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R o d i ic o d  e x p a n s i o n s  o f  e le c t r o m a g n e t ic  fie ld s  a re  d e r iv e d  in  te r m s  ol ir r e d u c ib le  le p r e -  

HPiitatioiia o f  p r o p e r , o r th o c h r o n o iis , in h o m o g c iie o u B  L o r e i i t z  g io ii])  in a n g u la r  m c im e n tu m  

b a s is . T h e  s e c o n d  q u a n t iz e d  e x p a n s io n s , d e r iv e d  b y  le p ln o in g  p h o t o n  w a v e fu n e t io n s  

a n d  th e ir  c o m p le x  c o n ju g a t e s  b y  a n n ih i la t io n  a n d  c r e a t io n  o p e r a t o is  in  th e  red u c e d  

e x p a n s io n , a r e  g iv e n  in  t e r m s  o f  v e c t o r  sp h e r ic a l h a rm o n ic a  w ith  a n n ih i la t io n  a n d  c r e a ­

t io n  o p e r a t o r s  a s  a m p li t u d e s  F o r  c a lc u la t in g  th e  in te r a c t io n  !H a n u lto n ia n , w h e n  e le c ­

tr o m a g n e t ic  fie ld  is  c o u p le d  t o  a n  a i o m ,  th e  s e c o n d  c p ia n tize d  e x p a n s io n  o f  Ih r c o  

c o m p o n e n t s  tr a n s v e r s e  e le c t r o m a g n e t ic  v e c t o r  p o t e n t ia l  is u s e d  t o  a v o id  f ic t it io u s  p h o t o n s  

o f  h o iic i ty  o th e r  t h a n  (s p in )  a n d  s u b s id ia r y  s t a t e  v e c t o r  c o n d itio n  a n d  t o  o v e r c o m e  

i h c  d if f i c u lty  o f  v a n is h in g  a m p li t u d e  fo r  e m is s io n  or a b s o ip t io n  o f  p h o to n  a s  p - > 0 .  T h e  

H clootion  r u le s , d o r iv e d  m t h e  r e la t iv is t ic a lly  q u a n t iz e d  m a n n e r , are  id e n tic a l w it h  a lr e a d y  

k n o w n  s e l e c - t i o n  r u le s  f o r  c la s s ic a l r a d ia t io n  fie ld s , e x c e p t  t h a t  h e r e  th e  p h o t o n  ttdees  

or s u p p lie s  a n g u la i  m o m o i i t u m  t o  c o n s e r v e  th e  t o t a l  a n g u la r  m o m e n t u m  o f  th o  s y s te m .

I n t r o d u c t i o n

Jt lias been shown by Koba, Tati & Tomonago (1947) and Schwinger (1948) that 
tf) jiass over from the Hei.senberg i-cprescntation to the interaction representation, 
tlic supplementary condition due to Fermi for llie eicctj’oinagnetic field has to be 
modified by adding a charge term beeaUHo this condition involves one difficulty 
tliat there is no normalized state which satisfies it, as shown by Ma (J949) and 
Rclinfante (1949). To overcome this difficulty, Gupta (1950) has given a new 
treatment for the longitudinal part of the elefstromagnctic lield where an indefinite 
metric has been used for scalar photons. Weinberg (19G5) preferred to avoid 
mdefiiiite metric and photons of helicity other than j  (spin) by treating them as 
the rough conclusions of the fact that no symmetric tensoi" fields of rank j  can be 
coustmeted from the creation and annihilation operators of massless particles of 
spill j. He further proved that the most general covariant field that can be cons- 
ti'ucted from such operators cannot represent real photon interaction because they 
give the amplitudes for emission and absorption of mas.slcss particles which vanish 
iks p-' for momentum p-^0.

The transformation of the first order Loreiitz gauge formulation into the radia­
tion gauge was done by Schwinger (1963) by decomposing the complementary 
holds into longitudinal and transverse fields and by eliminating tho longitudinal 
holds (spill-zero components) from the physical quantities This elimination of
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longituflinal fields is always advantageous for the ph5?̂ sical system containing 
photons, as proved by Weinberg (1964) that the zero mass has a special kind of 
djmamical self-consistency for spin-1 (transverse j>art) which it would not ha\c‘ 
for zero-spin (longitudinal part).

To avoid the use of fictitious photons of helicity other than j  or the inde6nit,o 
metric and subsidiary state-vector conditions and to overcome the difficulty oi 
vanishing amplitude for emission or absorption of photons as avg use
here the three components transverse electromagnetic vector potential, curl of 
which gives the fields, for the study of interaction of electromagnetic fields For 
this purpose we use our results of reduction of electromagnetic fields, in linear 
(Rajput 1970a) and angular (Rajput 1969a) momentum basis, to the irreducible 
representation of proper, orthochronous, inhomogeneous Lorentz group TIiceo 
results have been derived by using our results for the reductions of antisymmetric 
tensor (Rajj)ut 1969b, 1969c) scalar (Rajput 1969d) and three-components vector 
(Rajput 1969e) fields. Using these results, we also derived the reductions ol 
genci’alized electromagnetic fields in presence of magnetic monopoles, for zero 
(Rajput 1970b) and nonzero (Rajput & Singh 1970) mass systems. Tn all these 
reduced expansions we decomposed the complementary fields into longitudinal and 
transverse parts, and omitted the longitudinal and scalar parts by setting tlicni 
equal to zero for the physical systems.

To second quantize the electromagnetic fields the photon wavefunctions and 
their complex conjugates, in their reduced expansions on angular momentum 
basis, are replaced by annihilation and creation operators. Using these second 
quantized reduced expansions the interaction Hamiltonian, for the study of intc] - 
actioii of electromagnetic fields Avith atom, has been calculated. The selection 
rules dci‘i\"ed here are identical to those derived by Blatt-Weiskopf (1952) and Rose 
(1957) for classical fields, except that here the photon takes or supplies the angular 
momentum in order to conserve the total angular momentum of the atomic system 
The probability of the emission of a photon by an atom is proved proportional to 
(a-|-l) where n is the niimbei* of photons of a given kind in the interacting field, 
This explains the si)ontaneous omission, since the probability for no photon m 
tli(̂  system is different from zero. Using similar x)rocedure we have derived similai' 
results for linear momentum representation in an earlier pajjcr (Rajj)ut 1970o)- 
Our procedure, in contrast Avith that of Davydov (1965), is completely relativi.stu! 
where iffioton AÂ aAndunctions are introduced explicitly.

PvEDTJCTTON OF ELEOTROMAGNE'no FIELDS IN ANGULAR MOMENTUM BASIS

In the angular momentum basis a wavefunction is given in terms of magui' 
tiude. of linear momentum p, the total angular momentum quantum immber 
the quantum number m of ,/g (the z-components of angular momentum) and tlie 
ludi(!ily d In this basis the reduced expansiomt of electric and magiietjc fields 
arc defined as (Rajiiut 1969a),



Nvliei’p
t )  =  t ) + H ^ * [ t t )  . . .  (1)

E i ( x , t )  —  — 4 n l{3 ir ) ' ‘  2  ^(/}) £  £  pxp m/2)J
\ - ± U i ^ O , ± l  h « i n i ^ - K

X 4>) (j>) 0)

X J dpjp. jkipr) F{p, k, m. A) exp(-i^ i) ... (2)
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and

y /i(.T , 0  —  — 47r/(37T)^ S  ^  (/^) 2  ^  A(?:)*“ ^+^ e x p  { w ( A — ?w /2 )}
X = «^ i /J=0, jt;!- fc=l 7W*=

X /  dplp.ji;{pr) F(p, k, m, A) exp (—ipf) ... (3)

\vlierc F(p, k, m . A) is the wavefunction of the photon and xift)  ̂vector having; 
the foJlowdng components

^ /9 )-(2 )fr(l,iy9.0 ) for / / =  ± 1

^0) =  —i(0, 0, 1) for /y =  0

YC’̂ \0,^) etc in equation (3) are the generalized spherical harmonics for 0,(j>
—̂

as the polar angles of the linear momcntiiin vector p given by

p =  p(siu 6 cos sin 0 sin (f>, cos 0). (15)

jkipr), for r =  1^|, is spherical Bes.sel function of order k, and S. ^ arc the polar 
—>

angles of the vector x.

Using the transposition theorem of generalized spherical harmonics wo have

ij,) =  0).



iSubstil-usiiig tlicsc results in equation (2) we get

e J x , i) =  -4 (7 t/3)* S  2  ^ /? )  S  S
x=.±l wt—fc

X (/>) (j>) 0) 0)

X J i*r(F’) k, m A) exp(-«:jo/) ... ((i)

On f'X]iaiiding the product and using the ortliogonality I'elations for the gciicM'ii- 
lized spherical hannouics, we get

k-\ 1
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and
X(i.O, 1, Alt , 1, J. ... (7)

/  d<j> ,f d o  sill e  ,6) e , , r K ,  . .  (S)

In equation (7) CJobsch-Gordan coefficients are used in the form (j, m, 
j , f ,  J, M).

AVhen equations (7) and (8) arc substituted in equation (6) it is reduces to, 

A\(^«) =  (2)i 2  S ^ (j)J-m+i
\ f c = l -k

xr^fc.A»n(^i0) J pfi'PJkiP̂ ') F(p, k, m, A) exp {-ip t}

-iA[i/(2/v;-l-l)}  ̂ S P<^Pjfc+iipr)F{p, k. m, A) exp { ~ i p i }

+?A{(*-f l ) / ( 2 ^ * - | - l ) } ^ {̂0,</>) J pdpjk~i{pr)F{p k, m, A) ex p {-ip /}l ... (9) 

where the vector spherical harmonica j. ^ (̂ > ?̂ ) tre defined as

I'j, f , m('?. 0) =  2  (O ^+W ) jT)(l:', m. 1, A IJ M , A/)?n,0

In deriving equation (10) we have used the values of Clobsch-Gordan cooffieients. 
Tn a similar manner the reduction of magnetic field also can be derived as the 
following expression

H,{xJ)=^{2)i S I: I
\ fc-i 7h«-A:

X [A Tft, ft. J0 ,0 ) J pdpjkipr) F(p, k, m, A) exp { -  ipi}

-i{i-/(2J;+l)}* r*, (,+j, „(0,5i) J #jt+i(;>»-)A'(p, ft, «i: A) exp {—ipt], 

+ i{(J+ l)/(2J ;+ l)}tr* ,4 .i_„(0 , A'(y, fc, m. A) exp{-»i>«}l (1<>)
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riio tlireo-dimensional vector pc>tontia] A{x, i) of t'lectroinngnctic field is given by

E{x, t) ~  A{x, 1)

lJ[x, t) — curl A{x,t) (j ])

Using csqiiatious (9) aiul (10) 111 equation (11) the reduetiou of electromag­
netic potential to the irroducililo representation of inhomogeneous, orthochronous. 
propel Loreiitz gi'oup in angular niomentimi ba,sis can he derived as the following 
(expansion

)̂ “  (2)1 s i s  (i)Â -w
X=±l h't 1 ni''~k

"< [Y k,k ,n i J d2Jjk{p>) E {2 h  k , m . A ) e x p ( ~ / ; i O  

—  ? A { A : / ( 2 A : - b l ) } l  0 )  J i ( p r )  F ( p ,  k wn A) e x p (  — ip ^ )

^pjk-j(pr) F{p, A) cxp(-ip01 (12)

where

Â {x\ *)H-^I(a:', t) ^  A{x\ t)

The vector spherical harmonic Yic,k,vi{0, )̂ iii equations (9) and (10) which 
corresponds to the angular momentum (][uantum miinhor k of total angular mo­
mentum J and the parity (—1)'̂ +̂  can he considered as transverse magnetic vector 
spherical function. The transverse electrical vector spherical function which 
corresponds to angular quantum nunihcr (/c+1) and parity (—1)'̂ +̂  can he consi­
dered as

yk,k’m{{e, 0) -  \l{2J-]~mJ{JA~l)iYk,kn,m{0, 0)-h(J+l)(./)!Fĵ ,A:-i,̂ (d, 0)]
The longitudinal and scalar functions, which are derived from the scalar electro­
magnetic vector and the fourth component of vector electromagnetic potential 
corresponding to A — 0 in the reduction, do not coutrilmtc at all so far so as physi­
cal effects are ooiicernod.

S e c o n d  q u a n t i z a t i o n  o r  e l e c t r o m a g n e t i c  f i e l d s  i n  a n g u l a r

M O M E N T U M  B A S I S

To second quantize the electromagnetic fields in the angular momentum re- 
prosentation^ the photon wavefuiuition F{p, k, v?i-, A) and its complex conjugate

in the reduced expansions of E{x, t) and H{x, t) are replaced hy annihilation and
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Cl cation operatorb' h{'p, k, m. A) and k, w, A), respectively. These operators 
satisfy the following commutation rules

[b (s), b (s ') ]  == [6 * W , 6* (5 ')]  =  0
[6(5), 6*(s)] =  8(p-p')Sk,ic'^mm ... (13)

where s denotes the collection of variables p, h, m and A. In terms of these opera­
tors the Hamiltonian H and number of operator N ai-e given as follows

H  ^ \ I 2 ^  J [b * {s )  b {n )+ b { f i )b * { .9 )]d p

=  s  s m m ^ ) + m d p
X

J[n(s)+l/21dp

N =  (2)-i S f r6‘(4)6(a)+6(«)6*(«)] ̂  
X P

- S / [ 6 » 6 W + l / 2 ] ^ f  
X P

(14)

S /W * ) + l /2 1 ^ (15)
X ■ P

where n(A‘) =  ft*(s)6(s) is the operator of the number of photons with variables de- 
noted by s. The poynting vector operator P  can also bo expressed in terms of 
annihilation and creation operators, as follows

P  ='^87r)-32 1 /2 J [b*{.s)b{s)+b{s)b*{8)]dp

-  e(877)-32 J [6 *(s)6 (.s) +  l/2]dp
X

=  e(87T)-32 J \n{s)-\-ll2]dp
X

— >  — >
where c is unit vector in the direction of P.

The w-particle basis vector for second quantization, in the angular mo 
mentum basis, is given by

=  _^(«i)i*(«a) ■■■ H«,i) I 0 >1 1̂, flo, ..., >
> !)* ■

( 16)

whore ] 0 >  designates the vacuum state.

For the photons with well defined quantum state the equation (16) reduces to

= |0>l«l, «„ > {n\)i



The annihilation and creation operators act upon these })asis vectors (kets) 
in the following manner

+  |si, Sa, s::> ... (17)

(̂'̂ ) Ui, ..., >  ... (18)

I n t e r a c t i o n ! o f  e l e c t r o m a o n e t u  ̂ f i e l d  w i t h  a t o m

The number of photoms in the system contamiiig clectrieal charge is not cons­
tant as the photons can be emitted or absorbed Here we study the interaction 
between the electromagnetic fields and an atom assuming that the system is at 
rest.

Neglecting the interaction, the Hamiltonian //(, of the system (atom and the 
field) is the sum of radiation and atomic JIamilonians

- 0̂ — lla-\-Hrad

udiero Ha is the Hamiltonian of the atomic system and is field Hamiltonian 
ojjorator given by equation (14).

The interaction Hamiltonian for the present case is of the form A{x {̂y).v, 
—►

whore is a polar vector which is a function of atomic dynamical variables. The
—N

vector V may also be regarded as a first rank tensor, the average value of which 
tor intitial and final atomic states gives cuiTent density. Using this value of inter­
action Hamiltonian operator form, \û, can study the emission and absorption of 
photon by an atomic system.

Emission Let the initial state ] of the system Avitliout interaction be 
considered as containing the atom and ?t(s) photons, and the final state | 
alter the interaction as containing the atom and {/!.(.'«■)+ 1} photons Thus in the 
interaction the atom emits one photon Avith momentum p, other (piantuni 
numbers being k, m and parity n. Then

\ ilf j> = \ V >  \ r̂t> .. (19)

whore | K > is the field state containing n{s) photons and [ designates the initial 
atomic state with quantum numbers mi and ffi for the total angular momentum,
3-component of angular momentum and parity, respcctiA^ely.

Interaction of electromagnetic field with matter 575

m

where \s> is the field state cuntaining {'/ (̂-5)- l̂} photons and [ i/ry> designates 
the final atomic state Avith corresponding quantum numbers kf, mj and tt/.



Tbc matrix elcmoiit of iiitoreat for emission is given by 

<  I A{x, 0 ) . ^ ;  I jjrF >

<i/rf\ <  A’ 1 0)^1 V >

^  +  < 7 / / /|  Y * i c , k , n i { 0 ,  4>) T v  I ^ / >

^ a { ( A : + l ) / ( 2 ^ - [ - l ) } y f c - i W  <i/rf\  0 ) .  J
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(21)

where wc have used equation (17) from which it is clear that only A* {̂x, 0) part of 
—>

A{x, 0) (Joiitributes to interaction Hamiltonian lor emission, while the other part, 
—►

i c. d,(,r, 0) contributes to the Hamiltonian for absorption. The matrix element 
given by eapiation (21) consists of the terms like

Y*/c,k',m{0, (j>). V I \^ri> ,  { y  =  h, ^ : J ^ 1 )

which can also be Avritten in tenus of tpiantum numbers of the initial and final 
states as lollows

h j ,  m j ,  TTf I Y * / c , k , v H n ) { 0 ,  <j)). V  I k u  V i i ,  7 T i > (22)

where

7^k)k iinin)- is an irreducible tensor of rank k.

Applying Wigner-Eckart theorem, it is clear that only those niati’ix elements 
like (22) are noiivanishing for whicli following sehiclion rules arc satisfied

ki — kf+k, kfA-k—\, \kf~k\ ... (23)
mi =  ... (24)

—►The parity of irreducible tensor 7 ”'̂ -,̂  , ( —J)'̂ ''̂ 7ry for electric multipole
—►

and ( — IYttv for magnetic multipole where (the parity of the vector v) is (—1) 
since it changes sign under reflection of coordinates and the operator for it 
anticommutes with parity operator Thus the parity selection rules for photon 
emission are derived as

TijiTi — (—l)-̂  for electrical transition
TT/TTi =  (—1 ) ' ^ for magnetic transition ... (25)

The probability for the emission per unit time in the transition from | ^ />  
to 1 [lry> is proportional to the square of the matrix element (21). Hence, it if̂  
I>roportiona] to {a(6‘) +  l}, which is nonvanishing even for w(s) =  0. The quanti­
zation of the (’leoti'o-magnetic field thus exjilains the occurronco of spontaneous



Absorption. For absorption we consider the transition from the initial state 
I if I >  given by equation (19) to final state [ of the system containing the 
atom and 1} photons

\ fv > ^ \ n '> \ f/ >  ... (26)
where | « '>  =  | Ji, jg ... 6r„_i>

The matrix element of interest in this ease is 

< f t \  <^'lA(^0).l^|F>|v5r4>

=  (2)‘ «W «)r^P (i)*-T O j»-) <  fs  I 4>) ^  I h >

—i {̂tcf{2k-\-l)Yjjc+i(pr) <  ijrf\ |\̂ ^̂ >

H-iA{(/c+l)/(2*+l)}y*_i(pr) 0). V ... (27)

By a similar method as discussed for emission, we get the following selection 
rules for absorption

kf =  ki~\-k, kiAk—1, \ki—k\ ... (28)
nif = . . .  (39)

The probability tor absorption is proportional to the number of photons of a 
{iiven Jdnd in the initial state

D i s c u s s i o n

The reduction of electromagnetic fields to the irreducible representations of 
pjopei' orthochronous inhomogeneous Lorontz group in angular momentum 
hasiB is given by equations (9) and (10) in terms of the wavefunctions of particles 
of 7.CVO mass and spin-1 (transverse photons). On replacing tlie photon wave- 
functions and their complex conjugates in these reduced expansions by annihila­
tion and creation operators, a covariant second quantized theory is obtained in 
jmrely relativistic manner. The second quantized operator A(x, t) derived in this 
maimer is a'covariant quantized analogue to the expansion in multipolc of classical 
tlieory duo to Blatt & Weiskopf (1952) This quantized reduced expansion of
4̂(.r, t) in terms of vector spherical harmonics, with annihilation and creation 

operator as the amplitudes, is used for calculating the interaction Hamiltonian 
to avoid the use of fiotitious photons of helioity other than i  j  (spin) and to over- 
t̂ oiiie the difficulty of vanishing the amplitudes lor photon emission and absoiption

the momentum p —> 0 (Weinberg 1965).

The probability of photon emission is proportional to the square of the matrix 
1̂‘h‘jiicnt given by equation (21) and thus, consists of two terms The first term 

mdependent of the number of photons in the electromagnetic field before emis- 
*icii and gives rise to spontaneous emission because it is nonvanishing even if there
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is no photon inii îally. The second term, which is proportional to the number of 
photons in the interacting field, gives rise to certain induced emission. The pro­
bability of absorption of a jihoton, given by the square of matrix element ni 
equation (27), depends on the energy of absorbed photon and is propoi'tional to 
tlie number of photons in the interacting electromagnetic field. The ratio of the 
probability of photon omission to that of its absorption is, therefore, propor­
tional to {w(a’) +  1}/{^('^)}

The selection rules for emission and absorption of photons by atoms are identi­
cal to those derived by Blatt & Weisskopf (1952) classically and to those derived by 
Davydov (1965) non-relativistically, except that here the x)hoton takes or supplies 
angular momentum, in order to conserve the total angular momentum of the system. 
Wo thus got the parallelism between the classical and quantum theories of radiation 
in angular momentum basis The similarity of the selection rules verificss the 
validity of reduction of electromagnetic fields given in equation (9) and (10) t(' 
the irreducible representation of proper, orthochronous inhomogeneous Lorentz
group on angular momentum basis because in calculating the intoi’action Hamil-

—>
tioniau we have used tlie reduced expansion of A{x. t) derived from these expansions 
Moreover, this similarity of the selection rules for interaction of electromagnetic 
fields with atom suggests the use of this relativistic quantized procedure in the 
study of interactions ol‘ electromagnetic field with molecules, nuclei and elementary 
particles. The procedure being a relativistic one aviH pi'ovc itself more 
advantageous and straightforward.
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