
B\r G. B aniaeji an d  N. C Sil
Department of Theoretical Physics,

Indian Association for the Cultivation of Science, Jadavput\ Calcutta-^2 
{Received 4 Amfust 1970)

(Jalculatioua uf dilToionlial ami total oi-(j,sh Hoctiotis for tho clastic Hcattcriiig ol oloctioiis 
and posilrojis by neutral liolmm atom have boon jjorfomied ovm- tho raTJgo ol impact 
cnoi;4ics n0“700cV oiiiploying the iSchwiiigor vaiiaticmal pnuciplo for scattering anijili- 
turle. The Hartioo-L^ock static potential for holimn atom has been used in tho calcula
tions. Tho results are compared with the Bmn approximation calculations and also 
with experimental findings.

I ntroduction

111 the piosent paper calculations are carried out Ibr the differential and total 
cross sections of tho elastically scattered electrons by helium atom for various 
(Miei’gies between 50 and 700 eV, the effects of exchange and polarization are 
considered to be not so important. The corresponding results for positron scat
tering arc also reported.

Experimental measurements on the clastic eolliaion between electrons and 
lielium atiuns have been carried out by several woikors (Hughes et al 1932, Werner 
1933, Vrieiis et al 1968, Bromberg 1969) over a Avido range of electron impact 
energies. A number of theoretical investigations have also been made on the 
c—He elastic scattering. The calculation of scattering cross sections of high energy 
electrons by helium atom has been performed by Mnkherjee (1961) in Born approxi
mation A\'here the use of a refined wave function which includes tho correlation 
lunction depending on tho mutual distance of the atomic eloctrons has been made. 
JCiin & Inokuti (1968) have used the twenty-term Hylleraas wave function of 
Hart & Herzberg (1957) in their Born-approximation calculations. Here we apply 
tlio Schwinger variational principle for tho scattering amplitude (Lippman & 
Schwinger 1950) to the same collision problem. The static field of helium atom 
IS represented by a bnear combination of several Yukawa potentials (Tietz 1966). 
The form of the trial wave function taken by us has been previously used by 
Mowoi- (1955) for tho calculation of differential cross section in tho elastic 
scattering of electrons from neon atom whore it has yielded results very close to 
the numerical solution.

Unlike other variational principles, Sehwingei’ principle does not require that 
tile trial functions involved should have a particular asymptotic form. This 
principle lias been puhin two forms. In one, by maldng the usual expansions in 
spherical harmonics an infinite set of independent integral equations and hence
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a corresponding set of variational expressions for the phase shifts lias been obtained, 
while in the other, the entire scattering amplitude has been expressed in a sta
tionary form. The calculation of scattering cross section by summing over the 
individual phase shifts, though accurate, involves a lot o f numerical computations, 
whereas the calculation by the direct estimation of scattering amplitude is intriii- 
Hically much simpler.

The choice of tJie potential as a linear combination of several Yukawa poten
tials is motivated by the fact that for this potential the integrals occuring in the 
variational iirincijile can be evaluated in closed form for some suitable trial func
tions This evaluation is possible lor the relatively simple form of the Fourier 
transform of tlui Yukawa potential. For other potentials the variational formula
tion may not yield closed form expressions for the scattering amplitudes Unless 
the integrals can be evaluated in closed foiin, computations using the Schwinger 
variational formulation become very tedious and have practically no advantage 
over exact numerical integration of the differential equation.

M a t h e m a t i c a l , f o u m u l a t t o n

—►
The scattering of a particle of mass m by a potential F(r) is dcseiabed by an 

exact solution to the iritegral eqiiation(M(>tt & Massy 1905)

^  e i -1- (1)

vherc Tk I r-r> I

is the free space Green function for the Helmholtz equation and E ™ is
the energy of the incident particle. The vector =  k ni, where the unit vector
A. --- ► A

111 specifics the direction of incidence and the vector r =  rn is the radius vectoi 
which specifies the position of the particle The amplitude for the scattering

from direction to direction — ̂ 2 defined by

/(n j.-re ,)  =  J e’*” '!''' V(r)fi(r)dr,

whei'e
U{r) =  2mV{r)!W.

For the approximate determination of the scattering amplitude by the Schwinger 
variational method we take, following Mower (1955), the functional for the scat
tering amplitude as

— 5 ir^{r)Ur)f^{r)dr + / J ft(r)U{r)0{r, r')U(r')^^{r')drdr'\ (2)



Avhei’e and ^2. solutions of (1). Using trial functions of the form
, ̂   ̂ —>

, „  ikn..r , ™ -ikn^.r  . ,  „i/ri =  Û e * +<̂ 26 * , a =  1, 2

the expression (2) for the scattering amplitude is obtained as
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[ /(» !, - n , ) ]  =  2(7i/ji(n i.-m 2)+20a/jiK , TOj)

— —” 2)—y&2(%t—^2)]— ng) fbz('*h> ^2)]’ 
\\ hwo

/n (» i. - % )  =  J =  ( - X 1 1/1^)

(3)

(i)

_  4n {-h\U\v)(v\U\k,) J*
(2;r)3 J " ~ V~jfc2 /

are, j cspoctively, the first and second terms in the Born series of approximations 
to the scattered amijlitude. Substituting

fbiinp 5j2)//6i(%> —^h) == ^ and/ft2(^i, —th) == —ng)
tli(5 expression (3) may be rewritten as

~  fb ii'^ v  —W2)[2(7 4̂-2C'2A— —Wg)) 
- 2 UiC'2A(1-/a(Wi, Wa))]

Now, adjusting the parameters according to the conditions 

d[f]ldCt =  0, i =  1, 2 

the scattering amplitude is given by

l /(%  — ̂ a)J =/i»i(^i> — “ ^z) )~2A2( l “ / (̂” n ^b))]/

[( l-^ a K , -Wa))2-A2(l-/<-(S.p Wa))** (5)
The Hartree—Pock screening factor (Tietz 1966) for neutral atoms can be expressed 
anal;y'tically in the form

f[r) =  S oLte-'̂ î  (6a)
i

yo that the electrostatic scattering potential may be written as

(6b)
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With this potential the first and second Born scattering ami)litudes are obtained 
from (4) as (Morse & Bosliback 1953, Lewis 1956)

2mZ V. at
0

( 7 )

^vllcrc
UeM(yi, y,) -  =  0 *

I
n \

tan'_x
T

and , ... .2TJ^kh^ 
yj) ’

- a -

0 -- 0 and i =  ;j

othorwis(3

sp 1 , T2+(is!+/?)2
r  '2

7r2/c«
R

with R =  r/ĉ (-K'“+ r « H r r ) “—
S =  k\K-My%+yjYl T ^  yiyj{yi-\ryi)

---> --- > --- ► --- > ---  ̂ --- > A, A
K =  P — kĵ —k̂ , 0 =  arc cos ( /̂̂ .(“ -^a))-

Using the equations (7) and the definitions of A, fi, we can determine the scattciing 
amplitude from the expression (5) and licncc the differential cross-sections for the 
seattei'ing of particles by aii atom. The total scattering cross-section 0  may be 
obtained by integration of the differential cross-section through solid angle or by 
employing the optical theorem

Q — '%)■

R e s u l t s  a n d  d i s c u s s i o n

We have calculated the differential and total cross-sections of elastically 
scattered electrons and positrons having incident energy between 60 and 700 
eV by the Schwinger variational method and the Born approximation. Into- 
grations over angles yielding total cross-sections have been performed numerically 
by Simpson’s rule with suitable intervals. The parameters occurring in the ex
pression for the potential (c.f. equations 6a and 6b), which reproduces the Hartree* 
Fock field of helium atom, are

ai =  1 0000, aa =  - 0  6195 =- -0.1846, === 0.6195, =  0 1846
y, =  2.4907 =  3.8530 yg =  6.1212, y  ̂ =  2.8530, y  ̂ =  5.1212
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Tlio reaulia of our calculation for tho differential cross sections are shown in 
figure 1. Wo compare our results for the clc^ctron aoattoring for 50 oV and 700

SCATTERING ANGLE (D E G R E E )

Figures 1.....................  ejtperimental findings for oloolron scattering.
--------------Born results
----------•—  variational calculation for electron scattering
. —. . —  variational calculation for positron scattering.
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At high energies the results for the differential cross-section for electron 
and positron scattering are nearly tho same. But with the decrease o f energy 
there is a marked difference between the two results, as expected. The results 
for' the differential cross-sections for electron scattering obtained by variationa] 
calculations are in slightly better agreement with experiment than those calculated 
by Born-approximation at all energies. In the high energy region {E ^  600 oÂ ) 
our theoretical results for tho differential cross-sections agree well with the ex
perimental findings for all scattering angles, which contribute appreciably to the 
total cross-section. For small angle of scattering the ratio of the experimental 
findings and the corresponding Born results for the differential cross-sectious is 
quite large, more so for low incident energy. In the incident energy region of 
300 eV and above, for larger angles, this ratio decreases below unity with the in
crease of angle. Again with further increase of scattering angle the value of the 
ratio gradually increases and finally becomes greater than unity. This character 
is also maintained in the variational calculation.

We obtain the total cross sections for the systems in two ways, by the 
integration of differential cross sections over the solid angle and by using tho optical 
theorem. Tn table 1, we have presented these two results of total cross-sections

eV with tlie experimental data of Hughes et al (1932) and that for 300 eV witli
the experimental data of Vriens ei al (1968).

T a b l e  1 Total cross sections Q (in units of where «o Bohr radius)
for elastic scattering of electrons and positrons by helium atom

Incident Q* Q 
energy (Born) 

(eV)’

Q** <2***

electrons positrons electrons positrons

50 0.711006 0.8043 0.3131 0.89298 0 35746

100 0.762 0.410396 0 4063 0.2204 0.40267 0 2672015

150 0 443 0 287944 0.2767 0.1742 0 31380 0 21207

200 0..308 0.221654 0.2111 0.1463 0.23731 0 17607

300 0.190 0.1516999 0.1440 ■ 0.1095 0.16929 0 12014

400 0.142 0.1152831 0.1096 0.8823X 10-1 0.11976 0.102044

500 0.929577X 10-1 0.8808X 10-1 0.7415X 10-1 0.95901X 10■-1 0 842013x10“^

600 0.778729X 10-1 0.7454x10-1 0.6394X 10-1 0 .79957xl0 - 1 0.71729x10-1

700 0 609988x10'! 0.0434x10-1 0.6627x10-1 0.68549x10--1 0.62427x10-1
________________ ^

*Experimental results of Vriens et al (1908)
**Calculated from tho variationally obtained differential cross-sections by integration through 

the solid angle
♦*"'Calculated from the variationally obtained amplitude by using tho optical theorem
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and the corresponding Born results and compared them with the experimental 
findings of Vrions et al (J 968) It is seen from the table that at 100 cV and above
tJie cross sections obtained by integration are nearly equal to the Born cross-sec
tions, but the cross-sections obtained by employing the optical theorem are 
always greater than those two results and closer to experimental findings.
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