RECIPROCITY EQUATIONS FOR ISOTROPIC OPALESCENT SCATTERING MEDIA

S. P. TEWARSON
Deparimient of Phystes, Eiwing ('bristian ('ollitul, Alahaamin)

Abstract

Krishnan's receprocity theorem wat found to bo restrieted totundom Astshmm's work to provide a mumbor of secepiocity rolations, which wore also found to bo ros- sty rolations and entablishod it expermontally in a muth moro gonoral form valad for the two 'asos of oriontation in the horirontal plane of observation wherem Karhmen's theotem

$$
M I-M \neq
$$

Whin M and $M \neq$ aro the 4 , 4 matives of the natural and its corresponding rompromal opticel syatem meolvod.

 The aquation follows fiom the Vueller hitw of reerprocila Six cquationes follow from tho grate
 in clata from various oxporimonters avaluble in the jublished htoratiare, Tho oguations are
 meolving olectromagnotic boums

JNTRODUCTION

R. S Krishan (1935a), derived the following Reoprocity theorom for Tyndall scattering

$$
\begin{equation*}
\rho_{u}=\frac{1-\mid l / \rho_{h}}{1-1-1 / \rho_{v}} \tag{I}
\end{equation*}
$$

whero ρ_{u}, ρ_{l} and ρ_{v} are depolarization factors for unpolarized, horizontally and bertically polarized incident boams respectivoly. This relation has been subperted to extensive experimental verfications by Krishan (1935h), as well as a large number of other workers, mostly for random aggregations of collondal partieles of all shapes and sizos. For specifically orienterd non-sphencal partuclos it was ('ג]errmentally shown by Krishan (1938), Rao (1945), Subramanya and Rao (1949), ete., that (1) is true for only vertically-orionted particles and fails for partires oriented in the horizontal plane of observation. It was therefore concluded that the law of reciprocity is not a general law of optics, in the origmal form suggested by Lord Rayleigh (1877)
F. Perrin (1942) extended Krishnan's work to provide a number of addlitional reciprocity relations which wore also found to have restricted validity confinod to random oriontations only.

In 1948, Mullor (1948) reporter the formulation of a phenomenological foundation of optics, having only oporational basos and founded upon empirical laws of spoctral docomposition, polarization, superposition and reciprocity. Ho gave a new interpretation to the concept of rociprocity based upon the Muoller Phonomenologieal Algelrat (Parke 1949, Mullor).

Anong the recent workers, Subramanian's (1963) contribution is noteworthy. Under Krishman's gudance, Subramanian formulated a general reciprocity rolation of the form

$$
\begin{equation*}
I^{A}{ }_{B}=I^{\prime}{ }_{\Delta} \tag{2}
\end{equation*}
$$

where $J^{A}{ }_{B}$ is the intensity of the component of the seattered light whose electric: vector is inclinod at an angle B to the vertical, with the external orienting field parallel to the meident bemm. $I^{\prime \prime}{ }_{\Delta}$ is the corresponding intensity component, when the external field is parallel to the scattered beam The relation (2) was also vorified by him experimentally The reasoning followerl in the formulation of (2), is based upon Subramanian's olservation that $\rho_{v} \times \rho_{h}$ is a constant for tho two cases. However, Subloramanian was concerned with intensity only and his rosult does not deal with the paramoters of the optical system constituting the scattermg modium.

The present paper doals with certain generalizations of reciprocity relations in lught seathormg modia in torms of Muller's law of reciprocity, valid for all possible orientations of the scuttering particles of all shapos and sizes, conslituting an ssotropic opalescent merlium.

Perrin (1942) has defined an isotropic opalescent medium as one whose scattoring olements are not vory small compared to the wavelongth of light, which is more or less turbid or opalencement, and which shows either absoluto or statistical isotropyas a whole Examples of such media are suspensions, colloidal solutions, solutions of largo molocules, smohos, fogs, fiberous matter, ete.

THE MUELIAR LAW OFARCIPROCITY
In the phenomenological Mueller Algobra, an optical system (or instrument), is clefined by a 4×4 Matrix of the form

$$
M=t \quad \begin{array}{cccc}
1 & a_{1} & a_{2} & a_{3} \tag{3}\\
b_{1} & g_{11} & g_{12} & g_{13} \\
b_{2} & g_{21} & g_{22} & g_{23} \\
b_{3} & g_{31} & g_{92} & g_{33}
\end{array}
$$

Reciprocity Equations for Isotropic, Opalescent, etc.

where t is the transmission coefficient, a and b aro tho analyzing and polarizing betors (3 -dimonsional), and $g_{j k}(j, k=1,2,3$) aro tho matrix olemonts of an "prical Tensor G.

If L and L^{\prime} are the Stokes' vectors of the incident and the corresponding churgent beams rospoctively,

$$
\begin{equation*}
L^{\prime}=M \times L ; \tag{4}
\end{equation*}
$$

The reciprocal optical system.
The rociprocal optical system (or instrument), $T^{* *}$, corresponding to a matural ysiem T, is defined as ono in which the exit aprerature, is made the ontrance aperture and the ontrance aperture is mado the oxit aperture, and wherom the medent and omorgent beams are interchanged in thor placos and revorsod in directions. The parameters of the reciprocal system are indicated by superseripting usth the sign \neq. The Matrix or the recrprocal system is given by

$$
M^{\star}=b^{\neq}\left(\begin{array}{rrrr}
1 & b^{\hbar_{1}} & -b^{\neq} & b^{\neq} \\
a_{1} \neq & g^{\neq} & -g^{\neq} & g^{\neq} \\
-a_{31} \digamma_{2} & -g^{\neq} & g^{\neq} & -g^{\neq} \\
a_{32} & g^{\digamma_{13}} & -g^{\neq} & g^{\digamma_{33}}
\end{array}\right)
$$

I'hr Mucller law of reciprocity
Starting from the fundamental conecpts of recrprocity propounded by Holmholt, and Rayleigh, that, if by any means one point can be seem from the other, the other sloould also be soon from the first, Mueller's theory states the law of rec iprocity in the form

$$
\begin{equation*}
M=M^{\neq} ; \tag{6}
\end{equation*}
$$

is the most genoral form of the law.
Reriproctly conditions
The following reciprocity conditions follow immediately from (3), (5) and (6).

Hund,

$$
\begin{array}{rlrl}
t & =t \\
a_{i}^{\star} & =(-)^{i+1} \cdot b_{i} ; \quad(i=1,2,3) ; \\
a_{i} & =(-)^{2+1} b_{2} \neq & (i=1,2,3) ; \\
g_{j k} & =(-)^{3+k} \cdot g_{k j} ; \quad(j, k=1,2,3) ; \tag{10}
\end{array}
$$

115. RECIPROOITY AND REVERSIBILITY

The horizontal (H) and Vertical (V) intensity components of the scattered :"am, corresponding to horizontally and vertically-polarized incilent beams 'milicated by subscripting H and V by h and v) are given by,

$$
\begin{align*}
H & =\left(I^{\prime}+M^{\prime}\right) / 2 \tag{11}\\
V & =\left(I^{\prime}-M^{\prime}\right) / 2 \tag{12}
\end{align*}
$$

where I^{\prime} and M^{\prime} are stokes' parameters of the scatterod beam. Hence in terms of matrix olemonts,

$$
\begin{align*}
H_{h} & =\left(1+a_{1}+b_{1}+g_{11}\right) / 2 \\
V_{h} & =\left(1+a_{1}-b_{1}-g_{11}\right) / 2 \\
H_{v} & =\left(1-a_{1}--b_{1}-g_{11}\right) / 2 \tag{13}\\
V_{v} & =-\left(1-a_{1}-b_{1}+g_{11}\right) / 2
\end{align*}
$$

Krishnan's reciprocity relation $H_{v}=V_{h}$, yiells the relation,

$$
\begin{equation*}
b_{1}=a_{1} \tag{14}
\end{equation*}
$$

This is true only when.

$$
\begin{equation*}
a_{1}^{\nLeftarrow}=a_{1} ; \text { and } b_{1} \neq=b_{1} \tag{15}
\end{equation*}
$$

which implies that the systom (instrumont) is reversible, wherein tho recipocal of the mstrument is also the instrument itself and has therefore a Hormitian matrix Tho complote requirements of reversibility are expressel by (15) and the additional condition,

$$
\begin{equation*}
g_{j k}=(-)^{j+k} \cdot g_{j k}{ }^{\neq}, \tag{16}
\end{equation*}
$$

It can now easily bo seen that all reciprocity relations put forth by Perrin (1942) and Krislman (1935a), follow from the reversibility critcria expresserl by (15) and (16). Thus in torms of the new theory, previous roesprocty relations of Perrin and Krishnan appear to be in lact reversibility relations. Since all optidal systems cannot be reversible, Krishtan and Perrm's reciprocity relations lack general valudty.

IV THE RECIPROCITY EQUATIONS

A. The scaltering raperiment

Consider a general seattoring experment with dopolarization factors,

$$
\begin{align*}
\rho_{u} & =\frac{H_{v}+U_{h}}{\overline{V_{v} \mid V_{h}}} \tag{17}\\
\text { hence, } \quad \rho_{u} & =\frac{1+b_{1}}{1-b_{1}} \tag{18}\\
\rho_{h}=V_{h} / H_{h} & =\frac{1-\binom{b_{1}+g_{11}}{1+a_{1}}}{\left(1+\frac{b_{1}+g_{11}}{1+a_{1}}\right)}
\end{align*}
$$

$$
\begin{equation*}
\rho_{v}=I I_{v} / V_{n}-\frac{1+\binom{b_{1}-g_{11}}{1-a_{1}}}{1-\binom{l_{1}-g_{11}}{1-a_{1}}} \tag{0}
\end{equation*}
$$

Let the scatiering experiment consist of soven tyjes of polarizers and throe trpes of analyzors as under.

Aurlyzer
Plano-Vertical ($i-1$)
Plane at 45° to Vortical $(t=2)$
Greular ($2=3$)

Polurizer ,

None (Unpolarized beam)	$\ldots(k=0) ;$
Plane-Vertical	$\ldots(k=\overline{1})$
Plane-Horizontal	$\ldots(k=1)$
Plane at $+45^{\circ}$ to vertical	$\ldots(k=2)$
Plane at -45° to vortical	$\ldots(k=\overline{2})$
Right circular	$\ldots(k=3)$
Loft circular	$\ldots(k=\overline{3})$

let $\theta_{i k}$ le the roading of tho analyzer for equal intonsities of the two halvos If the fiold of view (H and V) which are orthogonally ponarized; with the - device like a Wollaston prism, ote. From the figure given above we get,

$$
\begin{equation*}
V_{i k} \cos ^{2} \theta_{2 k}=H_{i k} \sin ^{2} \theta_{i k} ; \tag{21}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\rho_{i k}=H_{i k} / V_{i k}=\cot ^{2} O_{i k}=\left(1+\cos 2 \theta_{i k}\right) /\left(1-\cos 2 \theta_{i k}\right) \tag{22}
\end{equation*}
$$

Using now the abbreviation $C_{i k}=\cos 2 \theta_{i k}$; we have from (22),

$$
\left.\begin{array}{l}
b_{i}=C_{i 0} ;(i=1,2,3) \\
\rho_{u}=\left(1+C_{10}\right) /\left(1-C_{10}\right) \\
\rho_{h}=\left(1-C_{11}\right) /\left(1+C_{11}\right) \tag{24}\\
\rho_{v}=\left(1+C_{11}^{-}\right) /\left(1-C_{11}{ }^{-}\right)
\end{array}\right\}
$$

Also,

$$
\begin{gather*}
C_{i k}=\frac{b_{1}+g_{i k}}{1+a_{k}} \tag{25}\\
C_{i k}-=\frac{b_{i}-g_{i k}}{1-a_{k}}
\end{gather*}
$$

For brevity we express the sum and difference of the above two C values as,
and,

$$
\begin{align*}
S_{i k} & =C_{i k}+C_{\imath \bar{k}} \tag{26}\\
d_{v k} & =C_{\imath k}-C_{i \bar{k}}
\end{align*}
$$

Thus we have,

$$
\begin{equation*}
a_{k}=\left(2 b_{i}-S_{i k}\right) / d_{i k} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
2 g_{i k}=d_{i k}+a_{k} \cdot S_{i k} \tag{28}
\end{equation*}
$$

B. The reciprocity equations

Basing our arguments upon Mueller's proposed form of recrprocity law, it if now possible to formulate a generalized recrurocity equation as follows :

From (28) we can writo,

$$
2 g_{j k}=d_{j k}+a_{k} \cdot S_{j k}
$$

and,

$$
2 g_{k j}^{\digamma_{k j}}={d \neq \digamma_{k j}}^{\sigma_{k}}+a_{j} \cdot S_{k j}
$$

hence,

$$
\begin{equation*}
2\left(g_{j k}-g_{F_{k j}}\right)=\left(d_{j k}-d_{k j}\right)+-\left(a_{k} \cdot S_{j k}-a_{j} \cdot S^{\neq}{ }_{k j}\right) \tag{29}
\end{equation*}
$$

Substitution of reciprocity conditions (8), (9) and (10) in (29) giver,
i.o., $\quad\left[d_{k j}+a^{k}, S_{j} k_{k j}\right](-)^{j+k}=\left[d_{j k}+(-)^{k+1} b^{F_{k}} \cdot S_{j_{k}}\right]$

But

$$
a^{\kappa_{j}}=(-)^{j+1} \cdot b_{J}
$$

honce,

$$
\begin{equation*}
\frac{d_{j x}+(-)^{k+1} \cdot b_{k} \cdot S_{j k}}{d_{k j}+\overline{(-)^{j+1} \cdot b_{j}}: \tilde{S}^{-F_{j k}}}=(-)^{j+x} ; \tag{30}
\end{equation*}
$$

In terms of $C_{\jmath k}$ values from (26) we have,

$$
\begin{equation*}
\frac{\left(C_{j k}-C_{i k}\right)+(-)^{k+1} \cdot b_{k}^{*}\left(C_{j k}+C_{j \bar{k}}\right)}{\left.\left(C_{k j}-C_{k j}\right)_{k j}\right)+(-)^{j+1} b_{j}\left(C_{k j}^{*}+C_{k j}\right)}=(-)^{j+k} ; \tag{31}
\end{equation*}
$$

Reciprocity Equations for Isotropic Opalescent, etc.

which can finally be written in the form,
(where: $j, k=1,2,3$)
Eguation (32) is the most genoral form of reciprocity relation existing betwoon the parameters of the natural and its corresponding recopocal system, measured in terms of cos $2 O_{\text {Ih }}$ values. Somo special cases of (32) are of great minest, in asmuch as their validity can be tested through availablo data in literature esperemblly that of Krishan, Subramanya and Rao, Subrameman, A. Mueller ate We consider them as follows:

Case I. $(j=k=1,2,3)$
It follows inmediately from the general reccprocily equation (32), that,
(a) For $j=k=1$.

In tirms of depolarization factors, (33) can be oxpressed with the holp of (24) and (255) as,

$$
\left[\begin{array}{l}
\rho_{\boldsymbol{F}_{u}}\left(\begin{array}{cc}
1 & \rho_{h} \\
1+\rho_{h}
\end{array}\right)+\binom{1-\rho_{v}}{1+\rho_{v}} \tag{34}\\
\hdashline \rho_{u}\left(\frac{1-\rho_{h}}{1+\rho_{l u}}\right)^{\star}+\binom{1-\rho_{n}}{1+\rho_{v}}
\end{array}\right] \times\left[\begin{array}{r}
1+\rho_{u} \\
-1+\rho_{u^{\prime \prime}}
\end{array}\right]-1
$$

Wrating,
und,

$$
\left.\begin{array}{c}
R_{n}=\frac{1-\rho_{u}}{1+\rho_{u}} \tag{35}\\
R_{h}=\frac{1-\rho_{h}}{1+\rho_{h}} \\
R_{v}=\frac{1-\rho_{v}}{1+\rho_{v}}
\end{array}\right\}
$$

E_{q}. (34) can be reduced to the simple form :

$$
\begin{equation*}
\frac{\left(1-1-R^{\not}\right) R_{v}+\left(1-R^{\neq}\right) R_{h}}{\left(1+R_{u}\right) R^{\varpi}{ }_{v}+\left(1-R_{u}^{-}\right) \bar{R}_{h}^{\neq}}=1 \tag{36}
\end{equation*}
$$

(1) For $j=k=2,3$:

We obtain similarly the following two relations,
and,

Case $1 I$
(a) $j=1, k=2$

We have from (32),
(b) $\quad j=2, k=1$

$$
\begin{gather*}
{\left[1+\left(1 F_{10}\right] C_{21}-[1-C \neq 10] C_{2 T}\right.} \tag{40}\\
{\left[1-C_{20}\right]\left(F_{12}-\left[1+C_{20}\right] C_{12}=-1 ;\right.}
\end{gather*}
$$

We can (ombune (39) and (40) mito a single package,

Clase $I I I .(j-1, k=3)$ and $(j-3, k=1)$.
In the same manner as m (41) tho following rolation is obtamed for this case,

Clase IV $\quad(3=2, k=3)$ and $(j=3, k=2)$.

Thus, sux specife reciprocity relations follow from the genoral reciprocity equation (32). The experimental verification of all of them roquires olaborate and extensivo expermontal work. Nevertheless, it is possible to verify (34) and (37) with the holp of avalable data in the existing litorature.

V. EXPERIMENJAL VALIDATY

The expermental validity of some casos of the genoral reciprocity equation (32) is establishod though avalable data in tho followng Tables
a) Krishunis (1938) data for Megnetically oriented partacles

Krishnan performed three experiments on graphito sols, using a magnetic orientugg fiold and with meident and omergent beams at right angles in the horrzont l plane of observation, as follows.
(i) Particles vertically oriented

Reciprocity Equations for Isotropic Opalescent, etc.

(ii) Particlos horizontally orionted and parallel to incident beam
(sii) Particlos horizontally oriented and perpembecular to mesident beam and parallel to scattered beam.
In terms of the previous cliscussion it is casy to sed that the system in case (iii) in the sectprocal of the system in case (ii) and vice-versan The result of calculations for receprocity Eq.(34) aro tbulated below .

TABLE I
Test of rociprocity Feq. (34) through Krishmin's data

b) Subramanya and Rao (1949) datu for Electrically oriented patules

The authors repeated Krishnan's experments with the only difference, that they used an electric field for orienting the particles, given bolow is then datia

TABLE IJ
Subramanya and Rao's data
Concentration of Sols $=0.0008 \%$

$\underset{\text { (Volta) }}{\boldsymbol{H}}$	Natural Lnstriment Case (11)			Rociprocal Inmirument Cuse (in)			Rec lisq. (34) (Loolt hand side)
	p_{v}	Ph	Pu	PV	Ph	Put	
0	. 068	. 260	. 355	. 008	260	355	1.000
00	. 102	350	. 283	. 068	344	. 262	0.940
120	. 124	. 419	. 285	.068	476	. 255	0) 930
180	. 131	435	28.5	077	.64k	. 247	1060

$$
\text { Conc, }=0.0004 \%
$$

$\stackrel{H}{\text { (Volts) }}$	Pv	ph	Pu	p_{v}	Ph	P_{u}	$\begin{aligned} & \text { Ree Fg. } \\ & \text { (34) } \\ & \text { (Left hund } \\ & \text { side) } \end{aligned}$
0	070	. 233	. 331	. 070	. 236	. 331	1000
(i)	078	255	. 331	. 074	. 390	312	1.010
120	. 092	. 307	. 328	. 079	. 394	. 305	1.010
180	. 108	350	31.5	08:3	448	295	0991

The agroment with tho proposed reiprosty equation is much more excellent for the lower concentration of 0.0004% than for the higher oncentration of 00008% This is because of much bettor orientation cffect and much lower amount of multiplo-scattoring for lower concentratoons
3. Subramanian's data (1963)

Subramanian repeated Krishnan's experments, using the magnotic fielp also for vorification of his rociproctity relation in terms of Intensities. His datib for depolarization factors for the last two casos has been used for verifying the equation (34)

TABLE III

S. Subramanian's Data for oriontod particles

$\stackrel{H}{\text { (Gauss) }}$	Fiold parallel to the mudent boum			J'iold porpendicular to metdent beam			Rec. JEq. (34) (1)eft hand
	Pu	$\mathrm{P} v$	Ph	PII	ρ_{v}	Ph	
0	. 20	. 09	. 69	20	. 09	. 69	1.000
3600	. 17	10	. 90	20	09	70	0984
3000	. 16	. 10	90	. 202	. 09	100	0980
2000	-	-	93	-	005	1.00	-

Looking at the last column it is apparent, the agreement in this case is also of the order of 98%.

4. A. Mueller's data on oriented Nylon fibers

Miss A. Mueler's data is recorded in the present Author's (1964) previous work She performed it set of extensive experments uning extremely fine parallel nylon fibers as scatterers. The detection technique was devolopod by H. Mueller utilizing a highly sensitive photoclectric method. Experiments wore conducted in an air-conditioned chamber and the angle of seattoring was kept at 41°. Table IV gives the rosult of calculations for the data.

Reciprocity Equations for Isotropic Opalescent, etc.

TABLE IV
A Mucllor's data on oriented Nylon fibors

Grientation Anglo degrees A	C_{10}	$C \neq 10$	C_{11}	$C^{\prime} ⿻_{1}$	- CH_{1}	$-C 7{ }_{11}$	Rec. Eq. (33)
0	.0324	0196	2232	. 1898	155\%	14:6	$10 \div 1$
30	0250	0239	1286	1192	1205	1184]. 050
60	0399	0544	1855	2043	1911	1234	0946
90	.0674	0728	4490	4157	36338	3751	1002
120	0554	$0: 309$	3517	2860	.9738	. 2367	1185
150	. 0188	0123	1014	1048	0611	0780	1060
180	. 0300	. 0175	2000	. 1976	1466	1812	0913

TABLE V
A Muefler's data for verffeation of Roerprocity Le.(37)

- 13ngrees	${ }_{2} 0$	$C \neq 12$	$\left({ }^{(7)}\right.$	$0 \nmid ⿻_{20}$	O_{2}	O_{4}	Ju\% Eq (37)
0	- 0039)	0838	- 0188	- 0008	. 1774	-0148	1090
30	-.008s	.2134	- 1820	- 0000	2155	$-.1883$	() 980
60	--.0144	3377	- 3287	- 036\%	. $30 \mathrm{H6}$	- 3065	J 077
90	+ 0035	17.41	-1743	- 0049	1847	- 1468	1047
120	$+.0274$.3067	$-.8326$	+ 0171	. 3075	-2569	1.035
150	+.002\%	2315	-1753	+0019	2331	$-.1736$	1001
180	- 0076	0853	- 0585	- 0088	0825	- 0372	1199

TABLE VI
A. Mueller's data for verification of Reciprocity Eq. (41)
(all C values are to bo multiphed by 10^{-3})

$\begin{gathered} A \\ \text { (1) greos) } \end{gathered}$	$\mathrm{C}_{2 \mathrm{I}}$	$C \neq{ }_{21}$	C_{21}	$C \neq 21$	C_{10}	$C \neq 10$	C_{20}	$C \neq{ }_{20}$	C_{12}	$C \neq 12$	$C_{1 / 2}$	$0 \neq 1 *$	Her. SH_{1} (41)
0	011	060	015	009	032	020	-001	--001	076	052	-021	-035	1130
45	031	. 028	-019	016	022	025	-011	-025	-019	023	061	000	1. 090
90	016	010	009	009	067	073	004	-005	169	161	-012	-032	0.890
135	-034	-008	078	041	027	027	016	013	000	-086	055	093	1.175

The agrement of the clata with (4I), In Table VI, is farrly good considering the number of small parameters involved in the equation and also the groatost
difficulty of maintainug the name experimental conditions over a length of timo for the 12 sets of readings molved.

Error Autlysus of the Recoprocity Lipuations

Consicler X and Y as the correct values of the numerator and the denominator for the general form of the reciprocity oguation

$$
X / Y=1
$$

If d_{α} and d_{μ} are the not amounts of error m the experimontal values of X and Y resjectively. it follows that,

$$
\begin{aligned}
\begin{array}{rl}
X+d_{1} & X\left(1-1 \frac{\left.d_{y} / X\right)}{Y+d_{y}}\right.
\end{array} & Y\left(1 \pm d_{y / \prime} / Y\right) \\
& -\frac{X\left(1+d_{x} / X\right)\left(1-\mid \cdot d_{y / y} / Y\right)}{Y} ;(\text { If } X=Y) \\
& =X / Y \pm\left(d_{x} \pm \pm d_{y}\right) / Y
\end{aligned}
$$

Since d_{y} and d_{p} are bound to be rather small quantitios compared to X and Y, the error term would bo very small Λ ny eonsistont and appreciable divergence from the value $X / Y-1$ wond therefone naturally be dup to real significant disparity with the law, and would signify the non-validity of the Muellor's form of the reciprocity law in that case.

CONCLUSTON

The valultity of tho proposed reciprocity equation (34) has boen conclusively established through the datia of Krishnan, Sulmamanya and Rao, S Subramanian and A. Muller, as shown in the last columns of tables I to IV. The divergences from the predieted value unity are well within about 5% exporimental error linits. Reciprocity Equations (37) and (41) have also been estublished through the data of A Mueller in Tables V and VI respectively, though the agroement for those two is not so good as for the previous ones This is partly because of rather small parameters moolvol and being for all sorts of arrangements of tho scatterers and the apparatus, having boon taken over a longth of timo. It is very difficult to manatan oxact exporimental conlitions over a long period ot time, nevertheless the average agreement within alout 10% is farly reasonable. The verification of the equations mvolving circularly polarized beams is loft for further work. The validity of (34), (37) and (41), seems to provide a strong evidence in support of the general reciprocity oq.(32), and as such of Mueller's reciprocity law.

The utility of the proposod form of rociprocity relations is in their efficiency and elegance of providing relable means of testing the Muoller theory in a straightforward and compa't manner. In general matrix eloments in ordinary scattering exporimonts are vory small, as such diroct comparisons of matrix elements entail

Reciprocity Equations for Isotropic Opalescent, etc.

numerous calculations on small quantities yielding meonclusive results. The proposed equations may find usefulness in Collond-opties and alloed fields Matrix represontation of polarizod olectromagnetic beams is being increasmgly used in dase of gamma-ray polarization studies as shown by Mr-Master (1954, 1961) etc

ACKNOWLEJGEMENTN

The author records his gratitudo to Prof Hans Mueller for gudance in the mituation of this work and to Miss. A Mueller for expermontal datit. It is a great pleasure to express thankfulnoss to Prof. K. Banerjoe for his encouragement and interest in this work Thanks are also due to the Danforth Foundation, for financial support in the initial stages of this work at the Massachusetts Institute of Technology, USA

RETERNNGES

Mr-Master, W. H 1954, Am. .J Phy, 22, 351 - - 1961, Revs Mod Phy 33 к. Muollor, Hans, 1948, Opt. Soc Am J. 38, 661 - - 1949, Foundations of Optus, (Unpulblehed toxi) Parke, N. G. 1919, Tech Rept. No 119. Res Lab Elootromes, M Porrm, F , 1942, J Ohem Phy., 10, 415. Rus, MRAN. 1945, Uurrent Sozence, $2,43$. Ruyleigh, Lord 1877, Theory of Sound, Vol I, 92. Subramanuen, \& 1963 , Kolloid Zeits 189 (2), 135 Subramanya, 12 and Rao, 1949, Pror Ind. Acad Scr. 29A, 442. 'Iowanon, S P. 1964, MIT Graduate thesis, Course VIII

