Interaction of electromagnetic field with matter (angular momentum basis)

By B. S. Rajput
Department of Physics, Kurukshctra Universty, Kurukshetra

(Received 22 December 1970)

Abstract

Roducod oxpansions of electromagnetic fields are derived m terms of irreduciblo representations of proper, orthochronous, mhomogencous Lorentz gioup in angular momontum basis. The seeond quantized expansions, derived by replaeng photon wavefunctions and their complex eonjugatos by anminlation and creation operators in the reduced expansion, are given in terms of vector spherical hamonies with anmihilation and creation oporators as amplitudes For calculating the interaction Hamitonima, when electromagnetic field is coupled to an atom, the second quantized expansion of three components transvorse elechromagnotic voctor potential is usod to avord fictituous photons of helicity other than $\pm \jmath$ (spin) and subsidiary state vector condition und to ovorcomo the difficulty of vunushing amplitude for emission or absorption of photon as $y \rightarrow 0$. The selection rules, dorived in the relativistically quantized manner, are identical with already known aclec- tion rulos for classical radiation fields, excopt that here the photion taksos or supplies angulas momontum to conserve the total angular momentum of the systom.

Introduotion

It has been shown by Koba, Tati \& Tomonago (1947) and Schwinger (1948) that 1,0) pass over from the Heisenberg representation to the interaction ropresentation, the supplementary condition due to Fermi for the electromagnetic field has to be morlified by adding a charge term because this condition involves one difficulty that there is no normalized state which satisfies it, as shown by Ma (1949) and Belinfante (1949). To overcome this difficulty, Gupta (1950) has given a new treatment for the longitudinal part of the electromagnetie field where an indefinite metrie has been used for scalar photons. Weinberg (1965) prefcrred to avoid mulefinite metric and photons of helicity other than $+j$ (spin) by treating them as the rough conclusions of the fact that no symmetric tensor fields of rank j can be constructed from the creation and annihilation operators of massless particles of spon j. He further proved that the most general covariant field that can be constriucted from such operators cannot represent real photon interaction because they give the amplitudes for emission and absorption of massless partieles which vanish as p^{ν} for momentum $p \rightarrow 0$.

The transformation of the first order Lorentz gauge formulation into the raduaHoll gauge was done by Sohwinger (1963) by decomposing the complementary fields into longitudinal and transverso fields and by elimmating tho longitudmal fields (spin-zero components) from the physical quantities This elimination of
longitudinal fields is always advantageous for the physical system containing photons. as proved by Weinberg (1964) that the zero mass has a special kind of dynamical self-consistency for spin-1 (transverse part) which it would not have for zero-spin (longitudinal part).

To avoid the use of fictitious photons of helicity other than j or the indefinite metric and subsidiary state-vector conditions and to overcome the difficulty of vanishing amplitude for emission or absorption of photous as $p \rightarrow 0$, we use hore the three components transverse electromagnetic vector potential, curl of which gives the fields, for the study of interaction of electromagnetic fields For this purpose we use our results of reduction of electromagnetic fields, in himear (Rajput 1970a) and angular (Rajput 1969a) momentum basis, to the irreducible representation of proper, orthochronous. inhomogencous Lorentz group These results have beon derived by using our results for the reductions of antisymmetric tensor (Rajput 1969b, 1969c) scalar (Rajput 1969d) and three-components vector (Rajput 1969e) fields. Using these results, we also derived the reductions of gencralized electromagnetic fields in presence of magnetic monopoles, for zero (Rajput 1970b) and nonzero (Rajput \& Singh 1970) mass systems. In all these reduced expansions we decomposed the complementary ficlds into longitudinal and transverse parts, and omitted the longitudinal and scalar parts by setting them equal to zero fur the physical systems.

To socond quantize the electromagnetic fields the photon wavofunctions and their complex conjugates, in their reduced expansions on angular momentum basis, arc replaced by annihilation and creation operators. Using these second quantized roduced expansions the interaction Hamiltonian, for the study of interaction of electromagnetic fields with atom, has been calculated. Tho selection rules derived here are identical to those derived by Blatt-Weiskopf (1952) and Ruse (1957) for classical fields, except that here the photon takes or supplies the angular momentum in order to conserve the total angular momentuin of the atomic system The probability of the emission of a photon by an atom is proved proportional to $(n+1)$ where n is the number of photons of a given lind in the interacting field. This explains the spontaneous emission, since the probability for no photon in the system is different from zero. Using similar procedure we have derived simdar results for linear momentum representation in an carlicr paper (Rajput 1970c). Our procedure, in contrast with that of Davydov (1965), is completely relativistric where photon wavefunctions are introduced explicitly.

Redocition of eleotromagnetio fields in angular momientum basis

In the angular momentum basis a wavefunction is given in terms of magutude of linear momentum p, the total angular momentum quantum number k, the quant um number m of J_{z} (the z-components of angular momentum) and the Inelicoty λ In this basis the reduced expunaion of electric and magnetic fields are defined as (Rajput 1969a),

$$
\begin{align*}
& \left.\left.\overrightarrow{E(x, t)}=E_{1} \vec{x}, t\right)+E_{1}^{*} \vec{x}, t\right) \\
& \overrightarrow{H(x, t)}=H_{1}(\vec{x}, t)+H_{1^{*}}(\vec{x}, t) \tag{1}
\end{align*}
$$

where

$$
\begin{align*}
E_{1}(\vec{x}, t)=-4 \pi /(3 \pi)^{\frac{1}{2}} & \sum_{\lambda- \pm 1}^{\sum} \underset{\mu=0, \pm 1}{\sum} \vec{\chi}(\beta) \sum_{h=1}^{\alpha} \sum_{m=0}^{k}(q)^{k \mid 1+\beta-\lambda} \exp \{i \pi(\lambda-m m / 2)\} \\
& \times Y_{k^{m, \lambda}}(\theta, \phi) Y_{1}^{\rho, \lambda^{*}}(\theta, \phi) Y_{k^{m 0}}(\hat{\theta}, \hat{\phi}) Y_{k^{m, 0^{*}}}(\theta, \phi) \\
& \times \int d p / p \cdot j_{k}(p r) F(p, k, m, \lambda) \exp (-i p t) \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
H_{1}(\vec{x}, t)=-4 \pi /(3 \pi)^{\frac{1}{2}} & \underset{\lambda= \pm 1}{\sum} \underset{\rho=0, \pm 1}{\sum} \vec{\chi}(\beta) \sum_{k=1}^{\alpha} \sum_{m=-1}^{k} \lambda(i)^{\lambda-\lambda+\beta} \exp \{i \pi(\lambda-m / 2)\} \\
& \times Y_{k}^{m, \lambda}(\theta, \phi) Y_{1}^{\beta, \lambda^{*}}(\theta, \phi) Y_{k^{m, 0}(\hat{\theta}, \hat{\phi})} Y_{h^{m, 0^{*}}}(\theta, \phi) \\
& \times \int d p / p . j_{k}(p r) F(p, k, m, \lambda) \exp (-i p t) \tag{3}
\end{align*}
$$

where $F(p, k, m, \lambda)$ is the wavefunction of the photon and $\vec{\chi}(\beta)$ is a vector having thir following components

$$
\begin{aligned}
& \overrightarrow{\chi(\beta)}=(2)^{t}(1, i \beta .0) \text { for } \beta= \pm 1 \\
& \overrightarrow{\chi(0)}=-i(0,0,1) \quad \text { for } \beta=0
\end{aligned}
$$

$Y_{l}^{\prime n \lambda}(\theta, \phi)$ etc in equation (3) are the generalized spherical harmonics for θ, ϕ as the polar angles of the linear momentum vector \vec{p} given by

$$
\begin{equation*}
\vec{p}=p(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \tag{5}
\end{equation*}
$$

$J_{h}(p r)$, for $r=|\vec{x}|$, is spherical Bessel function of order k, and $\hat{\theta} . \hat{\phi}$ are the polar angles of the vector \vec{x}.
Using the transposition theorem of generalized spherical harmonics wo have

$$
\begin{aligned}
& Y_{k^{m-\beta, 0^{*}}(\theta, \phi)=(i)^{2 \beta-2 m} Y_{k}^{0, m-\theta}(\theta, \phi)}^{Y_{1}^{\beta, \lambda}(\theta, \phi)=(i)^{2 \lambda-2 \beta} Y_{1}^{\lambda, \beta}(\theta, \phi),}
\end{aligned}
$$

and

$$
Y_{m^{\lambda, m}(\theta, \phi)}=(i)^{2 \lambda-2 m} Y_{k}^{\lambda, m^{*}}(\theta, \phi)
$$

Substilusing these results in cquation (2) we get

$$
\begin{align*}
& \left.E_{1} \vec{x}, t\right)=-4(\pi / 3)^{\frac{1}{2}} \sum_{\lambda= \pm 1}^{\Sigma} \sum_{\beta=0, \pm 1} \overrightarrow{\chi(\beta)} \sum_{k=1}^{\alpha} \sum_{m=-k}^{k}(i)^{k+1 \cdot \theta+\lambda+1-m} \\
& \times Y_{k^{\lambda,}, m^{*}}(\theta, \phi) \quad Y_{1}^{\lambda, \beta}(\theta, \phi) Y_{k^{m-\theta, 0}}^{m}(\hat{\theta}, \hat{\phi}) Y_{k}^{0, m-\beta}(\theta, \phi) \\
& \times \int d p / p, j_{k}(p r) F(p, k, m \lambda) \exp (-i p l) \tag{6}
\end{align*}
$$

On expanding the product and usmg the orthogonality relations for the generalized spherical harmones, we get

$$
\begin{gather*}
Y_{h^{0, n-m-\beta}}(0, \phi) Y_{1}^{\lambda, \beta}(\theta, \phi)=\sum_{J=1 k-1 \mid}^{k-11}\left[\begin{array}{c}
3(2 k+1) \\
4 \pi(2 J+\overline{1})
\end{array}\right]^{\frac{1}{2}}(k, m-\beta, 1, \beta \mid k, 1, J, m) \\
\times(k .0,1, \lambda \mid k, 1, J, \lambda) Y_{J^{\lambda, m}} \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} d \phi \int_{0}^{2 \pi} d 0 \sin \theta \quad Y_{j} m, n^{*}(\theta, \phi) \quad Y_{j^{\prime}} m^{\prime} n(\theta, \phi)=\delta_{j, j^{\prime}} \delta_{m, m^{\prime}} \tag{S}
\end{equation*}
$$

In equation (7) Clebsch-Gordan cocfficients are used in the form (j, m, $j^{\prime} \cdot m^{\prime}$ $\left.j, j^{\prime}, J, M\right)$.

When equations (7) and (8) are substituted in equation (6) it is reduces to.

$$
\begin{align*}
& E_{1}(\vec{x}, t)=(2)^{\frac{1}{z}} \quad \sum_{\lambda} \sum_{k=1}^{\alpha} \sum_{m_{m}-k}^{k}(i)^{k-m+1} \\
& \times\left\lceil Y_{k \stackrel{\prime}{\prime}, m}(\theta, \phi) \int p d m j_{k}(p r) F(p, k, m, \lambda) \exp \{-i p t\}\right. \\
& -i \lambda\{k /(2 k-+1)\}^{!} Y_{k ; k+1, m}(\theta, \phi) \int p d p j_{k+1}(p r) F(p, k . m, \lambda) \exp \{-i p t\} \\
& \left.+\imath \lambda\{(k+1) /(2 k+1)\}^{\frac{1}{3}} Y_{k, k-1, m}(\theta, \phi) \int p d p j_{k-1}(p r) F(p k, m, \lambda) \exp \{-i p t\}\right] \ldots \tag{9}\\
& \text { where the vector spherical harmonics } Y_{k, k^{\prime}, m}(\theta, \phi) \text { are defined as } \\
& Y_{h, k^{\prime}, M}(\theta, \phi)=\sum_{m, \beta}(i)^{\beta+1} \vec{\chi}(\beta) \quad Y_{k^{e^{m-\beta, 0}}}(\hat{\theta}, \hat{\phi})\left(k^{\prime}, m, 1, \beta \mid k^{\prime}, 1, k, M\right)
\end{align*}
$$

In deriving equation (10) we have used the values of Clebsch-Gordan cocfficients. In a similar manner the reduction of magnetic field also can be derived as the following expression

$$
\begin{gather*}
H_{1}(\bar{x}, t)=(2)^{\frac{1}{1}} \sum_{\lambda} \sum_{k=1}^{\alpha} \sum_{m=-k}^{k}(i)^{k-m} \\
\times\left[\lambda Y_{k, k, m}(\theta, \phi) \int p d p j_{k}(p r) F(p, k, m, \lambda) \exp \{-i p t\}\right. \\
-i\{k /(2 k+1)\}^{\frac{1}{1}} Y_{k, k+1, m}(\theta, \phi) \int d p j_{k+1}(p r) F(p, k, m, \lambda) \exp \{-i p t\} \\
\left.+i\{(k+1) /(2 k+1)\}^{\mathrm{t}} Y_{A, k-1, m}(0, \phi) \int p d p j_{k-1}(p r) F(p, k, m, \lambda) \exp \{-i p t\}\right] \tag{10}
\end{gather*}
$$

Tho threo-dimensional vector potential $\overrightarrow{A(x, t)}$ of clectromagnctic field is given by

$$
\begin{align*}
& E\left(x^{\prime}, t\right)=-\frac{0}{\partial \bar{t}} A(\overrightarrow{x, t)} \\
& H\left(x^{\prime}, t\right)=\operatorname{curl} A(\vec{x}, t) \tag{II}
\end{align*}
$$

Using equations (9) and (10) in equation (11) the reduction of electromagnetic potential to the irreducible representation of inhomogeneous. orthochronous. propor Lorentz group in angular momentum basis can be derived as the following expansion

$$
\begin{align*}
& A_{1}(\dot{x}, t)=(2)^{\frac{1}{t}} \sum_{\lambda= \pm 1} \sum_{k^{\prime}, 1}^{n} \sum_{m^{-}--k}^{\pi}(i)^{n-m} \\
& \times\left[Y_{k, k, m}(\theta, \phi) \int d d_{k j k}(p \prime) F(p, k, m, \lambda) \exp (--1 p t)\right. \\
& -i \lambda\{k /(2 k+1)\}^{!} Y_{k, k+1, m}(\theta, \phi) \int d p j_{k^{\prime}, 1}(p r) F(p, k m, \lambda) \exp (-\imath p t) \\
& \left.+i \lambda\left\{\frac{k+1}{2 k+1}\right\}^{\frac{1}{x}} Y_{k, k-1, m}(\theta, \phi) \int d p j_{k-1}(p r) F^{\prime}(p, k, m, \lambda) \exp (-i p t)\right] \ldots \tag{12}
\end{align*}
$$

where

$$
A_{1}(\dot{x, t})+A_{1}^{*}(\dot{x}, t)=A(\dot{x}, t)
$$

The vector spherical harmonic $Y_{k, k, m}(\theta, \phi)$ in equations (9) and (10) which corresponds to the angular momention quantum number k of total angular momentum J and the parity $(-1)^{I+1}$ can be considered as transverse magnetic vector spherical function. The transverse electrical vector spherical function which corresponds to angular quantum number $(k+1)$ and parity $(-1)^{/+1}$ can be consideredas

$$
Y_{k, k^{\prime} m}\left((\theta, \phi)=1 /(2 J+1)^{\frac{1}{2}}\left[J(J+1)^{\frac{1}{t}} Y_{k, k \mid 1, m}(\theta, \phi)+(J+1)(J)^{\frac{1}{t}} Y_{k, k-1}, m(\theta, \phi)\right]\right.
$$

The longitudinal and scalar functions, which are derived from the scalar electromagnetic vector and tho fourth component of vector electromagnetic potential eorresponding to $\lambda=0$ in the reduction, do not contribute at all so far so as physical effecte aro concernod.

Second quantization of electromagnetic firlds in angular

MOMLNTUM BASIS

To second quantize the electromagnetic fields in the angular momentum representation; the photon wavefunction $F(p, k, m, \lambda)$ and its complex conjugate in the reduced expansions of $\overrightarrow{E(x, t)}$ and $H(\vec{x}, t)$ are replaced by annihilation and
cleation operators $b(p, k, m, \lambda)$ and $b^{*}(p, k, m, \lambda)$, respectively. These operators satisfy the following commutation rules

$$
\begin{align*}
& {\left[b(s), b\left(s^{\prime}\right)\right]=\left[b^{*}(s), b^{*}\left(s^{\prime}\right)\right]=0} \\
& {\left[b(s), b^{*}(s)\right]=\delta\left(p-p^{\prime}\right) \delta_{k, k^{\prime}} \delta_{m, m^{\prime}}} \tag{13}
\end{align*}
$$

where s denotes the collection of variables p, k, m and λ. In terms of these operators the Hamiltonian H and number of operator N are given as follows

$$
\begin{align*}
H & =1 / 2 \sum_{\lambda}^{\sum} \int\left[b^{*}(s) b(s)+b(s) b^{*}(s)\right] d p \\
& =\sum_{\lambda} \int\left[b^{*}(s) b(s)+1 / 2\right] d p \\
& =\sum_{\lambda} \int[n(s)+1 / 2] d p \tag{14}\\
N & =(2)^{-d} \sum_{\lambda} \int\left[b^{*}(s) b(s)+b(s) b^{*}(s)\right] \frac{d p}{p} \\
& =\sum_{\lambda} \int_{\lambda}\left[b^{*}(s) b(s)+1 / 2\right] \frac{u p}{p} \\
& =\sum_{\lambda} \int[n(s)+1 / 2] \frac{d p}{p} \tag{15}
\end{align*}
$$

where $n(s)=b^{*}(s) b(s)$ is the operator of the number of photons with variables denoted by s. The poynting vector operator $\overrightarrow{\boldsymbol{P}}$ can also be expressed in terms of annihilation and creation operators, as follows

$$
\begin{aligned}
& \qquad \begin{aligned}
\vec{P} & =\vec{e}(8 \pi)^{-3} \sum_{\lambda} 1 / 2 \int\left[b^{*}(s) b(s)+b(s) b^{*}(s)\right] d p \\
& =\vec{e}(8 \pi)^{-3} \sum_{\lambda} \int\left[b^{*}(s) b(s)+1 / 2\right] d p \\
& =\overrightarrow{e(}(8 \pi)^{-3} \sum_{\lambda} \int[n(s)+1 / 2] d p
\end{aligned} \\
& \text { where } \vec{e} \text { is unit vector in the direction of } \vec{P} .
\end{aligned}
$$

The n-particle basis vector for second quantization, in the angular momentum basis, is given by

$$
\begin{equation*}
\left|s_{1}, s_{2}, \ldots, s_{n}>=\frac{b^{*}\left(s_{1}\right) b^{*}\left(s_{2}\right) \ldots b^{*}\left(s_{n}\right)}{(n!)^{\frac{1}{2}}}\right| 0> \tag{16}
\end{equation*}
$$

where $|0\rangle$ designates the vacuum state.
For the photons with well defined quantum state the equation (16) reduces to

$$
\left|s_{1}, s_{q}, \ldots, s_{\eta}>=\frac{b^{*} n(s)}{(n \mid)^{*}}\right| 0>
$$

The annihilation and creation operators act upon thesc hasis vecturs (kets) in the following manner

$$
\begin{align*}
& b^{*}(s)\left|s_{1}, s_{2}, \ldots, s_{n}>=\{n(s)+1\}^{d}\right| s_{1}, s_{2}, \ldots, s_{n}, s \gg \tag{17}\\
& b(s)\left|s_{1}, s_{2}, \ldots, s_{n}>=\{n(s)\}^{k} p\right| s_{1}, s_{n}, \ldots, s_{n-1}> \tag{18}
\end{align*}
$$

lnticraction of hlectromagnetio fleld witil atom

The number of photons in the system contaming clectrical charge is not constant as the photons can be emitted or absorbed Here we study the interaction between the electromagnetic ficlds and an atom assuming that the system is at rest.

Neglecting the interaction, the Hamiltonaun H_{0} of the system (atom and the field) is the sum of radiation and atomic IIamilonians

$$
H_{0}=H_{a}+H_{r a d}
$$

where H_{a} is the Hamiltonian of the atomic system and $H_{1 a d}$ is field Hamiltonian oporator given by equation (14).

The interaction Hamiltonian for the present case is of the form $\overrightarrow{A(x, 0)} \vec{v}$, where \vec{v} is a pular vector which is a function of atomic dynamical variables. The vector \vec{v} may also be regarded as a first rank tensor, the average value of which for intitial and final atomic states gives eurent density. Using this value of interaction Hamiltonian operator form, we can study the emission and absorption of photon by an atomic system.

Emission Let the mitial state $\mid \psi_{I}=$ of the system without interaction be considered as containing the atom and $n(s)$ photons, and the final state $\left|\psi_{F^{\prime}}\right\rangle$ alter the interaction as containing the atom and $\{n(s)+1\}$ photons Thus in the miteraction the atom emits one photon with momentum p, other quantum numbers being k, m and parity π. Then

$$
\begin{equation*}
\left.\left|\psi_{I}\right\rangle=|V>| \psi_{i}\right\rangle \tag{19}
\end{equation*}
$$

whore $\mid V>$ is the field state containing $n(s)$ photons and $\left|\psi_{i}\right\rangle$ dosignates the initial atomic state with quantum numbers k_{i}, m_{i} and π_{l} for the total angular momentum, z-component of angular momentuin and parity, respectively.

$$
\begin{equation*}
\left|\psi_{F}>-|s>| \psi_{f}\right\rangle \tag{20}
\end{equation*}
$$

where $|s\rangle$ is the field state containing $\{n(s)+1\}$ photons and $\left|\psi_{f}\right\rangle$ designates the final atomic state with corresponding quantum numbers k_{f}, m_{f} and π_{f}.

The matrix element of interest for emission is given by

$$
\begin{align*}
& \left.<\psi_{I}|\overrightarrow{A(x, 0)} \cdot \vec{v}| \psi F\right\rangle \\
& \left.=<\psi_{f}|<s| A_{1}{ }^{*}(\vec{x}, 0) \cdot \vec{v}|V>| \psi_{I}\right\rangle \\
& =(2)^{\frac{1}{k}}(-i)^{k-m}\{n(s)+1\}^{\xi}\left[j_{k}(p r)<\psi_{f}\left|Y^{*_{k, k, m}}(\theta, \phi) \cdot \vec{v}\right| \psi_{I}\right\rangle \\
& \left.+i \lambda\{k /(2 k+1)\}^{1} j_{k+1}(p r)<\psi_{f}\left|Y^{*}{ }_{k, k_{+1}, m}(\theta, \phi) \cdot \vec{v}\right| \psi_{I}\right\rangle \\
& -i \lambda\{(k+1) /(2 k \cdot+1)\}!j_{k-1}(p r)<\psi_{f}\left|Y^{*}{ }_{k, k-1, m}(\theta, \phi) \cdot \vec{v}\right| \psi_{I}>1 \tag{21}
\end{align*}
$$

where we have used equation (17) from which it is clear that only $A^{*}(\vec{x}, 0)$ part of $A(\vec{x}, 0)$ contributes to interaction Hamiltonian for emission, while the othor part, ie. $A_{1}(\overrightarrow{x,}, 0)$ contributes to the Hamiltonian for absorption. The matrix element given by equation (21) consists of the terms like

$$
<\psi_{f}\left|Y^{*} k, k^{\prime}, m_{m}(\theta, \phi) \cdot \vec{v}\right| y_{r_{i}}>, \quad\left(k^{\prime}=k, k \text { 上1 }\right)
$$

which can also be written in terms of quantum numbers of the juitial and final staters as followis

$$
\begin{equation*}
k_{f}, n_{f}, \pi_{f}\left|Y_{\left.k \cdot k^{\prime}, m_{1 \pi}\right)}^{*}(\theta, \phi) \cdot v^{\prime}\right| k_{i}, m_{\imath}, \pi_{\imath}> \tag{22}
\end{equation*}
$$

where

$$
Y^{*} k, k^{\prime}, m(\pi) \cdot \dot{v} \text { is an irreducible tensor of rank } k .
$$

Applying Wener-Eekart theorem, it is clear that only those matrix elements like (22) are nonvanishing for whel following selection rules are satisfied

$$
\begin{align*}
& k_{\imath}=k_{f}+k, k_{f}+k-1, \ldots,\left|k_{f}-k\right| \tag{23}\\
& m_{i}=m_{f}+m \tag{24}
\end{align*}
$$

The parity of irreducible tensor $Y^{*}{ }_{k, k^{\prime}, m_{(\pi)}, v}$ is $(-1)^{J+1} \vec{\pi}_{v}$ for electricinultipole and $(-1)^{J} \pi_{v}$ for magnetic multipole where π_{v} (the parity of the vector \vec{v}) is (-1) since it changes sign under reflection of coordinatos and the operator for it anticommutes with parity operator Thus the parity selection rules for photon emission are derived as

$$
\begin{align*}
& \pi_{f} \pi_{i}=(-1)^{J} \text { for electrical transition } \\
& \pi_{f} \pi_{i}=(-1)^{J-1} \text { for magnetic transition } \tag{25}
\end{align*}
$$

The probability for the emission per unit time in the transition from $\left|\psi_{I}\right\rangle$ to $\left|\psi_{F}\right\rangle$ is proportional to the square of the matrix element (21). Hence, it is proportional to $\{n(s)+1\}$, which is nonvanishing even for $n(s)=0$. The quantization of the clectro-magnetic field thus explains the occurrence of spontaneous

Absorption. For absorption we consider the transition from the initial state $\left|\psi_{I}\right\rangle$ given by equation (19) to final state $\left|\psi_{F^{\prime}}\right\rangle$ of the system containing the atom and $\{n(s)-1\}$ photons

$$
\begin{equation*}
\left|\psi_{F}{ }^{\prime}\right\rangle=\left|s^{\prime}\right\rangle\left|\psi_{f}^{\prime}\right\rangle \tag{26}
\end{equation*}
$$

where $\quad\left|s^{\prime}\right\rangle=\left|s_{1}, s_{2} \ldots s_{n-1}\right\rangle$
The matrix element of interest in this oase is

$$
\begin{align*}
& <\psi_{f^{\prime}}\left|<s^{\prime}\right| A_{1}(\vec{x}, 0) \cdot \vec{v}|V>| \psi_{i}> \\
& =(2)^{1 / 2}\{n(s)\}^{1 / 2} p(i)^{k-m}\left[j_{k}(p r)<\psi_{f}\left|Y_{k, k, m}(\theta, \phi) \cdot \vec{v}\right| \psi_{i}>\right. \\
& \left.-i \lambda\{k /(2 k+1)\}^{\ddagger} j_{k+1}(p r)<\psi_{f}\left|Y_{k, k+1, m}(\theta, \phi) \vec{v}\right| \psi_{i}\right\rangle \\
& +i \lambda\{(k+1) /(2 k+1)\}^{k} j_{k_{-1}}(p r)<\psi_{f}\left|Y_{k, k-1, m}(0, \phi) \cdot \vec{v}\right| \psi_{i}> \tag{27}
\end{align*}
$$

By a similar method as discussed for emission, we get the following selection rules for absorption

$$
\begin{align*}
& k_{f}=k_{i}+k, k_{i}+k-1, \ldots,\left|k_{i}-k\right| \tag{28}\\
& m_{f}=m_{i}+m \tag{39}
\end{align*}
$$

The probability for absorption is proportional to the number of photons of a niven kind in the initial state

Disoussion

The reduction of electromagnetic fields to tho irreducible representations of proper orthochronous inhomogencous Lorontz group in angular momontum liasis is given by equations (9) and (10) in terms of the wavefunctions of particles of zero mass and spin-1 (transverse photons). On replacing the photon wavelunctions and their complex conjugates in these reduced expansions by annihilathon and creation operators, a covariant second quantized theory is obtained in purely relativistic manner. The second quantized operator $\overrightarrow{A(x, t)}$ derived in this manner is acovariant quantized analogue to the expansion in multipole of classical theory due to Blatt \& Weiskopf (1952) This quantized reduced expansion of $A(\vec{x}, t)$ in terms of vector spherical harmonics, with annihilation and creation operator as the amplitudos, is used for calculating the interaction Hamiltonian to avoid the use of fiotitious photons of holioity other than $\pm j$ (spin) and to overcome the difficulty of vanishing the amplitudes for photon emission and absorption as the momentum $p \rightarrow 0$ (Woinberg 1965).

The probability of photon emission is proportional to the square of the matrix dement given by equation (21) and thus, consists of two terms The first term is medependent of the number of photons in the electromagnetic ficld before emission and gives rise to spontaneous emission because it is nonvanishing even if there

B. S. Rajput

is no photon mitially. The second term, which is proportional to the number of photons in the interacting field, gives rise to certain induced emission. The probability of absorption of a photon, given by the square of matrix eloment in equation (27), depends on the energy of absorbed photon and is proportional to the number of photons in the interacting electromagnetic field. The ratio of the probability of photon emission to that of its absorption is, thercfore. proportional to $\{n(s)+1\} /\{n(s)\}$

The selection rules for emission and absorption of photons by atoms are jdentical to those derived by Blatt \& Weisskopf (1952) classically and to those derived by Davydor (1965) non-relativistically, except that here the photon takes or supplien angular momentum.in order to conserve the totalangular momentum of the system. We thus get the parallelism between the classical and quantum theories of radiation in angular momentum basis The similarity of the selection rules verifies the validity of reduction of electromagnetic fields given in equation (9) and (10) to the irreducible representation of proper, orthochronous inhomogeneous Lorentz group on angular momentum basis becanse in calculating the intcraction Hanultionian we have used the reduced expansion of $A(\vec{x}, t)$ derived from these expansions Moreover, this similarty of the selection rules for interaction of electromagnetıe fields with atom suggests the use of this relativistic quantized procedure in the study of interactions of electromagnetic field with molecules, nuclei and elementary particles. The procedure being a relativistic one will prove itselt more advantageous and straightforward.

Referenoes

Belmfanto F. J. 1940 I'hys Rev 76, 226.
Blati J M. \& Weiskopl' V. F. 1952 Theoretical Niuclear Physics, Appendta B.
Davylov $\Lambda 1965$ Quautum Merhetucs (Tianslated, editod with addition by D. Ter Hasi). 171 Gupta S. N. 1950 Proc. Phys Soc A63, 68]
Koba Z., Taı 'J. \& Tomonago S. 1947 Prog. Theo. Phys 2, 101.
Ma S. T. 1949 Phys. Rea. 75, 635.
Rajput B. S. 1969a 1ndian J. Pure Appl. Phys 7, 823.
Rajput B. S. 1969b Indiun J. Phys. 43, 135.
Rajput B. S 1909 c Indzan J. Phys. 43, 439.
Rajput B. S 1969d Indzan J. Pure Appl. Phys. 7, 720.
Rajput B. S. 1069e Indzan J. Phys. 43, 602.
Rujput B. S. 1970a Nuovo Cimento 66A 517.
Rajput B S 1970b Irdlan J. Pure Appl, Phys. 8, 297
Rajput B S. lg7uc Nuovo Cimento 2B, 45.
lujput B. S \& Simgh R. N. 1970 Indian, J. 'ure Appl. Phys. 8, 439.
Kose M. E. 1057 ILlemertary Theoly of Anyulai Momentum (New York).
Nehwinger , J. 10.s Phys. Rev. 74, 1439.
Schwnger J. 1963 J'hys, Kcv. 130, 402.
Weinberg S. 1964 Phys. Rev. 135B, 1040.
Wemberg S' 1965 Plys. Rev. 138B, 988.

