Indian J. Phys، 44, 1-8 (1070)
On mechanical response in a piezoelectric plate characterized by a diffusion and subjected to a prescribed polarization gradient

Alok Chakrabarty
Department of Ploysics, S. A. Jaipuria C'ollege, C'alculta-5

(Received 10 March 1969-Revised 26 March 1970)

Abstract

Tho papes 18 concorned with the mechanical responso in a piozoelectric plato transducer under constant voltage input across it; the plato boing characterizod by a preseribed diffusion and subjected to an exponentially docaying polarization gradient.

Introdudition

The studies of piozoolectric transclurer from the point of viow of mechanics of continuous modia are largely due to Redwood (1961), Mason (1950), Filipezynski (1956), Sinha (1963, 1965 and 1967). Giri (1966), Das (1967), Chakrabarty (1968, 1969) and others. This articlo is a similar attompt sooking to investigate the mechanical response due to a constant voltago input under a proseribed diffusion and characterisod by an oxponentally decaying polarization gradiont. The analysis presonted hore conforms to the line of investigation undertaken by the above-mentioned authors. It has been found that the method of Laplace transform facilitates the solution of the problom.

Problem, Fundamental Equation and Boundary Condition

Le t $x=0$ and $x=X$ be tho extremities of a piezoelectric plate in the direction of its thickness (taken as the X-axis), excited by a constant voltage ϕ_{0} at its ends. The transducer is characterised by an exponontially docaying polarization gradient. Let there bo a cavily excited by a field defined by $e^{-k x}, \delta(t), k$ being a constant and $\delta(t)$ is the well known Dirac's Delta function. The plate is taken as rigidly backed at $x=X$.

The oquations of state for the plate, (Redwood 1961) are

$$
\begin{align*}
& T_{1}=c_{11} \frac{\partial \xi}{\partial x}+e_{11} E_{1} \tag{I}\\
& P_{1}: e_{11} \frac{\partial \xi}{\partial x}+k_{11} E_{1} \tag{2}
\end{align*}
$$

where $T_{1}=$ stress, $c_{11}=$ average stiffness co-efficient, $\xi=$ mechanical doformation at any point $x, e_{11}=$ piezoolectric constant, $\boldsymbol{P}_{1}=$ polarization vector and $k_{11}=$ dioloctric susceptibility.

Alok Chakrabarty

In accordance with our assumption, we have

$$
\begin{equation*}
\frac{\partial P_{1}}{\partial x}=-P_{0} e^{-r t} \tag{3}
\end{equation*}
$$

so that by suitable choice

$$
\begin{equation*}
P_{1}=-P_{0} x e^{-r l} \tag{4}
\end{equation*}
$$

where P_{0} is a constant and r is a decaying factor. This assumption is justified by experimental facts (Swann, 1950).

Eliminating E_{1} from (1) and (2) we have

$$
\begin{equation*}
T_{1}=a \frac{\partial \xi}{\partial x}+\frac{e_{1}}{k_{11}} P_{1} \tag{5}
\end{equation*}
$$

where $\quad a=c_{11}-e_{11}{ }^{2} / k_{11}$
Differentiating (5) and using (4) we get

$$
\begin{equation*}
\frac{\partial T_{1}}{\partial x}=a \frac{\partial^{2} \xi}{\partial x^{2}}-\frac{e_{11} P_{0}}{k_{11}} e^{-r t} \tag{6}
\end{equation*}
$$

Using (6) with Newton's equation

$$
\rho \frac{\partial^{2} \xi}{\partial t^{2}}-\frac{\partial T_{1}}{\partial x}=e^{-k x} \cdot \delta(t)
$$

we have

$$
\begin{equation*}
\rho \stackrel{\partial^{2} \xi}{\partial t^{2}}-u \frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\rho_{11} P_{11}}{k_{11}} e^{-r t}=e^{-k x} \cdot \delta(t) \tag{7}
\end{equation*}
$$

Equation (7) constitutes the fundamental equation of the problem.
The boundary conditions are that both the displacemont and force are continuous at the end $x=0$ of the transducer. Also the transducer being rigidly backed at $x=X$, the mechanical displacement at $x=X$ must be zero.

Soldtion of the Problem

Taking Laplace transform (7) of parameter $s(s>0)$
whe have

$$
\begin{equation*}
\frac{\partial^{2 \xi}}{\partial x^{2}}-\rho_{a}^{s^{2} \xi}=\frac{1}{a}\left[\frac{e_{11} P_{0}}{k_{11}} \cdot \frac{1}{s+r}-e^{-k x}\right] \tag{8}
\end{equation*}
$$

Solving (8) we get

$$
\begin{equation*}
\bar{\xi}=A e^{-\bar{v} x}+B e^{-\bar{v}_{v}^{x}}-\frac{e_{11} P_{0}}{k_{11} \rho \cdot s^{2}(s+r)}+\frac{e^{-k x}}{\rho\left\{s^{2}-(k v)^{2}\right\}} \tag{9}
\end{equation*}
$$

where A and B are constants of integration and $v^{2}=a / \rho$, and it is assumed that $\xi(0)$ $=0, \xi^{\prime}(0)=0$.

To evaluate \boldsymbol{A} and \boldsymbol{B} from the boundary conditions, we attach two mechanical systems 1 and 2 as assumed by Rodwood (1961) to the extremities $x=0$ and $x=X$. We denote the corresponding entities, A_{1}, B_{1} and A_{2}, B_{2} by the symbols 1 and 2 , respectively. In that case, since the transducer is rigidly backed,

$$
\begin{equation*}
A_{2}=B_{2}=0 \text { and } A_{1}=0 \tag{10}
\end{equation*}
$$

Also continuity of displacemont at $x=0$, gives

$$
\bar{\xi}(0)=\xi_{1}(0)
$$

i.e.

$$
\begin{equation*}
A+B-\frac{e_{11} P_{0}}{k_{11} \rho} \cdot \frac{1}{s^{2}(s+r)}+\frac{1}{\rho\left\{s^{2}-(k v)^{2}\right\}}=B_{1} \tag{l1}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{1}(x)=B_{1} e^{\frac{y}{v} x} \tag{12}
\end{equation*}
$$

Again for a rigidly backed transducer $\overline{\boldsymbol{\xi}}(\boldsymbol{X})=\mathbf{0}$.

Hence

$$
\begin{equation*}
A e^{-\frac{s}{v} X}+B e^{-\frac{s}{v} X}-\frac{e_{11} P_{0}}{k_{11} \rho} \cdot \frac{1}{s^{2}(s+r)}+\frac{e^{-k X}}{\rho\left\{s^{2}-(k v)^{2}\right\}}=0 \tag{13}
\end{equation*}
$$

Using (1), (3) and the relation $E_{1}=D_{1}-4 \pi P_{1}$, we have

$$
\begin{equation*}
T_{1}=c_{11} \frac{\partial \xi}{\partial x}+e_{11} \frac{Q_{1}}{Y Z}+4 \pi e_{11} P_{0} x e^{-r t} \tag{14}
\end{equation*}
$$

where $D_{1}=\frac{Q_{1}}{Y Z}, Y$ is length of the transducer along Y-axis, Z its longth along Z-axis, and Q_{1} is the charge.

Taking Laplace transform of (14) and using (9) we have

$$
\begin{equation*}
\bar{T}_{1}(0)=c_{11}\left[-\frac{s}{v} \cdot A+\frac{s}{v} B-\frac{k}{\rho} \cdot \frac{1}{s^{2}-(k v)^{2}}\right]+e_{11} \frac{\bar{Q}_{1}}{Y Z} \tag{15}
\end{equation*}
$$

If T stands for the stress for the medium towards the left of the transducer (i.e., at $x=0$) then from (12)

$$
\begin{equation*}
\bar{T}=\frac{s c}{v} B_{1} e^{\bar{v}} \tag{16}
\end{equation*}
$$

c being a similar constant as c_{11}.
Hence

$$
\bar{T}(0)=\frac{s C}{v} B_{1}
$$

For continuity of stross ait $x-0$, wo have from (15) and (17)

$$
\begin{equation*}
c_{11}\left[-\frac{s}{v} A+{ }_{v}^{s} B-{ }_{\rho}^{k} \cdot{ }_{s^{2}-\frac{1}{(k v)^{2}}}\right]+e_{11} \underset{Y \bar{Z}}{Q_{1}}=s_{v}^{c} B_{1} \tag{18}
\end{equation*}
$$

Again

Hence,

$$
\begin{align*}
\bar{V} & =-\left(\bar{V}_{x}-\bar{V}_{0}\right)=\int_{0}^{X} \bar{E} d x \\
& =\int_{0}^{X}\left(\bar{D}_{1}-4 \pi \bar{P}_{1}\right) d x \\
\bar{\phi}_{0} & =\frac{\bar{Q}_{1}}{\bar{Y} Z} X+\frac{4 \pi P_{0}}{s+r} \cdot \frac{X^{2}}{\mathscr{2}} \tag{19}
\end{align*}
$$

since tho voltage across the transtlurer is given by ϕ_{0}
Substituting the value of B_{1} from (11) 1 nl (18) and then oliminating \bar{Q}_{1} from (18) and (19) we get a relation comperting A and B. Using this relation along with (13) we get the values of A and B. The values of A and B are grven by the following expressions
whero

$$
\begin{gather*}
l_{1}=-\frac{1}{v}\left(c_{11}+c\right), \quad l_{2}=-\frac{1}{v}\left(c-c_{11}\right) \\
l_{3}-\left[\begin{array}{c}
\left.\frac{c}{\rho v}-\frac{c_{11} k}{\rho}\right\rceil \cdot \frac{1}{s\left\{s^{2}-k^{2} v^{2}\right\}}+\frac{e_{11} P_{0} c}{v} \cdot \underset{v^{2}(s \mid \bar{r})}{1}-c \\
+\frac{e_{11} \phi_{0}}{s^{2}}-\frac{2 \pi P_{0} e_{11} X^{2}}{s(s+r)} \\
m_{3}=-\frac{e_{11} P_{0}}{k_{11} \rho} \frac{1}{s^{2}(s+r)}+\underset{\rho\left\{k^{2} v^{2}\right.}{e^{2}-(k x)^{2}}
\end{array}\right.
\end{gather*}
$$

Substituting the valuos of A and B in (9) we have

$$
\begin{equation*}
\xi=\frac{\left(l_{2} m_{3}-l_{\mathrm{l}} e^{-\frac{g}{v} x}\right) e^{-\frac{{ }_{v}^{v}}{v} x}+\left(l_{3} e^{-\frac{s}{v} x}-l_{1} m_{3}\right) e^{-\frac{8}{v} x}}{l_{1} e^{\frac{\delta}{v} x}-l_{2} e^{-\frac{8}{v} x}}+\left[\bar{m}_{3}\right]_{X=x} \tag{20B}
\end{equation*}
$$

1t is simple to deteet that $\bar{\xi}=0$ when $x-X$. This must be the case, sinco the transducer is rigidly backed at $x=X$.

The invorsion being too complicated, we find it for a particular value of x, say $X / 2$. This is to be done by the mothods of approximation. Wo restrict to approximation followed by Redwood (1961) and find

$$
\begin{equation*}
\underset{\xi_{X}}{\bar{\xi}_{X}}=\frac{l_{2}}{l_{1}} m_{3} e^{-\frac{3_{8} X}{2 v}}-\frac{l_{3}}{l_{1}^{-}} e^{-\frac{s_{8} X}{2 v}}-m_{3} e^{-\frac{s X}{2 v}}-\frac{l_{3}}{l_{1}} e^{-\frac{\delta X}{2 v}}+\left[m_{3}\right]_{X=} X \tag{21}
\end{equation*}
$$

Substituting for l_{3} and m_{a} and taking inverse transform we have

$$
\begin{align*}
& \xi_{\frac{X}{2}}=\frac{l_{2}}{l_{1}} \cdot \frac{e_{11} P_{0}}{k_{11} \rho}\left[\frac{1}{r}\left(t-\frac{3 X}{2 v}\right)-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-v\left(t-\frac{3 X}{2 v}\right)}\right]+\frac{l_{2} e^{-\frac{k X}{2}} \sinh \left[k v\left(t-\frac{3 X}{2 v}\right)\right]}{l_{1} \rho} . \cdots \frac{k v}{k} \\
& -\frac{1}{l_{1}}\left[\left(\frac{c_{11} k}{\rho}-\frac{c}{\rho v}\right) \cdot \frac{1}{k^{2} v^{2}}\left\{1-\cosh k v\left(t-\frac{3 X}{2 v}\right)\right\}+\frac{e_{11} P_{0} c}{v}\left\{\frac{1}{r}\left(t-\frac{3 X}{2 v}\right)\right.\right. \\
& -\frac{1}{\left.r^{2}+\frac{1}{r^{2}} e^{--1\left(t-\frac{3 X}{2 v}\right)}\right\}-\frac{c^{\sinh } \operatorname{\rho v} v\left(t-\frac{3 X}{2 v}\right)}{k v}+e_{11} \phi_{0}\left(t-\frac{3 X}{2 v}\right)} \\
& \left.-2 \pi P_{0} e_{11} X^{2}\left\{\frac{1}{r}-\frac{1}{r} e^{-r\left(t-\frac{3 X}{2 v}\right)}\right\}\right]-\frac{1}{l_{1}^{-}}\left[\left(\frac{c_{11} k}{\rho}-\frac{c}{\rho v}\right) \frac{1}{k^{2} v^{2}}\right. \\
& \left\{1-\cosh \mathrm{l} k v\left(t-\frac{X}{2 v}\right]\right\}+\frac{e_{11} P_{0} c}{v}\left\{\frac{1}{r}\left(t-\frac{X}{2 v}\right)-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r\left(t-\frac{X}{2 v}\right)}\right\} \\
& \left.c_{\rho v} \quad \sinh k v\left(t-\frac{X}{2 v}\right), ~-k v e_{11} \phi_{0}\left(t-\frac{X}{2 v}\right)-2 \pi P_{0} e_{11} X^{2}\left\{\frac{1}{r}-\frac{1}{r} e^{-r\left(t-\frac{X}{2 v}\right)}\right\}\right] \\
& +\frac{e_{11} P_{0}}{k_{11} \rho}\left[\frac{1}{r}\left(t-\frac{X}{2 v}\right)-\frac{1}{r^{2}}+\underset{r^{2}}{1} e^{-r\left(t-\frac{X}{2 v}\right)}\right]-\frac{e^{-k \cdot x}}{\rho k v} \sinh \left\{k v\left(t-\frac{X}{2 v}\right)\right\} \\
& -\frac{e_{11} P_{0}}{k_{11} \rho}\left\{\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r t}\right\}+\frac{e^{-k \frac{X}{2}}}{\rho k v} \sinh k v t \tag{22A}
\end{align*}
$$

for $t>\frac{3 X}{2 v}$.
and $\quad \xi_{\frac{X}{2}}=-\frac{1}{t_{1}}\left[\left(\frac{c_{11} k}{\rho}-\frac{c}{\rho v}\right) \cdot \frac{1}{k^{2} v^{2}}\left\{1-\cosh k v\left(t-\frac{X}{2 v}\right)\right\}\right.$

$$
+\underset{v}{\frac{e_{11}}{v} P_{0} c} \cdot\left\{\frac{1}{r}\left(t-\frac{X}{2 v}\right)-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r\left(t-\frac{X}{2 v}\right)}\right\}-\frac{c}{\rho v} \cdot \frac{\sinh k v\left(t-\frac{3 X}{2 v}\right)}{k v}
$$

$$
\begin{align*}
& \left.+e_{11} \phi_{0}\left(t-\frac{3 X}{2 v}\right)-2 \pi P_{0} e_{11} X^{2}\left\{\frac{1}{r}-\frac{1}{r} e^{-r\left(t-\frac{X}{2 v}\right)}\right\}\right] \\
& +\frac{e_{11} P_{0}}{k_{11} \rho}\left[\frac{1}{r}\left(t-\frac{X}{2 v}\right)-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r\left(t-\frac{X}{2 v}\right)}\right]-\frac{e^{-k X}}{\rho k v} \sinh \left\{k v\left(t-\frac{X}{2 v}\right)\right\} \\
& -\frac{e_{11} P_{0}}{k_{11} \rho}\left[\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r v}\right]+\frac{e^{-k} \frac{X}{\rho}}{\rho k v} \sinh k v t \tag{22B}
\end{align*}
$$

for $\quad \frac{X}{2 v}<t<\frac{3 X}{\overline{2} v}$.
and

$$
\begin{equation*}
\xi_{\frac{X}{2}}=\frac{1}{\rho l v} e^{-k_{2}^{X}} . \sinh k v t-\frac{e_{11} P_{0}}{k_{11} \rho}\left[\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r t}\right] \tag{22C}
\end{equation*}
$$

for

$$
t<\frac{X}{2 v} .
$$

Relations (22A) (22B) and (22C) gives the expression for the mochanical response at $x=\frac{X}{2}$. This shows that the mochanical response is partly constant, partly linear and it partly decays oxponentially with time. It also varies as hyporbolte sine function of time.

Displacement of the Surface at $x=0$

When $x=0$, equation (20B) takes the form

$$
\bar{\xi}_{x=0}=\frac{\left(\left(l_{2} m_{3}-l_{3} e^{-\frac{g}{v} x}\right)+\left(l_{3} e^{-\frac{\delta}{v} x}-l_{1} m_{3}\right)\right.}{l_{1} e^{-\frac{\theta}{v} x}-l_{2} e^{-\frac{8}{v} x}}+\left[\bar{m}_{3}\right]_{X=0}
$$

Following the same approximations, we have

$$
\xi_{x=0}=\frac{l_{2}-l_{1}}{l_{1}} m_{3} e^{-\frac{8}{v} x}-\frac{1}{l_{1}} l_{3}+\frac{1}{l_{1}^{-}} \cdot l_{3} e^{-2 \frac{8}{v} x}+\left[m_{3}\right]_{X=0}
$$

After taking inverse transform we get
$\xi_{x=0}=\frac{1}{l_{1}}\left[\left(\frac{c_{11} k}{\rho}-\frac{c}{\rho v}\right) \cdot \frac{1}{k^{2} v^{2}}\left\{1-\cosh k v\left(t-\frac{2 X}{v}\right)\right\}+\frac{e_{11} P_{0} c}{v}\left\{\frac{1}{r}\left(t-\frac{2 X}{v}\right)\right.\right.$

$$
\begin{align*}
& \left.-\frac{1}{r^{2}}+{ }_{r^{2}} e^{-r\left(t-\frac{2 x}{v}\right)}\right\}-\frac{c}{\rho k v^{2}} \sinh k v\left(t-\frac{2 X}{v}\right)+e_{11} \phi_{0}\left(t-\frac{2 X}{v}\right) \\
& \left.-2 \pi P_{0} e_{11} X^{2}\left\{\frac{1}{r}-\frac{1}{r} e^{-r\left(t-\frac{2 X}{v}\right)}\right\}\right] \cdots \frac{1}{l_{1}}\left[\left(\frac{c_{11} k}{\rho}-\frac{c}{\rho v}\right) \frac{1}{k^{2} v^{2}}(1 \cdots \cosh k v t)\right. \\
& \left.+\frac{e_{11} P_{0} c}{v}\left\{\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r t}\right\}-\frac{c}{\rho k v^{2}} \sinh k v t+e_{\mu 1} \phi_{0} t-2 \pi P_{0} c_{11} X^{2}\left(\frac{1}{r}-\frac{1}{r} e^{-r t}\right)\right] \\
& +\frac{l_{2}-l_{1}}{l_{1}}\left[-\frac{e_{11} P_{0}}{k_{11} \rho}\left\{\frac{1}{r}\left(t-{ }_{v}^{x}\right)-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-1\left(t-\frac{x}{v}\right)}\right\}+\frac{1}{\rho k v} e^{-k x} \cdot \sinh k v\left(t-\frac{X}{v}\right]\right. \\
& -\frac{e_{11} P_{0}}{k_{11} \rho}\left[\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r t}\right]+\frac{1}{\rho k v} \text { sinh } k v t \quad\left[\text { for } t>\frac{2 X}{v}\right] \tag{23A}
\end{align*}
$$

and

$$
\begin{align*}
\xi_{x=0} & =-\frac{1}{l_{1}}\left[\left(\frac{c_{11} k}{\rho}-\frac{c}{\rho v}\right) \cdot \frac{1}{k^{2} v^{2}}(1-\cosh k v t)+\frac{e_{11} P_{0} c}{v} \cdot\left(\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r t}\right)\right. \\
& \left.-\frac{c}{\rho k v^{2}} \sinh k v t+e_{11} \phi_{0} t-2 \pi P_{0} e_{11} X^{2}\left(\frac{1}{r}-\frac{1}{r} e^{-r t}\right)\right]+\frac{l_{3}-\frac{l_{1}}{l_{1}}}{} \\
& {\left[-\frac{e_{11} P_{0}}{k_{11} \rho}\left\{\frac{1}{r}\left(t-\frac{X}{v}\right)-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r\left(1-\frac{x}{v}\right)}\right\}+\frac{e^{-k X}}{\rho k v} \sinh k v\left(t-\frac{X}{v}\right)\right] } \\
& -\frac{e_{11} P_{0}}{k_{11} \rho}\left[\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-l t}\right]+\stackrel{1}{\rho k v} \sinh k v t \tag{23B}
\end{align*}
$$

for

$$
\frac{X}{v}<t<\frac{2 X}{v}
$$

and

$$
\begin{align*}
\xi_{x=0}= & -\frac{1}{l_{1}}\left[\left(\frac{c_{11} k}{\rho}-\frac{c}{\rho v}\right) \cdot \frac{1}{k^{2} v^{2}}(1-\cosh k v t)+\frac{e_{11} P_{0} v}{v}\left(\begin{array}{c}
1 \\
r
\end{array} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r t}\right)\right. \\
& \left.-\frac{c}{\rho k v^{2}} \sinh k v t+e_{11} \phi_{0} t-2 \pi P_{0} e_{11} X^{2}\left(\frac{1}{r}-\frac{1}{r} e^{-r t}\right)\right] \\
& -\frac{e_{11} P_{0}}{l_{11} \rho}\left[\frac{1}{r} t-\frac{1}{r^{2}}+\frac{1}{r^{2}} e^{-r t}\right]+\frac{1}{\rho k v} \sinh k v t \quad \text { for } t<\frac{X}{v} \quad \ldots \quad(\vdots \tag{23C}
\end{align*}
$$

Evidently the response omittod by the transducer is by and large similar to tho one discussed earlier at the point $x=\frac{X}{2}$.

The response is evidently zero at $t=0$.

Disousbion

It is cloar from oach of the abovo oxpressions that the mechanical response of the transducer owing to prescribed oloctric excitations is dominated by tho decay factor in the polarization gradient, whatever be the range of timo. Moreover, for a large decay factor the responses do not exhibit the transient characteristics and romain uninfluencod by the polarization constant. In the genoral caso, it is obvious from above, the effects due to the prescribod polarization are not coupled with those due to prescribed diffusion Further, while the proscribed polarization gradient accentuates the damping part of the rosponse, the diffusion does not necessairly do so, for large values of r and k.

All those facts bring out some of the physical aspects of the viloration of the transducer which will hold with or without numerical calculations.

Acknowledglement

The author expresses his gratitude to Dr. D. K Sinha for help and guidance whilo proparing the paper

Refrrences

Chukraborty A. 1968 Prajnan, 2, No. 2 \& 3, 37.
Chakraborly A 1969 CZEC , Jour. Phys. 18-19, 131.
Das N. C. 1967 Ind Jour. Theor. Phys., 41, 611.
Filıpezynski, 1. 1956 Proc. Conf. Ultrasonics, Pol Acd. Acs., Warsaw, 29.
Girı R.R 1966 Roum I'echs. Scs., 11, 253.
Mason W. P. 1948 Piezoclectric crystals and theur applications to ultrasonics, D Van Nostrand Co. Inc. New York.
Redwood M. 1961 Jour. Acoust. Amer, 38, 527
Sinhe D. K. 1965 Ind. Jour. Theor. Phys., 11, 93.
Sınha D. K. 1967 Proc. Ind. Acad Scs. LXV, 136.
Sinha D. K. 1965 Proc. Natl Inst. Sc. Ind. 31A, 395
Swann W F. F. 1950 Jour. Frank. Inst., 210, 250.

