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Linear flow of heat in a semi-infinite-finite solid
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A problem on conduction of hieat, in semi-mfimio~finilo solid hag been solved follow g
Heavisdo's  Oporationsl method  Unlike Laplace transformation methods which
wvulve comphiecated transformations and solutions, the prosont mothod finds tho
correet solution m a sunplo way.  Expressious for tomperatwo distubution i a finite
and wfinito sohd aro camly obtained  Speecwal cases of a thin film attached to a long

solid having wide applicatsons m Engiucoring to the theory ol thm films huve beon
worked out {rom the general thoory.

IxrrRODUTOTION

In solving the general problem of heat conduction through a senu-mfinite-finite
sohd we take the following simplifying assumptions.

1 Heat flow through the solid is linear c.e., one dimensional.

2. The media in the two regions aro isotropic as regards conductivity,
density, specifie heat.

3. We neglect the loss of heat m our calculations.

4. There is no thermal resistance at the point of contact. Symbols used
are as follows :

vy, by, py, ¢; and ky are the temporature, conductivity, density, specific heat
and diffusivity respectively, in the finite region, i.e. —l <z < 0, and v,, ks,
s € and ky are the corresponding quantitics in the infinite region, ie. z > 0.

! = Length of the finito rogion.

@ == Variable measured along the dircction of propagation of heat-flux.

V = Temporature of the source, i.e. al z = —L.

{ = Variable time, and

d
D=3,

METHOD OF SOLUTION
The differential cquations to bo solved are

v, 1 dv,
ey il —i<a<b >0 M
%, 1 du,
o "h ot = 220 =0 @
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Assuming that thore is no contact resistance at the surface of separation

2 == 0, tho boundary condibions are

lc1 0-”1— k, 01), s z =0, t>0 o (3)
vy == Uy, z=0, t>0 ()
With initial temperature zero and @ = —/ kept at ¥ or ¢ > 0 equations (1)
and (2) in operational form becomes,
o, D _ 0
o T T <z< )
Oy D i
= 0 z 0 ee
0ny By > (6)

Let us put ’f) = ¢,% and ]? == ¢,* then the equations (5) and (6) become
1 2

0%,

({j 3~y =10 e (D)
ik

a: q, Uy == 0 .. (8)

The solutions of equations (7) and (8) arc
v, = 4 cosh g,z + B sinh ¢,z . 9
]
vy = C cosh gz-+D sinh g,z .. (10)

Where 4, B, C and D constants to be dctormined from boundary
conditions in (3) and (4) and are as follows :

A= _L____
cosh gyl ’q” *sinh g,

kg, V
" Tugy cosh g1+ Fyg, sinh g,

eV
kyq, cosh gl .k, sinh g,

D= . ke
" kg, cosh g1+ Ty, sink ;1
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Now substitution in equation (9) and (10) yields

cosh ¢,z—0 sinh ¢,z

w=V & ¢,0+0 sinh ¢, o1
v e—1:%
%=V g, T sinh gl ao1)
where o is a constant and given by
= Koy _ [ kapycy |\
7T ke T (Eb}c_l)
ixpanding the hyperbolic sines and cosines and simplifying,
o = L om0 we )
1 (1—m e 21
_ 2V ¢TW® el
= Yo (1—m e—2000) o (12)

a—1
where m = ~—, a constant,
o+1

To know the variation of v, and v, with {ime we express ¢, and ¢, in terms
of D, operating on Hoeaviside umit function H(t) and remembering that

o =o, 1 <0;
H(t)y =1, t>0.

the equations (11) and (12) turn out to be

v, = V{e= DN E+D )y gD+ BII() 20 =DV o+ (el 1.}
— {me—DM =)/ () |2, —DVBI—)/ (W) |_py3g— DNEI=2) )y Y H() ... (13)

x 3 z k)]
w= 2 [P { G} e (it

1+
T b1
4mr. e {(7?)7+(h£)*} + .. ]H(t) . (14)
e (2n+1)l+2 (2n+1)l—=
vy = V”,L—o(m)u{ erfc T N] ! —m. erfo’ St } .. (18)
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o4
2V = . [ kx4 (2n-F1) '
and vy = l-Fo',,El (m)" orle { T } .. (16)
hy \#
where k= ( h: )
Again, the tomperature gradiont at the surfaco is found {0 be
212

90, ) - Y []—}—2 M) ('m)"e—ghn_l] e (17)
dr /.7 T (mhyt)

For large value of time the cxponential may be replaced by unity and we have

v, v , -
( s )z == {14-2m(1+m+n-...)}
14 2m
= _-(Trh,lt)'= ( 1—m )
R 4 kapyc, \ b 1
T (mhyt) (kxpxcx ) - (18)

The equation (18) is n agreement with that obtained by Carslaw & Jaegar
(1959) who used this equation for a correct estimate of the age of the carth. Taking
tho case of granite and air as the composition of earth and the surrounding thin
Cy |4 .
film of air, the quantity( Ikiz—’;z:—’ ) comes out to be nearly 450. A similar
1F1¥1
obscrvation was made by Carslaw & Jacger

SerciaL CASES

Cuse 1. When [ is small, that is, when a thin film of another substance is
attached to the semi-infimte mediun, expanding the hyperbohe functions and
retaining only upto the first power of I we have from equation (10-1)

V_ o LA

—_ 1

—_— e —— ' —— k
Vy = 1-Fogd ¢ = i¥e, , where h = i

o~

The Operational solution of the above equation will be

= s X hahath? z
Uy V[crﬁ, ()t ¢ ixcrfc{ 2(—,‘2!? +h(},,z¢)l}] e (19

The oquation (19) is computed by using the following data :

The material of the film is cork of conductivity %, = 0-0001 and diffusivity
hy = 0:0014. Tho second material is taken to be copper whose conductivity
k, =093 and diffusivity h, =1-14. The temperature v, is calculated in
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the specimen at different distances z = 10 om, z = 50 c¢m, z = 100 cm, aftor
onc hour when the temperature is assumed to be steady.

A theoretical graph is drawn between the film thickness vs. tcmperature on
the infinite region at different distances. This is shown in figure 1, At a

Ti=iooCM
i=s0CM
k=10 C™

g

Ve /V X 10000 -
-3
Q
o
T

g

o 02 04 06 08 0
FILM THICKNESS IN CM ~—e

Figuro 1

given value of x increasing the film thickness decreases the value of temperature
At low value of thickness, in all the three cases, the temperature rapidly falls to
a lower value.

Cuse 2. Retaining the terms upto 12, we have fiom equation (10-1).

e—q.% T e~ 1% — LV G_E.
" V‘”_F_"’?_B‘_;] = e ) g1 " heeatn
by 2,
2,
where b= L fhli .
il |
v, =3 el . (20)

: 1 h
2
[qn +hl q2+hl ]
Now two case may arise :

1. When the roots of the equation g2+ ;‘-,q,-l-’;;, =0 are real and unequal,
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1.e. when (;7)2> Z{" and given by
1 l_’ 2 k'
(o= ¥ i{(hzl__h}_

then by the method of partial fraction, equation (20) becomes

114 [l [k
= e 2 20-1
= W(f=a) { tta  gtp } @01
The Operational solution of the equation (20-1) will be
—_ kY 1 . g !_ az-hata®
”*“E'(T—?)[E orle g e ¢
z 1 x
X crfc{ S +a(hyt)t }_B erfe 3(hg0)t
1 '
. . PTthatp? el 20-2
g - BT nrfc{2(’ i A }] (202)

I1  When the roots of the equation g,2+4 hl, qﬁ-”% =0 arcreal and cqual

i.e., when (;L )2= :" or 4hh’ = 1.

] —

— = —fl= — -

[
=

then the equation (20) can be written as
[/

v ('l:'l' 2151 )2

v (20 3)
The Operational solution of v, in equation (20-3)

z2?

vy = TV [ 4h'2 erfe 5k t)(—4h"(h2t) e "dhy

z’ _I_L?;;
—at 1_2_;;_3;»;:) o  orfo { 2(;7),%;:&}]
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"’2:"%}1 4 ["'"fc N0 hl(’;,“t)* i
_( 1- g5 _f‘h}% ) 1t 4%) X crfc{ 2(hgl)t '|-(ﬁ2}:t)l”

Since 4hh' = 1.

ot \4 - 5
fc2(h2t)l (T)'e Ahat

=7[er
_( 1— .2% _-h’:— )3(2;"_ +4’;":‘) X erfe

@ (k) }] . (204)

{ 2(hhyF oW

CoNcLusroN

The equations (19) and (20) give approximately the temperature at any
depth in tho semi-infinite region bounded cither by a thin film or a film of finite
thickness having definite thermal capacity. The cquation (20-4) shows that
the temperature ¢, is independent of the conductivity of the thin film, This
clearly indicates the development of new thermoplastic deviee satisfying the
condition Ak’ == 1, i.e. kypocy = 2k pyc,

Further work on the heat flow in composite solid in which the condue-
tivities vary with distance and the rate of heat production also varies with
depth is under consideration
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