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ABSTRACT. Inverse and diroet problems of transiont heat conduction Lhmug& a eylin.
drical woedge havoe boen solved with the help of intogral transforms i

INTRODUCTION i

A

In most problems in the theory of heat conduction cither temperature or
heat transfer conditions are preseribed on the surface of a body, and conditions
at inlerior points are to be determined Such problems are known as “Direct
problems”. Thero is another class of problems, (Inverse problems), in which either
temporature or heat flux, on some part or whole of the surface of a body,
is to be determined from the temperature distribution on suitable interior sur-
facos, and tho remaining portion of the boundary surface. G. Stolz. Jr. (1960)
obtained an integral equation, and out-lined a numerical method for solving in-
verso problems, with special reference to sphere. The problem occurred as a part
of quenching programme (G. Stolz Jr. 1956). T. J. Mirsepassi solved the problem
by a graphical method A V. Masket and A. C. Vastano (1962) solved similar
problems of Mathematical Physics, using Laplace Transform and Separation of
variables, and termed these as “Interior Value Problems”. Q. R. Burggraf
(1964) has obtained the solution as a rapidly convergent series, with lumpod
capacitance approximation, as leading term. Burggraff has taken boundary condi-
tions etc. a8 a function of time only. E. M. Sparrow, A. Haji Sheikh, and T. 8.
Lundgren (1964) have also tackled the inverse problems. Inverse problems ariso
in Quenching studies, the analysis of exporimontal data, and measurement of
aerodynamic heating, eote. -

L. Inverse problem for a cylindrical wedge 0 < r a0 L 0L ;0 <z b
Temperature on the surface 0 = 0, to be determined from the given temperature
distribution on an interior plane & = « and zero temperature on the remaining
boundary surfaces Initial temperature is zero. K represents the constant
thermal diffusivity. w(r, 0,2,7) the temperature satisfies :

ou __ o 10w , 1 0% |, )\,
F=E(Ftimtamt )

0<r<0;0<0<b;0<z<h;t>0 W (1)
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u(r, 0,2,0) = u(r, 6,0,8) = u(r, 6, h, 1) = u(r, 0,2, 1) = u(a, 0,2,4) = 0 ... (2)
ulr, a,z,8) = f(r,2,1); 0 <a < 6, (Known), . (3)
w(r, 04,2, &) = g(r, 2, 1), say (unknown), v (4)
u(r, 0, %, t) tends to zero, as r tends to zero.

Applying to cquations (1) through (4) the finite Fourier sine transform, with
respect 10 z, and the Laplace transform with respect to ¢, defined succossively as,

h e
Ur,0,n,6)={ u s;n”TAz dz
0

and O(r, 0, n, p) = j‘: U exp (—ph)dt
We obtain -
72 gi? -{-rgg 122U %7 =0; whero ¢*= 71’;!/%- ] }1’( (5)
T(r, 0, n, p) = Ula, 0,5, p) =0 ()
U(r, a, n, p) = F(r, n, p) e (D
U(r, Oy, n, p) = &(r, n, p). . (8)

Further applying to equations (5) through (8) the finite Lebedev trunsform
(Naylor, 1963; equation 9) defined as :

— a —_ d .
0" (5,0, p) = I [Uslgu)Ks(er)~Is(ar)Ks(ge)|T -
where I, (gr) and K, (gr) are the modified Bessel functions of the first and second

kind of order s".

%§=—ﬁ7 . (9)

U'(s,0,m,p) =0
(s, &, n, p) = F'(s, n, )
T7'(s, Bq, 1, p) = (8, 7, P)-
Solution of equation (9), after some simplifications reduces to

sin (6) .. (10)

B:’(H: n, P) = -F—I(a! n, p) s (aa)
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Applying to equation (10) the inverse finite Lebedev transform (Naylor, 1963;

oquation 11), the inverse Laplace and the inverse finite Fourier Sine transform
(Sneddon, 1951; P.74, Th. 27), we obtain :

o 1 ® . nmz ct+ieo =,
g(r,2,1) == =3 n§1 s = e P (pt) - dp { F'(s, n, p)

sin (6)  Is(@r) . (
sin (36,) * Ig(ga) \
}
A

where L is the path R(s) = C'. \

II. A direct problem: Cooke (1955), Craggs (1945) and Jaeger (1942\) have
solved direct heat conduction problems for a wedge, with constant surface tempora-
ture. Their results can be extended, if in article I, g(r, z, t) the variable surface
tempoerature is supposed to be known and w(r, 6, 2, t) the temperature distribution
in the wodge, is similarly determined to be :

- etio —
u(r, 0,2,t) = — ,37, Z sin EZ—Z §_ . exp(pt) dp [ G'(s,n,p)

sin(90) . Ig(ar)

sin (s8)) ~ Ig(ga)

This problem can be used for the study of analogous problem of transient
flow taking place in earth dams during drawdown.
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