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SCATTERING OF THE RADIATION FIELD OF A LOOP
ANTENNA BY A CONDUCTING CYLINDER
IMMERSED IN A COLD PLASMA
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Tan UNIVERSTTY 0T OXLANOMA NORMAN, OKLANOMA
(Recewved March 9, 1966)

ABSTRACT. Tlho equations deseribmg the seutterod fields of o cireular loop antonna
andd o condueting eylinder mmmersed in a homogencous cold plasmn are denved. Tt assumod
that the loop entenna 18 excaited by o ono-dimensional, umform, mphuse, smusoidul current,
1e, n curcent filoment  Solutions of Helmholtz's wave equation ure formulated through
an mtegral expansion of the produet of cylndiwal TTankel functions and transcondontal func-
tions.  Tho coofficionts mn these solutions aro ovaluwted by the appheation of the problom
houndary conditions so thut w solution for the seattered electrie ficld s effectod

INTRODUCTION

Considerable interest has been shown by a number ol anthors, including Yeh
(1964), Seshadri and Hessel (1964), and Seshadri (1964), m the scattering effoct of
plasinas and perfectly conducting surfaces on tho radiation charactoristios of
various antonnas. Scshadri (1964) consilerod the problem of the scattering of
a plane wave due to tho presence of a conducting cylinder tmmersed m a cold plasma,
The problem discussed in this paper is the seattering of the rachation field of a
eireular Toop antenna immoersed in a cold plasma . the presence of a porfoetly
conducting cylinder of mfinite length (Fig. 1) Tt s assumed that the thm wire,
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Figure 1.

singlo turn, loop antenna is located in the xy plance with ils center at the origin
4ud that it is excited by a uniform, inphase sinusoidal current of the form I, exp(ict)
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Since the plasma is assumed homogencous and isotropic, its field characteristies
may be described by a complex relative permittivity factor K

The equations governing propagation are Maxwell’s equations and the equa.
tion of motion of the {free charge existing in the plasma. TFor the sinusoidal steady
state caso, these oquations may bo oxpressed as

VX E = —iopH o
VX H = iw,KE e (2)
(io-Fv)my = qli e ()

where E is the cleciric ficld strength, I is the magnetic field strenglh, o is the
angular wave froquency, g, 15 the permeability of free space, ¢, is the {permittivity
of free space, & 13 the complex relatave poermittavity factor, v 1s the avaage colli-
stonal frequency of electrons with neutral particles, ¢ is the particle charge, m
is the mass ot the charged particles, and » is tho volocity of the chargod particles
TFor the plasma, K is defined from(3) as

2 2
R0 5 )= ()] -
e ) T e @
where a?= (Ng2legm)|w?, f2 = (v/w)®. and N is the number density ot charged
particles in the plasma.
FORMULATTION OF THE WAVE POTENTIALS
Maxwell's oquations (1) and (2), may be readily combined to yield Helmholtz's
voctor wave equation in terns of the wave potential F
VEF+EEF = 0 (B
where k2 = oy, K is complex. The components of the wave potential F satis-
fy Holmholiz’s scalar wave equation
vapr-kty — 0 ()}

Harrmgton (1961) has shown that the wave potontial 3 may bo oxpressod m the
{orm

Il"n,kz,k,, = 'Bw(kpp) 9(ne) h(k.z) e (M

where the B, (k,p) are Bessel or Hankel functions, the g(ne) and h(k,z2) are sinusondlal
functions, and %% = k,2-]-k,2. Tn gencral it is possible to formulate solutions
to (6) as
¥ =2 | [k Bolkop) g(ne) k)i, - (8
2

with the intogration over the complex plane and the function f,(k,) to be determined
from the boundary conditions,
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An examination of Fig. 1 indicates that duc to symmetry, thore will be na
component of E in the z direetion  The stipulation of a wuform mphase curront,
excatation of the loop antenna tequires that g(ne) be w constant or that # - 0.
Eg (8) may now be rowritton as

U= j'k[AHn(”(k,,p)—}-BHO‘“’(A:,.p)]l:'kz'”dk,.
3
when b < p < @ and
Yo = [ CH @ (kpp)ek=dk, when p>« e (10)
k,
Bq (9) represents a standing wave region (region 1) which oxists between the
conductmg cylmder and a mathematical cyhndrical surface containing the loop
antena Ln region 2, p > a, only travelling waves exist The constants A, B, and
(" ace the fy(k,) to be determimed from the houndary conditions and the HWO(k,p)
and the Hy2(L,p) arc Hankel functions of zero order of the first and  second kimd
The eleetrie field £ and the magnetic field H are given respectively hy

K= -.yxF ()
1 = VXVXT (12)
o |
where ¥ =aif |

DERIVATION OF THE SCATTERED FIELD

Application of the boundary conditions over the surlace ofthe porfoctly
onducting cylnder and the loop of curront yields the required fok,) — Since
the tangential components of the K field must be zero on the surface of the con-
ducting cylinder (p = b), apphcation of this boundary condition yiolds

__ [HMEN .. (13
ne - ) o w

Tu addition the tangential components of the & field must be continuous over tho
eylindrical surface (p = a), so setting Be1 — K¢ at p =« gives

U= { Hy e yea) H (Je, ) — H () Hy (e, 0) } A e (14)
H,®)(kya)H, (kD)

Also at p = a, z = 0, the magnetic field must change in a discontinuous man-
ner bovause of the current flowing in the loop antonna. That is

Hy— zzsz=i—w:"(z)- e (15)
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The delta function may be represented by a complex integral of the form

1
oz) = o _|,'c zakhzdkz. e (16)
Substitution of (16) into (15) allows evaluation of 4 as
— _ SupeH B (k,a), v (17)
= 2nak,2[Hy® (k0 H,®(k,0)— H, O(k,a)Hy®(k,a)] I
Utilization of the Wronskian for Hankel functions reduces (17) to
A = Ok - (18)

8k,

The electric ficld Z (radiated and seatterod) in rogions 1 and 2 may now he
written as

B,y = —E!EDIW_[ {H V2, WL (B p) — H D (ke b)_ZIIIZ)(Ic,,p)} H®(ka)erkdk,

H1(2)([c b)
(19)

Boy = —9Re g {Hl“’(kna)Hl‘z’(kpb)—Hl‘z'(k,ﬂlﬂl“’(kpb)

5, 5) } e pretsat,

(20)
Since (19) and (20) represent the total field, radiated plus scattered, the field scat-

terod by tho cylinder may be found by subtracting the radiation field of the loop
from the total field

Correspondingly, the radiation field of the loop antenna may be expressed

By = =9l 5, B} b pledi, v (@)

oy = _!“/‘ﬂ © [ Ty(l,0)H, D (k,p)eskeadk, o (22)
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Subtracting (21) from (19) and (22) from (20) yiclds the scatterod field produced
)y the presence of the conducting cylmder, Thus the scattored field in region 2
may be written as

B = u_—mgol,, i [{H](”(kna)ul(m(kpb)__'l_l_lu)(kpu)ul(l!(é'l_lb_) } . (23)

k, H,®)(k,b))

—2J,(ky) | Hy®(kpp)eshszdk..

1t is also interesting to note that (23) reduces to a Fourier integral if ; is roal.
For the problem under consideration, this occurs when the plasme collisional
freguoney v is zero since K is then real.  Integration linuts on k; in (23) may thon
be written as —o0 to 0.
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