Indian J Phys. 44, 569-518, (1970)

Interaction of electromagnetic field with matter

(angular momentum basis)
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Reducod expansions of clectromagnetic ficlds are derived m terms of irreduciblo 1epre-
sentations of proper, orthochronous, inhomogencous Lorentz grouy in sngular momentum
basis. The socond quantized cxpansions, derived by 1eplacing photon wavefunctions
and their complex conjugates by anmilnlation and ereation operaiois m the reduced
expansion, are given m terms of vector sphorical harmonics with annthilation and erea-
tion operators as umplitudes  For caleulating the nteraction Haniltonan, whon elee-
tromagnetic field is coupled to an atom, tho 1 quantized oxy on of three
components transvorse electromagnotic voetor potential 18 usod to avoid fictibious photons
of helicity other than -7 (spin) and subsidiavy state veetor condition und to overcomo
the difficulty of vawshing amphtude for eomssion or absorption of pholon as p~»0. The
telection rules, dorived m the relativistically quantized manucer, are identical with already
known selec- tion rules for classical radiation fields. excopt 1hat here the photon takes
or gupplied angulal momentum to conserve the total ungillar momentum of tho systom.

INTRODUCTION

It has been shown by Koba, Tati & Tomonago (1947) and Schwinger (1948) that
to pass over from the Heisenberg representation to the interaction representation,
the supplementary condition due to Fermi {for the electromagnetic ficld has to be
modified by adding a charge term because this condition involves one difficulty
that there is no normalized state which satisfies it, as shown by Ma (1949) and
Belinfante (1949). To overcome this difficulty, Gupla (1950) has given a new
treatment for the longitudinal part of the electromagnetic field where an indefinite
metric has been used for scalar photons. Weinberg (1965) preferred to avoid
mdefinite metrie and photons of helicity other than + j (spin) by treating them as
the rough conclusions of the fact that no symmetrie tensor fields of rank j can be
constructed from the creation and annijhilation operators of massless particles of
spm j. He further proved that the most general covariant field that ean be cons-
tructed from such operators cannot represent real photon interaction because they
give the amplitudes for emission and absorption of massless particles which vanish
as p’ for momentum p—0.

The transformation of the fivst order Lorentz gauge formulation into the rad-
bon gauge was done by Schwinger (1963) by decomposing the complementary
fields into longitudinal and traneverso fields und by elimmating the longitl.xdnml
flields (spin-zero components) from the physical quantities This elimination of
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longitudinal fields is always advantageous for the physical system containing
photons. as proved by Weinberg (1964) that the zero mass has a special kind of
dynamical self-consistency for spin-1 (transverse part) which it would not have
for zero.spin (longitudinal part).

To avoid the use of fictitious photons of helicity other than j or the indefiniic
metric and subsidiary statc-vector conditions and to overcome the difficulty of
vanishing amplitude for emission or absorption of photons as p—0, we use
hore the three components transverse elecctromagnetic vector potential, cwrl of
which gives the fields, for the study of interaction of electromagnetic fields oy
this purpose we use our results of reduction of electromagnetic fields, in lncar
(Rajput 1970a) and angular (Rajput 1969a) momentum basis, to the irreducible
represeniation of proper, orthochronous. inhomogencous Lorentz group  Thege
results have been derived by using our results for the reductions of antisymmetrie
tensor (Rajput 1969b, 1969c) scalar (Rajput 1969d) and three-components vectoy
(Rajput 1969e) fields. Using these results, we also derived tho reductions ol
gencralized electromagnetic fields in presence of magnetic monopoles, for zero
(Rajput 1970b) and nonzero (Rajput & Singh 1970) mass systems. Tn all these
reduced expansions we decomposed the complementary ficlds into longitudinal and
transverse parts, and omitted the longitudinal and scalar parts by setting them
equal to zero for the physical systems.

To socond quantize the electromagnetic fields the photon wavofunctions and
their complex conjugates, in their reduced expansions on angular momentum
basis, arc replaced by annihilation and creation operators. Using these second
quantized reduced expansions the interaction Hamiltonian, for the study of inter-
action of electromaguetic fields with atom, has been calculated. Tho selection
tules derived here are identical to those derived by Blati-Weiskopf (1952) and Rouse
(1957) for classical fields, except that here the photon takes or supplies the angular
momentum in order to conserve the total angular momentun of the atomic system
The probability of the emission of a photon by an atom is proved proportional to
(n+1) where n is the number of photons of u given kind in the interacting tield.
This explains the spontaneous emission, since the probability for no photon m
the system is different from zero. Using similar procedure we have derived simiar
results for linear momentum representation in an carlier paper (Rajput 1970c).
Our procedure, in contrast with that of Davydov (1965), is completely relativistic
where photon wavefunetions are introduced explicitly.

REDUCTION OF ELECTROMAGNETIO FIELDS IN ANGULAR MOMENTUM BASIS

Tu the angular momentum basis a wavefunction is given in terms of magu-
tude of linear momentum p, the total angular momentum quantum number I,
the quantum number m of J; (the z-components of angular momentum) and the
heliely A In this basie the reduced cxpansions of eleotrio and magnetic fields
are defined as (Rajput 1969a),
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B, 1) = Bya, 0+ (@, 0

— - >
H(z, t) = Iz, t)+ H,%(z, t) v (1)
where

E,(_'m,t)-:—47r/(37r)’=)\_§”2. x(ﬂ z >. (0 exp fimA—m 2)

X Ym0, §) Y 23%(0, ¢) Y8, §) Vimo™(0, ¢)
X | dp[p. j(pr) F(p, k, m, A) exp(—ipt) - (2)

and

(@ t) = —4n[(3a) 5 3 MU >: (i) -M+B exp {im(A—m/2)}
Ak 0=0, 41 Jom1 M= —

Ym0, ¢) ¥,20%6, ¢) Vimo(d, §) ¥,mo* (6, ¢)
XI dp/P)k(p?') F(P) k) m, A) exp (—’Lpf) (3)

—
where F(p, k, m, Q) is the wavefunction of the photon and x(/) is a vector having
the following components

-
x(B) = (21, if.0) for f= 41
-
%(0) = —1(0,0.1) for f =10
Y, N0, ¢) ete in equation (3) are the generalized spherical harmonies for 0, ¢
—
as the polar angles of the Jinear momentum vector p given by
- . . . 13
p = p(sin O cos ¢, sin 0 sin @, cos ). .. (8)
Ji(pr), for r = (;’l , is spherical Bessel function of order £, and 8. ¢ arc the polar
—_
angles of the veetor x.
Using the transposition theorem of goneralized spherical harmonics we have
Yym-80%(0, §) = (i)Y, m-1(0. 6)

Y PN, §) = (52 Y M0, ).
and 3

)‘,m 0 ¢) zx—nm]’,‘Am (0 ¢)
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Substitusing these results in cquation (2) we get

2“} f‘, (,‘)k-l-ﬂ+.\+1-m
=l Ma—k

Bat) = —4m3} T 3 o
o) = —arp S5 lp 2

X Y m¥(6.4) Y0, 6) Yim-00(6, ) Yiom-2(0, 6)
X[ dplp. je(pr) F(p. k, m A) exp(—ipl) o (6)

On expanding the product and usmg the orthogonalily relations for the genera-
hzed spherical harmomes, we get

Yion0(0,6) TM00,4) = % [ Jawt ]’(k,m—ﬂ,l,mk,l,J,m \

J=1k-11 L 4m(@J+T)
X(k 0.1, Ak, 1, J. )T pom . (7
and
T ap [ aosino vmo*0,4) ¥,mu0.0) = 8 18y, we ..
0 0

In equation (7) Clebsch-Gordan cocfficients are used in the form (j. m, j'. m’|
i’ J, M),

When equations (7) and (8) are substituted in equation (6) it is reduces ta

- a k
Bz, t) =2} £ X X (i)k-mt1
A k=1 Mu -k

X[ Yiewm(0.9) | pdpji(pr) F(p, k, m, A) exp {—ipt}

— AR OY Yy gt m (0.8) [ pADjksa(pr)F(p, k. m, A) exp {—ipt}

HA{(k+1)/Ch+DPETy 1y, m(9.9) [ dpji—y(p)F(p k, m, A) exp{—ipl}] ... (9)
where the vector spherical harmonics Yy, 4. 1 (0, @) are defined as

Y0 #) = ()B+YPB) Yem-b9G, K, m, 1. p| K, 1, k, M)

In deriving equation (10) we have used the values of Clebsch-Gordan cocefficients.
Tn a similar manner the reduction of magnetic ficld also can be derived as the
following expression

HE)=@ 5 £ % (ipm

A k=l Ma-k

X[A Yy, v, m(0:9) | pdpje(pr) F(p, k, m, A) exp {— ipt}

—i{E)(2k+- DR Y b1y, m(0.8) § @Pjria(pr)F(p, k, m. A) exp {—ipt} ,
Fil(k+D/@—+VIT, 41, m(0, §) | PApje_(pr) F(p, k, m, A) exp{—ipt}] (10)

\
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. . g
The three-dimensional vector potential Az, #) of clectromagnetic field is given by

E@, 1) = __a”T ,4(;,'0

H(z.'t) = curl A(Z t) (11)

Using equations (9) and (10) m equation (11) the reduction of electromag-
netic potentinl Lo the irreducible representation of inhomogencous. orthochronous.

proper Lorentz group in angular momentum basis can be derived as the following
expansion

M) =@ 2 5 E (ipen

=+1 11 m-»

XL Y ipm (6. B) [ dpje(pr) F(p. &, m. A) exp(—pt)

—TAME[2E+1V Yip 1,0, 8) § dpjx, o(pr) F(p. Tm. A) exp(~pt)

[ k41 . .
it { G} Vaican (€901 dpis(m) Fip, o) oxpl—ip] .. (12)

where
1(“‘ fH‘Al(“’ t) = A(:r t)

The vector spherical harmonie Yi,x,m(0, ¢) in equations (9) and (10) which
corresponds to the angular momentum quanium number £ of total angnlar mo-
mentum J and the parity (—1)7+2 can be considered as transverse magnetic vector
spherical function. The transverse electrical vector spherical function which

corresponds to angular quantum number (k4-1) and parity (—1)7+! can be consi-
dored as

Yiw'm((0, ) = 12T +INI(T+1) Y iks 1:m(0, $)+(J +I)T P Y ikp—y,m(6. $)]

The longitudinal and scalar {functions, which are derived from the scalar clectro-
magnetic vector and the fourth component of vector electromaguetic potential
corresponding 10 A == 0 in the reduction, do not contribute at all so far so as physi-
cal effects aro concerned.

SECOND QUANTIZATION OT ELECTROMAGNETIC FIELDS 1IN ANGULAR
MOMLNTUM BASIS

To second quantize the clectromagnetic fields in the angular momentum re-
prosontation; the photon wavefunction F(p, k, m, A) and its complex conjugatc

— T .
in the reduced expansions of E(-:;: t) and H(z, t) are replaced by annihilation and
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croation operators Y(p. k, . A) and b*(p, k, m, A), respectively. These operators
salisfy the following commutation rules

[b(s), b(s')] = [b*(s), B*(s')] =0

[b(8), b¥(8)] = 8(p—2")Bksk O’ o (18)
where s denotes the collection of variables p, &, m and A. In terms of these opera-
tors the Hamiltonian H and number of operator N are given as follows

H = 1[2 2 [ 16%(5) bo)+-bla)be(o)]p
= I J[0¥(s)b(s)+1/2)dp

=2 [[n(s)+1/2dp - (14)
_ dp
N = @)1 Z [ [6s)b(e)+b(e)b*(6)] >
= 3 [[b*(s) b(s)+1/2] ¥
A p

= = [[n(e)+1/21 2 .. (15)
A P

where n(s) = b*(s)b(s) is the operator of the number of photons with variables de-

-
noted by s. The poynting vector operator P can also be expressed in terms of
annihilation and creation operators, as follows

- -
P = e(8m) 55 12 ] [6*(6)bls)+ Be)b(e)1dp
—_
= e(Bm) 0T [ [6¥(e)b(e)+1/2)dp
—
= e(Bﬂ)")E Jn(s)+1/21dp

- -
where ¢ is unit vector in the direction of P. -

The n-particle basis vector for second quantization, in the angular mo-
mentum basis, is given by

b*(8,)b%(8,) ... b*(s,
|81, 89y vy Sy > = —(—8-1)-"{;2'))*—92—‘-— l 0 > e (16)
where |0> designates the vacuum state.
For the photons with well defined quanium state the equation (16) reduces to

b*nl

3
| 815 gy vvuy 8y > = ('-ri|§*)_ |0>
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The anunihilation and creation operators act upon these hasis vectors (kets)
in the following manncr

bH8) | 81, 8y, - 85> = {n(s)+ 1} |8y, 8y, ..., 5, 83+ e (17)

b(8) |81, 89, oy 8,> = {n()F D[ 8y, 8. ..., Sy > ... (18)
INTERACIION OF BLECTROMAGNETIO FLELD WITIL ATOM

The number of photons in the system contaming clectrical charge is not cons-
tant as the photons can be emitted or absorbed Here we study the interaction

between the electromagnetic fields and an atom assuming thai the system is al
rest.

Neglecting the interaction, tho Hamiltonuan H, of the system (atom and the
field) is the sum of radiation and atomic ITamilonians

Hu = 11a+Hrad

where Hg is the Hamiltonian of the atomic system and H,qq is field Hamiltonian
operator given by equation (14).

- -
Tho interaction Hamiltonian for the present case is of the forni A(z, 0).v,

-
where v is a polar vector which is a function of atomic dynamical variables. The

veetor ?ma,y also be regarded as a first rank tensor, the average value of which
for intitial and final atomic states gives eurrent density. Using this value of inter-
action Hamiltonian operator form, we can study the emission and absorption of
photon by an atomic system.

Emission  Let tho mitial state |r;>> of the system without interaction be
considered as containing the atom and n(s) photons, and the final state |rp>
alter the interaction as containing the atom and { n(#)-l—l} photons  Thus in the
wteraction the atom emits one photon with momentum p, other quantum
numbors being k, m and parity 7. Then

[¢r> = |V > [§e> .. (19)

where | V> is the field state containing n(s) photons and | ¥, > designates the initial
atomio state with quantum numbers &g, my and ¢ for the total argular momentum,
z-component of angular momentwn aud parity, respectively.

> = 5> 0> e (20)

where |s> is the field state containing {n(s)--1} photons and | ;> designates
the finul atomic state with corresponding quantum numbers &y, my and ay.
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Tbe matrix element of intorest for emission is given by

- =
< Yt Az, 0)v | F >

<yl <sl‘4‘*(20)3| V> |yr>

= (M (—if="ule)+ L) <9rs] Poam(6, ) .0 | s>

AL D)D) <¥rp] Voeaksam(®, 6). 0 | s>

— AL+ D)D)} ies(Br) <Hrg] Vohioaom(©, ). (Vs> | (21)

where we have used equation (17) from which it is clear that only A‘\&:’, 0) part of
_’
A(x, 0) contributes to interaction Hamiltonian for emission, while the other part,

N
i¢. .4y(, 0) contributes to the Hamiltonian for absorption. The matrix clement
given by equation (2]) consists of the terms like

N
<Yr| k'm0, 9). v | V>, (B =F, k):1)
which can also be written in terms of quantum numbers of the initial and final
states as follows
Ty, mg, e | Y¥%k sty (05 @) v | gy g, > (22)
where
Y* % s v is an irreducible tensor of rank .
Applying Wigner-Eekart theorem, it is clear that only those matix elements
Iike (22) are nonvanishing for which following selection rules are satisfied
k, = ky+Fk, by+Ek—1, ..., ka.'kl e (23)
mi = my+m e (24)
—
The parity of irreducible tensor Y*.', m(y).v is (—=1)7+7, for electricmultipole

and (—1)/m, for magnetic multipole where m, (the parity of the vectur;; is (—1)
sinee 1t changes sign under reflection of coordinates und the operator for il
anticommutes with parity operator Thus the parity selection rules” for photon
emission are denived as

mym; == (—1)7 for clectrical transition
mymy = (—1)7 11 for magnetic transition e (25)
The probability for tho emission per unit time in the transition from >
to |rp> is proportional to the square of the matrix element (21). Hence, it is
proportional 1o {n(s)4-1}, which is nonvanishing even for n(s) = 0. The quanti-
zation of the clectro-magnetic field thus explains the oceurrence of spontaneous
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Abs?rption. For absorption we consider the transition from the initial state
| ¢1 > given by equation (19) to final state |¥p> of the system containing the
atom and {n(s)—1} photons

Wp'> = [¢> |yy'> .. (26)
where |&'> = |8, 8,...8,,>

The matrix element of interest in this case is
, L
<Y7'| <8 [ 4y, 0). v | V> [¢ry>
= (2V3n(s)2p()E " jr(pr) < Yy | Yip.ml6, B) s | o>
—iA{K/(2k4-1)Pjks(pr) < Y7 | ¥, kxe+1,m(05 ¢)7| V>

A+ 1)/ )Pk o(0r) <Prr| Vigon 0, 90 |1 . @D

By a similar method as discussed for emission, we get the following selection
rules for absorption

kp = ki-t-k, kg-+-k—1, ..., | k—k]| .. (28)

my = me-+m o (39)

The probability for absorption is proportional to the number of photons of a
viven kind in the initial state

Disoussion

The reduction of electromagnetic fields to tho irreducible representations of
proper orthochronous inhomogencous Lorentz group m angular momentum
hasis is given by equations (9) and (10) in terms of the wavefunctions of particles
of 7cro mass and spin-1 (transverse photons). On replacing the photon wave-
functions and their complex conjugates in these reduced expansions by annihila-
tion and creation operators, a covariant second quantized theory is obtuined in

vl - .
puroly relativistic manner. The second quantized operator A(z, t) derived in this
manner is Kcovariant quantized analogue to the oxpansion in multipole of classical
theory due to Blatt & Weiskopf (1952) This quantized reduced oxpansion of

~

A(v.t) in terms of vector spherical harmonics, with annihilation and creation
operator as the amplitudos, is used for calculating the interaction Hamiltonian
10 avoid the use of fiotitioua photons of helicity other than 4-j (spin) and to over-
tome the difficulty of vanishing the amplitudes for photon emission and absorption
s the momentum p—» 0 (Weinberg 1965).

The probability of photon emission is proportional to the square of the matrix
tlement, given by equation (21) and thus, consists of iwo terms The first ter.m
is mdependent of the number of photons in the electromagnetic field beforfa emis-
fion and gives rise to spontaneous emission because it is nonvanishing even if there
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is no photon mitially. The second term, which is proportional to the number of
photons in the interacting field, given rise to certain induced emission. The pro-
bability of absorption of a photon, given by the squarc of matrix element 1
cquation (27), depends on the energy of absorbed photon and is proportional i
the number of photons in the interacting electromagnetic field. The ratio of the
probability of photon emission to that of its absorption is, therefore. propor-

tional to {n(s)+1}/{n(s)}

The selection rules for emission and absorption of photons by atoms are identi-
cal Lo those derived by Blatt & Weisskopf (1952) classically and to those derived by
Davydov (1965) non-relativistically, except that here the photon takes or supplics
angular momentum. in order to conserve the totalangular momentum of the system.
We thus got the parallelism between the classical and quantum theories of radiation
in angular momentum basis The similarity of the sclection rules verifies the
validity of reduction of clectromagnetic fields given in equation (9) and (10) to
the irreducible representation of proper, orthochronous inhomogencous Lorentr
group on angnlar momentum basis because in calculating the interaction Hanul-

tionian we have used the reduced expansion of A(::’, t) derived from these expansions
Moreover, this similarity of the selection rules for interaction of electromaguetic
ficlds with atom suggests the use of this relativistic quantized procedwre in the
study of interactions of electromagnetic field with molecules, nuclei and elementary
particles.  The procedure being a relativistic one will prove itselt more
advantageous and straightforward.
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