Potential function for diatomic molecules

By S. M. Mmajkar
Science College, Satara

(Received 15 July 1970—renised 11 September 1970)

Abstract

A now putential function for diatomic molecules is suggested and its ischrodingel equation has been solved by the mothod of Pekens (1934). Valuos of anharmoneity und rotationvibration coupling constants havo beon calculated by the method suggostod by Varshni (1957) The rosults have been compared with oxpernnental values und also with those culculated by dufferent authors.

Introduotion

Potrential energy function for diatomic molecules is given by comparison with experimental data Comparative study of various potential functions was made by Varshimi (1957), Manning (1935), Steele el al (1962) and Levine (1966), Considermg some applications of the potential functions, the solution of corresponding fichrodinger equation and determination of the wave functions becomes necessary. The solution of Schrodinger equation has been possible in a few cases (Kratzen 1920, Morse 1929, Manniug 1935, Fiscuhart 1948, Tietz 1963, Wojtczak 1965) In some cases the solution is very complex

As suggested by Landau (1959) the potential function can be obtained by the combination of centrifugal energy and electrical interaction energy of the nuclei sereened by electrons Based on this suggestion of Landau, Wojtczak (1965) proposed that the potential energy function should reach asymptotically to a finite value for $x \rightarrow \infty$, and to ∞ as $x \rightarrow 0$. He thercfore suggested the following form for P.E function :

$$
V(x)+D_{0}\left(\frac{T}{x^{2}}+\frac{Z f(x)}{x}+1\right)
$$

where T and Z are arbitrary constants, $f(x)$ is screening function, variable $x=r / r_{e}$ and $V(x)$ is some function of x. The P.E function should also satisfy Varslini conditions.

The function having a simpler solution and comparable results of $\omega_{e}, \omega_{e} x_{e}$ and α_{s}, are described hero. The new function has been arrived at by giving simple values for screoning function $f(x)$ and the function $V(x)$. This has been done by vemiompirioal logic and the following form for P.E. function has beon arrived at:

$$
\begin{equation*}
V=D_{e}+\frac{A}{r}+\frac{A r_{e}}{r^{2}}-\frac{3 A}{\alpha r_{e}^{2}} e^{-\alpha\left(r-r_{e}\right)} \tag{a}
\end{equation*}
$$

where D_{e} is dissociation energy, A is a constant determined to satisfy Varshni condition, r_{θ} is equilibrium separation between nuclei, and α is a parameter the value of which determines the percentage accuraoy of the results of $\omega_{e} x_{e}$ and α_{e} The prosent discussion is divided into two parts. In the first, it is assumed that $\alpha r_{e}=3 / 2$ and then in the second part a generalization like $\alpha r_{e}=\delta$ has been at. tempted. The Schrödinger equations for both first and second general part have been solved. From the general solution, it appears that ω_{e} is the same for all values of δ but $\omega_{e} x_{B}$ and α_{E} depend on δ. Results of $\omega_{e} x_{B}$ have been obtained and tabulated for values of δ ranging from $\delta=1.5$ to $\delta=2$ (table 4) The percentage errors in $\omega_{e} x_{e}$ for ZnH and HCl have been calculated at various $\delta^{\prime \prime}$ s (table 5). It indicates that percontage error in the value of $\omega_{e} x_{e}$ depends on δ and for a group of molecules there exists a particular value of δ at which there is near coincidence between experimental and calculated values of $\omega_{e} x_{e}$. It appears that δ which produces near coincidence may be a function of atomic numbers of nuclei and the quantum numbers of the electrons in outermost shells.

Out of the two methods to test the validity of function, viz. (]) Matching of values of $\omega_{c}, \omega_{e} x_{\theta}$ and α_{e} with the experimental values, (2) Percentage deviation of suggested potential from R.K.R. potential, (Stecle et al) the first method is used to check the validity of suggested function.

Our function satisfies the following Varshni conditions

$$
\begin{align*}
& (d V / d r)_{r-r_{e}}=0 \tag{l}\\
& (V)_{r=0}=\infty \tag{2}\\
& (V)_{r=\infty} \equiv 0 \tag{3}\\
& \left(\frac{d^{2} V}{d r^{2}}\right)_{\left(r=r_{s}\right)}=k_{e} \tag{4}
\end{align*}
$$

Part I

It is assumed here that $\alpha r_{e}=3 / 2$.
From (4)

$$
\begin{equation*}
A=\frac{2}{7} k_{e} r_{e}^{3} \tag{5}
\end{equation*}
$$

According to Varshni (1957), vibration-rotation coupling constant is given by

$$
\begin{equation*}
\alpha_{e}=-\left(\frac{x r_{e}}{3}+1\right) \frac{6 B_{e}^{2}}{\omega_{e}} \tag{0}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{e} x_{e}=\left(\frac{5}{3} X^{2}-Y\right) \frac{2.1078 \cdot 10^{-16}}{\mu_{A}} \tag{7}
\end{equation*}
$$

From (a)

$$
\begin{aligned}
& X=\left(\frac{V^{n \prime}}{\bar{V}^{\prime \prime}}\right)_{r=r_{e}}=-\frac{93}{14} \frac{1}{r_{e}} \\
& Y=\left(\frac{V^{\prime \prime \prime}}{\bar{V}^{\prime \prime}}\right)_{r-r_{e}}=\frac{1071}{28 r_{e}^{2}}
\end{aligned}
$$

Substituting these values

$$
\begin{align*}
\omega_{e} x_{e} & =\frac{74.47}{\mu_{A} r_{e}^{2}} 10^{-1 \theta} \tag{8}\\
\alpha_{\theta} & =7.285^{B e^{2}} \tag{9}
\end{align*}
$$

Values calculated from (8) and (9) are compared with other values given in tables 1 and 2

Table 1

Diatom	$\begin{gathered} \omega_{e} x_{e} \\ \text { (calculated) } \end{gathered}$	$\begin{gathered} \omega_{e} x_{e} \\ \text { (oxpermental) } \end{gathered}$	$\omega_{0} x_{4}$ (Morso)
H_{2}	268.6	117.99	179.00
$\mathbf{Z n H}$	2952	5514	4.72
CdH	24.01	46.3	5.16
HgH	24.53	83.01	3.31
(CH	63.84	64.3	72.55
OH	83.30	82.31	9012
HF	92.51	90.06	122.305
HCl	46.76	52.05	56.27
HBr	37.42	45.21	42.14
HI	28.95	39.73	40.50
$\mathrm{L}_{l_{2}}$	2.973	$\stackrel{959}{ }$	1.425
$\mathbf{N a}$	0.6837	0726	0.092
K_{2}	0.2481	0.35	0.00389
$\mathbf{N}_{\mathbf{a}}$	8.884	14.456	14.756
P_{2}	1.341	2.8	1.895
O_{2}	6.393	12.073	11.263
SO	3.133	6.116	4.325
Cl_{2}	1.077	4.00	2.8
	0.3569	1.146	0.1927
J_{2}	0.1650	0.6127	0.3159
ICl	0.5041	1.465	1.054
CO	8.539	13.46	14.97
NO	7.526	13.97	12.79

Solution of schrödinaek equation [when $\alpha r_{e}=3 / 2$]
Morse (1929) solved wave equation for nuclear motion. This wave equation was originally suggested by Born and Oppenheimer (1927). By separating r, θ and ϕ dependent parts, Morso obtained the following equation for radial function $R(r)$.

$$
\frac{d^{2} R}{d r^{2}}-\frac{J(J+1)}{r^{2}} R+\frac{8 \pi^{2} \mu}{h^{2}}[W-E(r)] R=0
$$

Table 2

Diatom	$\begin{gathered} \alpha_{e} \\ \text { oxporimental } \end{gathered}$	
H_{2}	2993	6.13
ZnH	0.25	0.2022
CdH	0.21	0.1505
HgFI	0312	0.1617
CH	0534	0.5322
OH	0.714	06901
HF	0.7705	0.7716
HCl	03019	0.2732
HBr	0226	0.1974
HI	0183	0.1354
Li_{2}	0.00704	0.009385
Na_{2}	000079	0.001095
K_{2}	0000219	0.0002483
N_{2}	0.0187	001247
P_{2}	000142	0.0008584
O_{2}	0.015	0.009640
SO	0.00562	0.003250
Cl_{2}	00017	0.0007663
Br_{2}	0.000275	00001475
I_{2}	0.000117	0.00004749
ICl	0.00053	00002474
CO	001748	0001251
NO	0.0178	001111

Changing the notation, $R=S, E(r)=V$ and $W=E$, the equation for radinl funotion becomes

$$
\frac{d^{3} S}{d r^{2}}-\frac{J(J+1)}{r^{2}} S+\frac{8 \pi^{2} \mu}{h^{2}}[E-V] S=0
$$

When the value of V from equation (a) is put in the above, the following equation is obtained.

$$
\begin{aligned}
\frac{d^{2} S}{d r^{2}}-\frac{J(J+1)}{r^{2}} S & +\frac{8 \pi^{2} \mu}{h^{2}}\left(E-D_{e}-\frac{A}{r}-\frac{A r_{e}}{r^{2}}\right. \\
& \left.+\frac{3 A}{\alpha r_{e}^{2}} e^{-a\left(r-r_{e}\right)}\right) S=0
\end{aligned}
$$

Let $\quad B=\frac{h^{2} J(J+1)}{8 \pi^{2} \mu r_{e}^{2}}$, and $y=e^{-a\left(r-r_{e}\right)}$
$\therefore \quad \frac{r_{e}}{r} \approx 1+\frac{1}{\alpha r_{e}}\left[(y-1)-\frac{(y-1)^{2}}{2}\right]+\frac{1}{\alpha^{2} r_{e}^{2}}(y-1)^{2}$
$\therefore\left(\frac{r_{\theta}}{r}\right)^{2} \approx 1+\frac{2}{\alpha r_{e}}\left[(y-1)-\frac{(y-1)^{2}}{2}\right]+\frac{3}{\alpha^{2} r_{e}^{2}}(y-1)^{2}$
$\therefore \quad y^{2}-\frac{d^{2} S}{d y^{2}}+y-\frac{d S}{d y}+\frac{8 \pi^{2} \mu}{\alpha^{2} h^{2}}\left[C_{0}+C_{1} y+C_{2} y^{2}\right\rfloor S=0$
where

$$
\begin{align*}
C_{0}=E-D_{\theta} & -\frac{A}{r_{\theta}}\left(1-\frac{3}{2 \alpha r_{e}}+\frac{1}{\alpha^{2} r_{e}^{2}}\right)-\frac{A}{r_{e}}\left(1-\frac{3}{\alpha r_{\theta}}+\frac{3}{\alpha^{2} r_{e}^{2}}\right) \\
& -B\left(1-\frac{3}{\alpha r_{e}}+\frac{3}{\alpha^{2} r_{e}^{2}}\right) \tag{11}
\end{align*}
$$

when

$$
\alpha r_{e}=3 / 2, \quad C_{0}=E-D_{e}-\frac{7}{9} \frac{A}{r_{e}}-\frac{B}{3}
$$

Similarly

$$
\begin{align*}
C_{1}= & -\frac{A}{r_{e}} \cdot\left(\frac{2}{\alpha r_{e}}-\frac{2}{\alpha^{2} r_{e}^{2}}\right)-\frac{A}{r_{e}}\left(\frac{4}{\alpha r_{e}}-\frac{6}{\alpha^{2} r_{e}^{2}}\right) \\
& +\frac{3 A}{\alpha r_{e}^{2}}-\mathrm{B}\left(\frac{4}{\alpha r_{e}}-\frac{6}{\alpha^{2} r_{e}^{2}}\right) \tag{12}
\end{align*}
$$

For

$$
\alpha r_{e}=3 / 2, C_{1}=\frac{14 A}{9 r_{e}} ;
$$

$$
\begin{equation*}
C_{2}=-\frac{A}{r_{e}}\left(-\frac{1}{2 \alpha r_{e}}+\frac{1}{\alpha^{2} r_{e}^{2}}\right)-\frac{A}{r_{e}}\left(-\frac{1}{\alpha r_{e}}+\frac{3}{\alpha^{2} r_{e}^{2}}\right)-\mathrm{B}\left(-\frac{1}{\alpha r_{e}}+\frac{3}{\alpha^{2} r_{e}^{2}}\right) . \tag{13}
\end{equation*}
$$

For $\quad-\quad \alpha r_{\theta}=3 / 2, \quad C_{2}=-\frac{7 A}{9 r_{\theta}}-\frac{2}{3} B$.

When the following substitutions are made in (10), equation (14) is obtained.

$$
\begin{array}{ll}
& S=e^{-z / 2} \cdot z^{b / 2} u \text { where } z=2 d y \\
d^{2}=-\frac{8 \pi^{2} \mu C_{2}}{\alpha^{2} \hbar^{2}} \\
b^{2}=-\frac{32 \pi^{2} \mu}{\alpha^{2} h^{2}} C_{0} \\
& K=\frac{8 \pi^{2} \mu}{\alpha^{2} h^{2}} \frac{C_{1}}{2 d}=-\frac{b+1}{2} \\
\therefore \quad & \frac{d^{2} u}{d z^{2}}+\frac{d u}{d z}\left(\frac{b+1}{z}-1\right)+\frac{k}{z} u=0 . \tag{14}
\end{array}
$$

Put

$$
u=\Sigma a_{n} z^{n} \text { in (14). }
$$

This gives

$$
a_{n+1}=a_{n} \frac{n-K}{n(n+1)+(b+1)(n+1)}
$$

The series should be finite and terminate at n-th term.

$$
\begin{array}{lc}
\therefore & n=K \\
\therefore & \frac{8 \pi^{2} \mu}{\alpha^{2} h^{2}} \frac{C_{1}}{2 d}-\frac{b+1}{2}=n \\
\therefore & C_{0}=\frac{C_{1}}{d}(n+1 / 2)-\frac{\alpha^{2} h^{2}}{8 \pi^{2} \mu}(n+1 / 2)^{2}-\frac{8 \pi^{2} \mu}{\alpha^{2} h^{2}}\left(C_{1} / 2 d\right)^{2} \tag{I5}
\end{array}
$$

When the value of C_{0} is introduced in the above, the value of E is given in the following form .

$$
\begin{gathered}
E-\left(\frac{14}{9} \frac{A}{r_{e}}\right) \frac{1}{d}(n+1 / 2)-\frac{\alpha^{2} h^{2}}{8 \pi^{2} \mu}(n+1 / 2)^{2}+\frac{1}{3} \frac{h^{2} J(J+1)}{8 \pi^{2} \mu r_{e}^{2}}+D_{e}+\frac{7}{9} \frac{A}{r_{e}} \\
-\frac{8 \pi^{2} \mu}{\alpha^{2} h^{2}} \frac{1}{4 d^{2}}\left(\frac{14}{9} \frac{A}{r_{e}}\right)^{2} .
\end{gathered}
$$

Substituting d and expanding the first and last terms

$$
\begin{aligned}
& \underset{c h}{E}=\frac{\alpha}{\pi c} \sqrt{\frac{7 A}{18 \mu r_{e}}}(n+1 / 2)-\frac{3 \alpha h^{2} r_{e}}{56 \pi^{3} \mu r_{e}^{2} A c} \sqrt{\frac{7 A}{18 \mu r_{e}}} J(J+1)(n+1 / 2) \\
& -\frac{\alpha^{2} h}{8 \pi^{2} \mu c}(n+1 / 2)^{2}+\frac{h J(J+1)}{8 \pi^{2} \mu r_{e}^{2} c}+\frac{D_{e}}{c h}
\end{aligned}
$$

Introduce value of A from (5) in the coefficient of ($n+1 / 2$) in the first term which represents ω_{b} of diatomic molecule so that,

$$
\frac{\alpha}{\pi c} \sqrt{\frac{7 A}{18 \mu r_{i}}}=\omega_{e}=\frac{1}{2 \pi c} \sqrt{\frac{k_{e}}{\mu}} .
$$

Above formula of ω_{e} is the same as that obtained by other considerations. Values calculated from this are compared with experimental ones and given in table 3

TABLE 3

Diatom	$\stackrel{\omega_{e}}{\text { calculatod }}$	$\stackrel{\omega_{\theta}}{\text { experimental }}$
H_{2}	4390	4395
ZnH	1603	1607.6
UdII	1429	1430
HgH	1387	1387.1
CH	2850	2861
OH	3732	3735
HF'	4134	4138.5
HCl	2986	2989.7
$\mathbf{H B r}$	2647	2649.7
HI	2308	2309.5
Li_{2}	351.1	351.43
NR_{2}	1591	159.23
\mathbf{K}_{2}	92.53	9264
N_{2}	2357	2369.6
$\mathbf{P}_{\mathbf{2}}$	7798	780.43
O_{2}	1579	15804
SO	1123	1123.7
CH_{2}	5635	564)
Br_{2}	546.4	323.2
I_{2}	214.4	2140
ICL	119.1	384.18
CO	2188	2170.2
NO	1902	1904

Part 11

Generalisation of α
It is assumed hore that in general $\alpha r_{e}=\delta$.
From (a), (6) and (7)

$$
\begin{align*}
& x=\frac{3}{r_{e}}\left(\frac{-10+\delta^{2}}{8-3 \delta}\right) \tag{16}\\
& y=\frac{1}{r_{e}^{2}} \frac{144-3 \delta^{3}}{8-3 \delta} \tag{17}\\
& \omega_{e} x_{e}=\left[\frac{5}{3} x^{2}-y\right] \frac{2.107810^{-16}}{\mu_{A}}
\end{align*}
$$

From (16) and (17) $\omega_{e} x_{E}$ assunes following form

$$
\begin{equation*}
\omega_{e} x_{e}=\left[\frac{348+432 \delta-300 \delta^{2}+24 \delta^{3}+6 \delta^{4}}{(8-3 \delta)^{2}}\right] \frac{2.1078}{\mu_{4} r_{\theta}^{2}} 10^{-16} \tag{18}
\end{equation*}
$$

The value of $\omega_{0} x_{e}$ changes with δ in the manner shown in the following table 3A.

table 3a

δ	$\omega_{B} x_{C} \times \mu_{A} r_{e}{ }^{2} \times 10^{16}$
1.5	74,47
1.7	83.97
1.8	96.12
1.85	111.1
1.8	120.3
2	131.0

table 4. Variation of $\omega_{e} x_{e}$ with δ

$\delta=$	1.5	1.6	1.7	1.8	1.85	1.9	2	
Mol.	$\begin{gathered} \omega_{a} x_{e} \\ \text { calc. } \end{gathered}$	$\begin{gathered} \omega_{\varepsilon} x_{e} \\ \text { calc. } \end{gathered}$	$\omega_{e} x_{s}$ cale.	$\omega_{0} x_{0}$ calc.	$\omega_{c} x_{c}$ calc.	$\begin{gathered} \omega_{a} x_{b} \\ \text { cale. } \end{gathered}$	$\omega_{e} x_{s}$ calc.	$\begin{gathered} \omega_{0} x_{\theta} \\ \text { exptl. } \end{gathered}$
H_{2}	2686	302.8	3466	400.7	433.8	472.6	570.21	11797
ZnH	29.52	33.29	38.11	44.06	47.68	51.95	62.69	55.14
CdH	24.01	27.07	30.98	35.82	38.77	42.24	50.95	46.3
Hght	24.53	27.67	31.66	36.61	39.63	43.17	52.08	83.01
CHI	63.84	71.97	82.30	95.26	103.1	112.3	135.5	64.3
OH	83.30	93.91	107.5	1243	134.5	146.6	176.8	82.81
HF'	92.51	1043	119.4	138	1494	162.8	196.3	90.06
HCl	46.76	52.71	6034	69.76	75.51	82.26	9924	52.05
HBr	37.42	42.19	48.29	55.84	60.43	65.85	79.43	45.21
HI	28.95	32.63	37.36	43.19	46.76	50.93	61.41	39.73
Lr_{2}	2.973	3.352	3837	4.436	4.801	5.231	6.311	2.59
Na_{2}	0.6837	0.7709	0.8824	1.021	1104	1.203	1.452	0.726
K_{2}	0.2481	0.2799	0.3203	0.3703	- 0.4009	- 0.4367	0.5209	0.35
N_{2}	8.884	10.02	11.47	13.25	14.35	1563	18.66	14.456
P_{2}	1.341	1.511	1.726	2.00	2.165	2.358	2.845	2.8
O_{2}	6.393	7.207	8.250	9.539	10.32	11.25	18.57	12.072
so	3.133	3.533	4.043	4.676	5. 060	5.513	6.651	6.116
Cl_{2}	1.077	1.214	1.390	1.607	1.740	1.895	2.287	4.00
Br_{2}	0.3569	$9 \quad 04024$	$4 \quad 0.4606$	$6 \quad 0.5325$	50.5763	$3 \quad 0.6279$	9 0.7575	51.146
I_{4}	0.1650	$0 \quad 0.1860$	0.2129	$9 \quad 0.2461$	10.2665	$5 \quad 0.2902$	20.3501	10.6127
1CI	0.5041	10.5683	30.6506	60.7521	10.8141	10.8869	$9 \quad 1.070$	1.465
00	8.539	9.627	11.03	12.75	13.81	15.03	18.12	13.46
NO	7.526	8.486	9.714	11.23	12.15	13.24	15.98	13.97

General Solution of Schrödinger equation when $\alpha_{e}=\delta$
From (10)

$$
y^{2} \frac{d^{2} S}{d y^{2}}+y \frac{d S}{d y}+\frac{8 \pi^{2} \mu}{\alpha^{2} h^{2}}\left[C_{0}+C_{1} y+C_{2} y^{2}\right] S=0
$$

The values of C_{0}, C_{1}, C_{2} in the present oase ($\alpha r_{e}=\delta$), can be obtained from (ll), (12) and (13).

$$
\begin{equation*}
C_{0_{-}}=E-D_{e}-\frac{A}{r_{\theta}}\left(2-\frac{9}{2 \delta}+\frac{4}{\delta^{2}}\right)-B\left(1-\frac{3}{\delta}+\frac{3}{\delta^{\overline{2}}}\right) \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& C_{1}=-\frac{A}{r_{\varepsilon}}\left(\frac{3}{\delta}-\frac{8}{\delta^{2}}\right)-B\left(\frac{4}{\delta}-\frac{6}{\delta^{2}}\right) \tag{20}\\
& C_{2}=-\frac{A}{r_{\theta}^{-}}\left(-\frac{3}{2}+\frac{4}{\delta^{2}}\right)-B\left(-\frac{1}{\delta}+\frac{3}{\delta^{2}}\right) \tag{21}
\end{align*}
$$

Introduction of C_{0}, C_{1}, C_{2} and d in (15) and corrosponding expansion gives

$$
\begin{aligned}
& \frac{E}{C h}=\frac{\alpha}{\pi C}\left[\underset{2 \mu r_{e}}{A}-\left(\frac{-3}{2 \delta}+\frac{4}{\delta^{2}}\right)\right]^{\frac{1}{2}}(n+1 / 2)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\alpha^{2} h}{8 \pi^{2} \mu C}(n+1 / 2)^{2}+\frac{A}{r_{e} C h}\left(2-\frac{3}{\delta}\right)+\frac{D_{e}}{1 U h}+\frac{h J(J+1)}{8 \pi^{2} \mu r_{c}{ }^{2} C}
\end{aligned}
$$

The coefficient of $(n+1 / 2)$ in first torm on the right hand side is

$$
\omega_{e}=\frac{\alpha}{\pi} C\left[\frac{A}{2 \mu r_{e}}\left(\frac{-3}{2 \delta}+\frac{4}{\delta^{2}}\right)\right]^{\frac{3}{b}}
$$

The valuo of force constant is given by $K_{c}=(8-3 \delta) A / r_{e}{ }^{3}$ in this case. When it is introduced in the above value of ω_{e}, usual form for ω_{e} is obtained, which is $\omega_{e}=1 / 2 \pi C . \sqrt{K_{e} / \mu} . \quad$ It suggests that ω_{g} is independent of δ, but $\omega_{e} x_{e}$ and α_{e} depend on δ.
table 5. Variation of percentage error in $\omega_{e} x_{e}$ with δ for ZnH and HCl

δ	Percentago orror in ZnH	$\omega_{6} x_{e}$ for HCl
1.5	-46.47	-10.16
1.6	-39.5	+1.3
1.7	-3008	+16.0
18	-20.09	+34.1
1.85	-13.54	+45.1
1.9	-5.79	+68.1
2	+13.7	+90.6

Potential function for diatomic molecules

Referenoes

Born M. \& Oppenheimor J. R. 1927 Ann. त. Physth 84. 457.
Eisenhart L. P. 1948 Phys. Rev. 74. 87.
Kratzer Z. 1920 Phys. 3, 289.
Landau L. \& Lifschitz E. 1959 Quantum Mechanucs, Pergamon Press, London, Paris.
Levine I. N. 1966 Jour. Chem. Phys. 45, No. 3,
Manning M. F. 1935 Phys. Rev. 48, 161.
Morso P. M. 1929 Phys, Rev. 4, 57.
Pokeris O. L. Phys. Rev. 45, 98
Stoelo D. Lippincott E. R. \& Vandorshce, J. 'Г. 1962 Rev, Mod. Phys 34239.
Tietz T. J. 1963 Chem. Phys, 3036.
Varshni Y. 1957 Rev. Mod. Phys. 29, 664.
Wojtczak L. 1965 Acta Phys. Polonica, 27, 233.

