processos. It is the purpose of this paper to see how far these equations can represent experimental values and also to study whether any suitable modifications can be made to the above equatoms to represent experimental date as correctly as possible

2 'Theory

Hquations (1) und (2) can also be represented liy a smgle cquation an

$$
\begin{equation*}
\left|\eta_{1}(\omega)-a\right|^{2}-+\left|\eta_{2}(\omega)\right|^{2}-\quad b= \tag{4}
\end{equation*}
$$

wher

$$
\begin{equation*}
"-y_{1}(0)+y_{1}\left(\sigma_{3}\right) ; b \ldots y_{1}(\theta)-y_{1}\left(\omega_{1}\right) . \tag{5}
\end{equation*}
$$

if, the locens of the poont $\left(1 / 1, t_{2}\right)$ is a semicirele. as the frequeney of the wave is varled from 0 to ∞ This variation is represented in figure 1, ploting η_{1} on the real axis and y_{2} on the imaginary axis, in the complex plame. Here, $O A=O B$

- OC - - b . . raduus of the circle $\mathrm{OO}^{\prime}-\mathrm{Z} \boldsymbol{a}$ However, this appears to be only an extreme case and in many liquids the observed variation of η_{1} and η_{2}, as ω changes betweon 0 and ∞, deviates from this semicircular plot (such variation of abeorption and dispersion is also observed in dielectrics; Cole \& Cole 1951). The extont of the curve of η_{1} against η_{2} as ω changes from 0 to ∞ is found to he less than a semicircle, while it still appears to be part of a circle These curves are drawn for some liquids at varying temperatures (figures 3 to 7 are some representative curves) In all the censes the whole curve (i.e., $\omega \rightarrow 0$ to ∞) is less than a semicircle. (It cannot be more, since η_{1} always deoreases with ω while η_{2} increases and then decreases with ω and η_{1} and η_{2} are always positive). Values of η_{1} and η_{2} are calculated using the following relations (Herzfeld \& Iitovitz 1959) for ultrasonic absorption and dispersion.

$$
\begin{align*}
& \frac{\gamma_{\text {exceso }}}{\omega^{2}}=\frac{\eta_{1}(\omega)}{2 \rho \ddot{V}_{0}^{3}}=\frac{A}{1+\left(\frac{\omega}{\omega_{c}}\right.} \tag{6}\\
& \omega \eta_{2}=2 \rho V_{0}\left(V-V_{0}\right) \tag{7}
\end{align*}
$$

and
where V is the wave velocity at any frequency ω, V_{0} is that at vory low frequencies, γ excess is the excoss absorption (i.e, $\gamma_{\text {ercess }} / \omega^{2}$) at low frequencies, ρ is the density of the liquid and ω_{r} is the frequency at which absorption per wavelength is maxi-,

TIG.3. $\eta_{1} \cdot \eta_{2}$ CURVE FOR n - PROPVL ALCOHO. AT TEMPERATURE - $100^{\circ} \mathrm{C}$

FIG. 4. $\begin{aligned} & \eta_{1} \\ & \eta_{2} \text { CURVE FOR } n \text {-PROPVL ALCOHOL AT }\end{aligned}$ TEMPERATURE - $130^{\circ} \mathrm{C}$

FIG-6. $\eta_{1}-\eta_{p}$ CURVE FOR n PROPYL ALCOHOL AT TEMP $\quad 120^{\circ} \mathrm{C}$

Figure 2 is a representation of the experimental variation of η_{1} against η_{2}. D is any point on the curve and its coordinates are $\eta_{1}(\omega)$ and $\eta_{2}(\omega)$. Since the length of the curve is less than that of a semicircle, $\eta_{1}(0)-\eta_{1}(\infty)<$ diameter of the oircle, centre 0 of the circle lies below the $\eta_{1}(\omega)$-axis, $\angle \mathrm{ADC}>\pi / 2$, $\angle \mathrm{CDE}<\pi / 2$ and let $\angle \mathrm{CDE}=(\pi / 2)(1-\alpha)$, where α can vary betweon 0 and 1 .

Since $O A=O D=O C, \angle O A D=\angle O D A, \angle O D C=\angle O C D$ and $\angle A D C$ $=\pi / 2(1+\alpha)=\angle \mathrm{OAD}+\angle \mathrm{OCD}$, therefore $\pi / 2(1-\alpha)=\pi-\angle \mathrm{ADC}=\pi-(\angle \mathrm{ADO}$ $+\angle \mathrm{ODC})=\pi-(\angle \mathrm{OAD}+\angle \mathrm{OCD})=\pi-(\angle \mathrm{OAC}+\angle \mathrm{OCA})-(\angle \mathrm{CAD}+\angle \mathrm{ACD})$ $\because \angle \mathrm{AOC}-\angle \mathrm{CDE}$, hence $\angle \mathrm{AOC}=\pi(1-\alpha)$ and $\angle \mathrm{OAC}=\angle \mathrm{OCA}=\alpha \pi / 2$.
Since $\angle A O C$ is independent of the position of D on the curve and difierent positions of D correspond to different frequencies, α is independent of ω and is a constant of the liquid at any temperature. For the ideal case (figure 1), $\alpha=0$.

Since $\angle D W C=\pi / 2$, from figure 2 , we get

$$
\begin{align*}
& \mathrm{DD}=\eta_{1}(\omega)-\eta_{1}(\infty)-i \eta_{2}(\omega)-\eta_{v^{*}}^{*}-\eta_{1}(\infty) \tag{8}\\
& \mathrm{DC}-\eta_{1}(0)-\eta_{1}(\omega)+i \eta_{2}(\omega)-\eta_{1}(0)-\eta_{v} * \tag{9}\\
& \overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{AC}}=\eta_{1}(0)-\eta_{1}(\infty) \tag{10}
\end{align*}
$$

If equations (1) to (4) are true, we got from equations (8) and (10),

$$
\begin{equation*}
\Delta D=\frac{\eta_{1}(0)-\eta_{1}(\infty)}{1+i \omega 7} \quad \frac{A C}{1+i \omega \tau} \tag{11}
\end{equation*}
$$

However, since the experimental curve is not a somicircle, equation (11) is not true.

Now, $\quad \mathrm{DC}=\mathrm{DE}+i(\mathrm{EC})$, since $\angle \mathrm{DEC}=\pi / 2$
Therefore $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DC}}=\mathrm{AD}+\mathrm{DC} \cos \left(\frac{\pi(1-\alpha)}{2}\right)$

$$
\begin{align*}
& \quad+i \mathrm{DC} \sin \left(\frac{\pi(1-\alpha)}{2}\right) \\
& =\mathrm{AD}+\mathrm{DC} \exp \cdot\left[\frac{i \pi(1-\alpha)}{2}\right] \\
& =\mathrm{AD}+\mathrm{DC} \cdot i^{1^{-4}}=\mathrm{AD}\left[1+\left|\frac{\mathrm{DC}}{\mathbf{A D}}\right| \cdot \imath^{1-\alpha}\right] . \tag{12}
\end{align*}
$$

since $\exp (i \pi / 2)=i$
Hence

$$
\begin{equation*}
\mathrm{AD}=\mathrm{AC} /\left[1+: \left.\frac{\mathrm{DC}}{\overline{\mathrm{AD}}} \right\rvert\, \cdot i^{1-\alpha}\right]: \tag{13}
\end{equation*}
$$

For the ideal case (figure 1) $\alpha=0$ and according to equations (1) to (5) and (8) to (11), $\mathrm{DC} / \mathrm{AD}-\omega \tau$. However, according to ligure $2 \mathrm{DC} / \mathrm{AD} \neq \omega \boldsymbol{\omega}$ since equation (4) is not valid, but it is still a function of frequency. The factor $i \omega$ in equation (3) and other equations is a result of the wave equation; the ultrasonic pressure or the velocity and velocity gradıent of the particles are proportional to $\operatorname{sxp}(i \omega t)$ and in the various operations that precede the derivation of equations (I) to (4), 1ω occurs as a single unit, and α may be considered as a correction to (cquations (3) or (11) to represent the experumental data correctly. Hence DC/AD may be proportional to ω^{1-x} and smee equations (11) and (13) are same dimensionally, it can lo arbitratily fixed that $\mathrm{DC} / \mathrm{AD}=(\omega \tau)^{1-\alpha} \quad$ Thus equations (3) and (11) have to be eorreeted as (rlue to deviation of experment from (1) and (2))

$$
1_{1} 0^{*-\eta_{1}(\infty)}=\frac{\left|\eta_{1}(0)-\eta_{1}(\infty)\right|}{1-1-(i \omega \tau)^{1-\alpha}}
$$

Putting

$$
\begin{align*}
i^{1-\alpha}= & \operatorname{cosp} \frac{i \pi(1-\alpha)}{9} \\
- & \cos \frac{\pi(1-\alpha)}{2}+i \sin \frac{\pi(1-\alpha)}{2} \\
& \sin \frac{\alpha \pi}{9}+i \cos \frac{\alpha \pi}{9} \tag{15}
\end{align*}
$$

and rationalizing we get

$$
\begin{equation*}
\left.\eta_{1}(\omega)-\eta_{1}(\infty)=\frac{\left.\mid \eta_{1}(0)-\eta_{1}(\infty)\right] \mid 1+(\omega \tau)^{1} \alpha \sin }{\left.1+2(\omega \tau)^{1 \cdot \alpha} \sin \alpha \pi / 2\right]} \alpha \pi \right\rvert\,(\omega \tau)^{2(1-\alpha)} \frac{\alpha \pi}{1(1)} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{2}(\omega)=\frac{\left[\eta_{1}(0)-\eta_{1}(\infty)\right](\omega \tau)^{1-\alpha} \cos \alpha \pi / 2}{1+2(\omega \tau)^{1-\alpha} \sin \alpha \pi / 2+\frac{2}{\left.(\omega \tau)^{2(1} \alpha\right)}} \tag{17}
\end{equation*}
$$

Thus the bulk viscosity of a liquid is represented better ly equations (16) and (17) rather than by equations (1) and (2) The former realuces to the latter for $x=0$.

Since $D C / A D-(\omega \tau)^{1-x}, I-\alpha$ is the slope of the graph of $\log _{10} D C / A D$ agamst $\log _{10} \omega$ and intercept on $\log _{10} \mathrm{DC} / \mathrm{AD}$ axis is $(1-\alpha) \log _{10} \tau$. However α can be determined from the geometry of figure 2 and τ can be calculated using values of DC, AD, ω and α

Aocording to equations (1) and (2), $1_{1}(\omega)-y_{1}(\infty)$ and $\eta_{2}(\omega)$ are conjugate to each other and are derived from the same function (Narasimbam 1969.)

$$
\begin{equation*}
\eta_{1}(\omega)-\eta_{1}(\infty)=\int^{\infty} G(t) \cos \omega t . \mathrm{d} t \tag{18}
\end{equation*}
$$

and $\quad \eta_{3}(\omega) \quad=\iint_{n} G(t) \sin \omega t \mathrm{~d} t$
where $\quad G^{\prime}(t) \quad=\left[\eta_{1}(0)-\eta_{1}(\infty)\right] \quad \underset{\tau}{\exp (\cdots t / \tau)}$

$$
\begin{align*}
& \frac{2}{\pi} \int_{e}^{\infty}\left[\eta_{1}(\omega)-\eta_{1}\left(\alpha_{x}\right) \mid \cos \omega t d \omega\right. \\
& \frac{1}{\pi} \int_{0}^{-} \eta_{2}(\omega) \sin \omega t d \omega \tag{20}
\end{align*}
$$

The conjugate relationslup, between $\eta_{1}(\omega)$ and $\eta_{2}(\omega)$ whech can bo derived tiom the same function, i.e., G(1) in equations (18), (19) and (20) can also be expressed as (l'rohheh 1958),

$$
\begin{align*}
\eta_{1}(\omega)-\eta_{1}(\infty) & =\frac{2}{\pi} \int_{0}^{\infty} \frac{y_{2}(f) f(\mathrm{l} f}{f^{2}-\omega^{2}} \tag{21}\\
\eta_{2}(\omega) & =-{ }_{\pi}^{2} \int_{0}^{\infty} \frac{\left\lfloor\eta_{1}(f)-\eta_{1}(\omega) \mid \omega \mathrm{d} \cdot\right.}{} f^{\prime}
\end{align*}
$$

Or, $\quad \eta_{1}(0)-\eta_{1}(\infty)=\frac{z}{\pi} \int_{0}^{-} \eta_{2}(\omega) \mathrm{d}(\log \omega)$
and

$$
\eta_{2}(0)-0
$$

Equations (21) and (22) are independent (Frohhch 1958) of the form of $y_{1}(\omega)$ $\eta_{1}(\omega)$ and $\eta_{2}(\omega)$, us Jong as equations (18) and (19) are obeyed. The modified expressions for $\eta_{l}(\omega)$ and $\eta_{2}(\omega)$, i.e., equations (16) and (17) are also conjugate relationships and obey the equations of Fourier transformations, i.e, it can be shown that

$$
\begin{equation*}
\underset{1-\alpha}{G(t)}=\frac{2}{\pi} \int_{0}^{\infty}\left[\eta_{1}(\omega)-\eta_{1}(\infty)\right] \cos \omega t d \omega=\frac{2}{\pi} \int_{0}^{\infty} \eta_{2}(\omega) \sin \omega t \mathrm{~d} \omega \tag{24}
\end{equation*}
$$

whare equations (16) and (17) are substituted for $\eta_{1}(\omega)$ and $\eta_{2}(\omega)$. Hence oquations (21) and (22) are obeyed by equations (16) and (17) also and it turns out that

$$
\begin{equation*}
\bar{\pi} \int_{0} \eta_{2}(\omega) \mathrm{d}(\log \omega)=\frac{\eta_{1}(0)-\eta_{1}(\infty)}{1-\alpha} \tag{25}
\end{equation*}
$$

where equation (17) is substituted for $y_{4}(\omega)$. Equations (24) and (25) may he compared with equations (20) and (23) The integral in equations (23) ant (25) ran be evaluated by ploting a graph between the experimental values of $\eta_{2}(\omega)$ and ω while $\eta_{2}(\omega)$ can be obtained from dispersion data, equation (7,. I'hus
the deviation of the oxporimental values of ultrasonic absorption and dispersoon from equations (1), (2), (6) and (7) results in a correction of the constant $y_{1}(0)-y_{1}(\infty)$ It may be noted that : (i) uccording to equations (1) and (2) the two components of the bulk viscosity of the medium react to the applied smusoidal force with a time lag of a quarter of wave period, while according to rquations (16) and (17) this time has to be multiplied by ($1--\alpha$), (ii) according to the former equations the tangent to the curve of $\eta_{1} v_{s} \eta_{2}$ at A or C (figure 1) 1s porpendicular to the hortzontal axis and the slope is infinite, while accordeng to the latter equations the tangont is not vertical (figure 2) and the slope is linte $=$ tan $\pi / 2(1-\alpha)$; (iii) uccording to both former and latter equations $\eta_{2}(\omega)$ is maximum at $\omega \boldsymbol{\omega}=1$ and its values are ${ }_{2}^{1}\left[\eta_{1}(0)-\eta_{1}(\infty)\right]$ and ${ }_{3}^{2}\left[\eta_{1}(0)-\eta_{1}(\infty)\right]$ Lan $\pi(1-\alpha) / 4$, respectively. However, according to equation (1), $\eta_{1}(\omega)-\eta_{1}(\infty)$ decreases steadily with ω, while it exhibits maxima or minima according to uquation (16) It is found that the derivative of $\eta_{1}(\omega)-\eta_{1}(\infty)$, equation (16), is zoro when $(\omega \tau)^{1-\alpha}=-\cot \alpha \pi / 2$ and $-\tan \alpha \pi / 2 \quad$ The values of $\eta_{1}(\omega)-\eta_{1}(\infty)$ correspondng to these values of $\omega \tau$ are

$$
\begin{gathered}
\Rightarrow \frac{1}{2}\left[\eta_{1}(0)-\eta_{1}(\infty)\right] \tan { }_{2}^{\alpha \pi} \sin { }_{2}^{\alpha \pi} \\
1+\cos \alpha \pi / 2
\end{gathered}
$$

The negative values of $(\omega \tau)^{1 \alpha}$ can be understood if $(\omega \tau)^{1 \alpha}$ is written as $(\omega \tau)^{1} 1^{1}-\alpha$ and the negative value of the square root may be considered; (iv) The dispersion ${ }^{\circ}$ of the ultrasonic wave, proportional to $l^{\prime}-I_{0}$, equation (7), reaches a maximum value, aceordung to equations (2) and (7), as $\omega \rightarrow \infty$, However, according to equations (7) and (17) this maximum occurs at finite values of ω, depending upon the constant α.

According to equations (1) and (2) the relaxation time can be expressed as

$$
\begin{equation*}
(\omega \tau)=-\overline{\eta_{1}(\omega)-\eta_{1}(\omega)} \tag{26}
\end{equation*}
$$

where $\eta_{1}(\omega)$ and $\eta_{2}(\omega)$ are given accurding to equations ($\left.\mathbf{j}\right)$ and (7). Smec the absorption which depends upon $\eta_{1}(\omega)$ decreasos with ω, il can be assumed that $\eta_{1}\left(\alpha_{-}\right)$ $=0$. Hence,

$$
\begin{equation*}
\tau=\frac{Y-V_{0}}{V_{0}^{2} \cdot \dot{\gamma}_{e x x e ~_{s}}} \tag{27}
\end{equation*}
$$

However, aceording to equations (16) and (17) and (6) and (7), assuming $\eta_{1}(\infty)$ $=0$.

Resulis

Valuos of α are calculated for some liquids at different temperatures, using figures 3 to 7 and similar figures Values of relaxation time τ are also calculated using the relation $(\omega \tau)^{1-\alpha}=\mathrm{DC} / \mathrm{AT}$) by considering a point of known frequency on figures 3 to 7 and similar curves (figures are not given for all the cases). Values of $\eta_{1}(0)-\eta_{1}(\infty)$ are also calculated using equation (25), by ploting a graph between $\eta_{3}(\omega)$ and $\log \omega$ and measurmg the area under the curve. Figure 8 to $\mathbf{j 0}$ are some representative graphs. $y_{9}(\omega)$ is obtained from dispersion data, equation (7). Relaxation times are also cvaluated using equations (27) and (28). The various parameters are shown in table 1.

It is found that in some cures η_{s} is appreriable or even larger than $\eta_{1}(\omega)$. However, the observed absorption depends upon $\eta_{1}(\omega)+-\frac{1}{9} \eta_{s}$ and the term ${ }_{3} \eta_{s}$ also is associated with the normal velocity gradient evon though η_{b} is the shear viseosity, aceordmg to Navicr-Stokes equation (Herzfeld \& litovitz 1959). Hence $\eta_{1}(\omega)+\gamma_{3}^{4} \eta_{s}$ is used in place of $\eta_{1}(\omega)$, where η_{s} is large Ti, may be seen that there is no appreciable variation of relaxaton time with temperature and pressure.

Table 1. Ultrasonic parametors for some organic liquids

Experimental data are from Litovitz \& Lyon 1956 and Sho \& Madientiky 1908.

Referenoes

Cole K. H \& Cule 1k H 1941 , Jour Chem. I'hys. 9, 341.
Narasimham A $V 1969$ IEEE Transartions on Sonics and Ultrasonzes, 16, 182.
Tharafeld K. F \& Catost\% T. A 1950 Absorption and Dispctision of Tlltrasonve Waves Acad press New York, Ch. 1.
Fröhlich I1. 1958 Theory of Dielectrics, Oxford 8, 102
Litovitz 'T. A. ant T. Lyon, 1956 .J. Appl. Phy/s. 27, 179.
Shı W. M. \& Madigosky W M 1968 J. Ohem. Phys. 48, 2810.

