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A troatment of the flow and heat transfer due to froe convection m the eniry region of
a coolod vertical pipe, which 15 open at hoth cuds, has been gven. The analysis is based
ou tho Lighthdl mothod Further i the analysis, voloeity and temperature profilos have
beon assumod, which sabisly all the boundary conditions  Paramotors mvolved m the
profiles have hoen culeulatod by asswmmg sories solution  In (he analyws, we have debned
a new non-dimensional number 37, which happens to bo u funetion of Loundary layes
nondimensionul thickness 8 This number has au influenco over the fluid flow in the
houndary layer region. A value of M bas heen obtamed for whieh vertical displacoment
() 15 tho maximum, on tuking onlv hirst two terms of @ 1t has heon obyerved that there
18 & deceleration of flow m the vieimty of the wall m houndary layer region duo to cool-
ing of the wall and mercasing the Ruyloygh number.  For B = 0(10%), there is o revorsal
of flow m the vieimtv of the wall

INTRODUOTION

Ostrach (1954) obtained an expression for buoyancy forces on the fluid within
the pipe relative to the coolod fluid at the same level outside the pipe. In this

it will be better to regard the fluid ay moving only under the influence of
pressure gradient and rolative buoyancy forces withm. Ostroumov (1958) has given
an oxtensive troatment of the natural convection in cylindrical channels in term
of Bessel & Neumann functions. Lighthill (1953) has given an analysis of the
flow through a cylindrical pipe in which one end is closed and the wall of tho pipe
Juaintained at a constant temperature, the body forces actmg in tho direction of
the closed end. It has been considered here that at the open end there is an
orifice which supplies fluid. The flow of fluid depends upon the parameter I/R.
for given Prandtl and Rayleigh numbers  When I/R is small, the flow is like free
convection about a flat plate, but when I/R is large, the flow is not like free convec-
tion. In his treatment, he has used the integral method and in caso of similarity
rogime he finds that tho flow fills the wholo of the tube for a particular value of
I/R. Different authors have adopted this technique in the cage of free convection
in combined flow to slightly varied physical situations. Martin (1967) has per-
formed exporiments of heat transfer due to natural convection in a long extremely
cooled vertical cylinder with uniform wall temperature, containing heat gencrating
fluid in a laminar flow (with Prandil number equal to or greater than unity). Takhar
(1967) has gi;ren & treatment for the entry length flow in a vertical heated open
pipe. Hoe findsthat at Rayloigh numbers greater than 10%, the flow in the middle
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ol the pipe becomes stagnant. This analysis cannot produce satisfactory results
before the boundary layer fills the whole of the tube.

In the present paper, an attempt has been made to study the flow in entrance
region of a vertical pipe which has both its ends open and is being cooled with
(i) a constant temperature at the wall and (n) the wall temperature deercasmg
exponentially as a funetion of vertical height It has been taken for granted that;
() kinomatie viscosity and thermal conductavity are approximately constant and
Boussinesque approximation holds; () velocity and temperature profiles are
assumed so as to satisfy the imtaal and boundary couditions; (¢) the equations
ol motion, continuity and heat conduction have been integrated to tind out the
various patameters involved i the analysis with the help of the equations ab the
axis and at the walls; (d) the momentum and theemal boundary layer thicknesses
arc assumed to be cqual; (¢) The parameter @ m the assumed profiles gives the
vertical displacement outside the boundary layer thickness

1L is seen that boundary layer fills tho entire tube so as to give bhe fully deve-

loped flow through the pipe, and areversal of the How occurs at the cooling Rayleigh
number greater than 103, Giaph has been plotted between

_ B
M= afigat
and the boundary layer thicknoess 8.

It seems that the analysis may prove usoful {o engmeering problems on hee
convoction in the entrance region of the pipe.

ANALYSIS

The cequations of motion here are similar to differentisl cquations ot frec
convection except that the pressuic no longer takes the hydrostatic value  The
flow is assumed to be of boundary layer type, which means that gradient of a
quantity along the pipe is small as compared to the pressure gradient in the radial
direction Keeping this in view. we have the equations of :

conservation of mass

ou 1 d(rv)
ety o "

conservation of momentum

Ju du ap u 1 Ou
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and conservation of heat
cor gy [eT 1 of
v o ks ]

where u, v are the axial and radial velocitics & and pfp( = v) are the thermal dif-
fusivity and the coefficient of kinematic viscosity, respeetively.  The initial and
houndary conditions are

(1) r—=da, w=0=uv T="T, forallz>-0

(1) 2 =0, w =1y v=017 =T, {or all r_~

Let 7', and 7)) be the temperature of the wall and that of the flud at the
entry, vespeetively.  Let us assume that the wall temperature 15 of the form
Tw =Ty —ATf(z), where AT = Ty\,—T,.
Further. the variation of all physical proporties are ignored except the density
involved n the buoyancy term  Also the viscows dissipation and work done

against gravity fiold are negleeted  Thus we have for the density in the buoyaney
term

[7) ) 1 7? ) 9
p— /)T“.'}‘ ( aiq'| )T"‘(fl "‘Tw)‘l —2’" ( aqﬁ,.):l,m(fp—ﬂ'w)z—l‘ .. . (l)

which can he regarded us Taylor equation ol state.

Introducing coefficient. of volume expansion at 1y as
1 dp . V[0
A= p ( o ),,,m and the quantity 8, = p( aTZ)T...’
we can write (2) ax

—p — = b p{Tn=T)= 13 TV

Substituting this in (1), we gel

6u (711__ ( ) (0“11, b 1 du)

4 e r or

1 01)
"5 or +o)t

P s ) f(Tw— T)""/’Il (Tw—T)*

The tomperature AT -+ Tw—"T4o defines a cooling Rayleigh number
g a'AT

v

Ra =

1f we introduce the non-dimensional quantitics as » = aR. = = aZ

k kY ke (1 dp ) T =Tt 5
_'FI,U. "= " .L(—,—:j (_I‘ iz +9) 10+ 0
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Wo have the equations of mass, momentum and heat as

U L ARY) _
%2 TR oR
1 - I Vet
[z az‘ -+-V ]_L+.R. B_(DRUR) 1Mo +e
op
ok =0
3 af % L0\ _1 3 @)
RaU (U %)=% m B

subject to the conditions
R=1,2>0,U=V=0=0, at the wall
R>0, Z=0, U=U, V=0,0=—Ra, at the entry

where U, is the non-dimensional velocity at the entry along Z-direction.

@)

)

(6)

(6)

Integrating (3), (4), (5) over a cross-section subject to the conditions (6),

we get

{‘ RUdR = U,

| RU%R = _.+( oU ).+ } RedR—3M | o?RaR
0 Rel 0 0

Nlﬂ-

-

i, d 1 )
and —{Ral, % + - | RUGIR — (a]z )
and the equations

100, 10(
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at the axis of the pipe, and

at the wall.
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Hore, we shall assume the velocity aud temperature profiles of Kerman—Pohl-
hansen type, which satisfies the conditions given in (6) These profiles are :

— PO, @<X<1)

7= rU, {1_(1--§)2 (1_%X }) 0 <X <8
- a (10)
[ Ra @< X<1)

{omppan e

where & corresponds to a boundary layer of non-dimonsional thickness. enclosing,
a potential core of radius 6; == 1—48 and X — 1—R. Here, wo have two cases
depending upon the way the pipe 18 cooled.

Case I.

When the temperaturc of the wall is constant the cquation (5) becomes
Zo) ae 1 0 0
U204V = 2 (R
0z |-Vaji! K 8R (RBR)
Case I1.
When the wall temperatwre decreases exponentially, s.e , when 7', = T'\,—AT
oxp(eX), where « is a small quantity.

On using (8) and (10) we can find thoe value of L. Hence substituting the
values given in (10) and the value of L in (7), we obtain for case I

P[5(6—40-+82)+Qb(5—24)] = 30 . (1)
B_Z'% Eda' [P2{14(16—283-862)+ 4Q8(21 —108)-+ Q*8(8—34)}]
- {..—_"Ll“z:_")zm-Z_i‘.‘lpv,,—%@m—m-us)} g%. .2
and
%[P{14(15—143+48*)+Q8(21—108)}] = %) "% 13)

We see that for 6 =0, P=1,0=0at E =0.

Obviously, 6 = 0 is a singularity for the above equations, for which we have to
find the values of P and Q in the neighbourhood of 8 = 0 by considering series
solution in terms of 8. Thus

P = 14-a,0+4a,0%+...

Q = d,0+d,0%+...
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On substituting these values in (11), (12) and (13) and comparing the coeffi-
cients of various powers of 8, we obtain

P = 14 .6666--(.016 M --.033)3*
(62 —548.60 |- 24 M3—T47 3Ra+4705.4 |-60 6M Ra)

O - 24 M~ — (%1 slia—+470 3
1500 |-1567.5M &+
Q —= (L86—M)0-+(20 07—.17TM-~.01 M2—3 3Ra)é-...
Now {ofind Z, substituting the values of P and @ in either of (12) ad (13), we have
% = 1082 (1 01— 03330)8%-1-..]
30
(fnse T1.

When the temperatare of the wall decreases exponentaally (wath o as a small
number), we have the treatiment exactly similar to the case 1. Now we obtain
alter sunplification

— [P{14(15— 148+482) {-Q5(21 — 108)}

840 iz
= | — - ) ———
[ ) +2"“] 3

the equation (11) and (12), and
7 = .0336* |-( 101 |.005a-~ 003M)8+ .
Thus, we have P, @ and 7 in terms of the houndary layer thickness d.

Now from the analysis of the problem, we have,

Nusselt numher = %

, 20 —
Teat flux at the wall ( : Z')z-o =5

. _ au o 24-Q
Skin friction at the wall ( 2z )z«o_ PTIO( 5 )

/]

Discussrion

We observe that duc to cooling of the wall, the fluid in the vicinity of the wall
in the boundary layer region beccmes decelerated. This deceleration of
the fluid also depends upon the cooling Rayleigh number Ra. As Ra increases
fluid goes on decclerating and ultimately when it bceomes greater than 10%, the
revorsal of flow occurs in the fluid in the vicinity of wall.
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Furthor, in the cuse of the pipe the flow is duce to its continuty. It is noted
that in free convection, the adverse pressure gradient is confined to the boundary
layer produced by buoyancy forees, but m the case of forced convection, this
takes places in the main stream also

We see that for M = 0, Ra —= 0, the boundary layer fills the whole of the tube
for Z = 0.045, but ut increasing Ra this value decicases. we easily see that at

M
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Ra = 0(10%), the value of Z is approximately 0.004. The value of M, for which
@ is maximum upto the first two terms, comes oui to be

M= —6799-388
)
which shows that this depends upon & The graph of M vs & is shown in
figure 1.

Also, we see that Nusselt number is a function of §; heat flux at the wall and
the skin friction al the wall are funcltions of Re and 4.

The graph of heat flux vs § for fixed Ra is shown in figure 2.
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