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ABSTRACT Woe have oblained, following Spector (1964), an oxprossion for the -
matrix in tho cuse of an altractive mverse fourth powor polontinl  An eifocitve range formula
for an atomue potontial with 7=t tail has also boen dorived. A gonernl oxpression for phuso
sluits oy for different angular momonta [ is given tor an atome potentml wluch 14 represontod
by a sereened CoulomD potentinl of Al and Morso type when # 18 small and the long range
r~1 pobontial when 7 18 large. Numerical 10sulls aro presented {or e lor low enorgy e——Ho
collmon  Tho effect of oxchiange hus beon noglected mn our work.

INTRODUCTION

An exact analytical solution of tLe Schrodmger oquation doseribing the scattor-
ing of an clectron by a neutral atom 15 extromoly difficult duc to the complexity
ol the atomic potontial. The potential surrounding the atom consists of an eloc-
trostatic screened fiold and a polarization field mainly of dipole nature induced
by the incoming electron. The form of the latter field is nsually taken ns o(r)r—9
where a(r) for small values of 7 is a complicated function but for large values
ot r reduces to a constant « the electric polarizability. Tho Schrodmger equation
with a central potential ar—4% can be solved by trausformmg 1t to a modified Mathiou
cquation. O’Malley, Spruch and Rosenberg (1961) have shown that in the case of
a long range r—¢ polential the oxpansion of & cot 9, in the zero cnergy limit contains
a number of terms not present in tho usuul effoctive range formula for short range
potontial, Spector (1964) has made a detailed study of the hehaviour of the
Mathiou function and its derivative at the transition pomt where the kinotic energy
is equal to the magnitude of the potential onergy due to the ar— term. Ho has
worked out the scattering matrix for a repulsive potontial hub in most physical
probloms the attractive potential comes into play. So we have caleulated tho
scodtering relations with an attractive r—2 potential. Further in the zero energy
limit % = 0 tho expansion of k cot 7, is influenced Ly the asymptotic form of the
potential i.e, ar—4, the expansion torms of & cot 7, agree with those of O’Malley et al
(1961).

In the potential term in the Schrodinger equation, we have taken for the
screened coulomb part the form due to Allis and Morso (1931) when r is small and

333



334 8. B. Gupta and N. C. Sil

we agsumo that in this region the polarization potential is negligible We further
maintain that for Jarge values of » when the latter potential becomes predominant,
a(r) reduces to the electric polarizability o of the atom. To simplify calculation
the exchange effect due to the indistinguishibility of the incident and atomic
cloctrons has been neglected. A general oxpression for low energy phase shift
tor different angular momenta has boen deduced  The phase shifts for zero angular
momentum are calculated for e—He scattering in the low energy region 0-1 ov
and a comparson with sinular calculations of LaBahn and Callaway (1964) shows
good agreoment.
CALCULATION OF KS-MATRIX

The Schrodmger equation describmg low energy scattering of a.n\ clectron
in presonce of an attractive polarization potential f%—1 is
\
e Y LB ) ‘
[ g St lire ) a=0 - 0
Here & 15 the wave number of the incident eleciron and f2 = o.
(The atomic units are used throughout our calculations).
The equation (1) can easily be transormed into the Modified Mathieu equation
(Spector 1964). °

[:zl“z —(--3)2-+2k cosh 22 | M) =0 )
with the substitutions
r= (B when 0 <r < (k)
= (Blk)ie? when (Bfl)} <7< e (3)
and Bilr) = +/rM(2)

The solutions of the equation (2) are the various forms of tho modifiedl Mathicu
tunctions. It will be convenient to writc down those which will be required m
our work - -

M, (= k) =p=§i,0"=ﬂ(k)ci(2"+"’z - @
M, k)r[ p> 6’"2,,(15)]_1 £ (— 107k}, snp(2/ Bl cOShZ)  (5)
pP=-~o p=—o®

M, k) = [ E 0nl) |7 E (—1)PC k) ¥, 4p(24/BE cosh Z)  (6)
e | Il

J, and Y, are the Bossel functions of the first and second kinds. The order v
of tho Mathicu funetions is & function of { and k.
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When k is sufficiently small, v is given by

= gh_ PR
vE - e

the torms involving &% and highoer powers of k& bemg neglected
vrents C*y,(k) which are functions of & ocenr m M

The samo coofli-
erw OF MDE T These cooffi-
cients can be oxpressed as a continued fraction (onverging rapully as A0
In fact

I(v+1) 2| p|
C¥yp— Cp¥ 1 J
s> Co 2w T (y-Fp 1 1) (fk) a8 k— 0 L(R)
When p is negative ("p— 0 a8 k50

Lastly we may construct the modifiod Mathicu functions M, and M, fiom
the ogquations (5) and (6) replacing the Bessel functions J,,,y and ¥, 1, by the
Hankel {unctions IIY, ., and U@,
The Mathieu functions M, and hence M3 are contmuons {undbions
of v but their derrvativews with respect 1o # do not exist at r — (f1/h)} whereas
the functions M, ., and their derivatives are continuous everywhere  Because of
this  discontmuity of the dervatives, the genoral sohition of the equation (1)
which is a linear combination of the solutions M,V M 2 or M3 M@ (cach
multaplied by 4/7) should have different coefficients for » < (f/k): and 1+ - (fifk):

So the general solution of the equation (1) may be taken as

r/n(r)fAJrM"m(—m{(;f, Vo k) o myrat,o (< { (% )}

=
~

si = arvnso (5 o) vt 7)1

It is 1o bhe notod that whon » is small,

P M

B T 2 _ B e '
&— A\/ Trzp‘ rc’( rT 2T )+B ‘/fﬂm [ (1 ' e (Y2)
and when r is large

¢,—>A"/ e i F—F =i )-,AB’\/ A ' §) .. (10a)
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Tt 18 evident from (10a) that the S-matrix for the scattering of a charged particlo
in the presence of an attractive long rango %4 potential is

Sth, 1) = i %: g gilm . (1)

with v defined in the equation (7)

To ovaluate 4'/B' we shall follow the procedures onunciated by Spector (1964)
in his development of the S-matrix for a repulsive »—* potential — 1n order to con-
nect the solutions (9) and (10) at the point r = (B/k): where thoir deriviitives do
not exist.  Wo shall make use of the Mathieu functions M, ¢, Biven In equition (4).
These latter functions and ther dorivatives arc (:ontiuu;us every whete, For
some 7y sneh that 0 <2 r) <2 (B/k)" we may write

AM S +BM, W - aM, +pM,., \

and determine the constants @ and £ 1n terms of 4 and B by solving above equation
together with the equation
LM BM,Y = oM v IM_
Smularly for some r, = (B/k)} we take
A'M 04 B'MW - yM, +-5Me_,
and detormine y und § in terms of A’ and B°  The constants y and 6 can now e

exprossed in terms of « and # by using the caonditions for the contiuity of the
solution and ibs derwvative with respect to r at » = (f/k) 1.0. at z = 0. With

z as defined in (3) we {ind that ::; discontinuously changes its sign at this point.

With Lhe help of relation (4) we finally get

y=p£ and §=a,
Utalizing the various proporties of the Mathieu functions as reported in Spector
(1964) 1t is oasy to show that

4" 1—-RXA—Be")(A—B) a2
B’ 1—-R2(Ae~2""—B)|(A—B)
. _ MW ()
where R = M (0

2 (FARIT(L—v)[T(1+ )] X (1 —Fvf2k2/(1—v2)?) - (13)
neglocting  higher powers of %
Forl=0 "
B, ﬂ/k(l—lé £%2Tn ﬁf_g Bokryr(3/2)+20 ﬂ’kz) .. (138)
: 9
#(3/2 = 0.03656
Substituting the value of A'/B’ in (11) one gets an expression for the S-matrix.
If 4/B is known, then in principle one can determine the phaseshifts 7; by virtue
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of tho relation S8(k,1) = ¢*". The formula (12) is of greal nnportance m the
development of the prosent work. It will be worth-while 1o note that since B
1= complex conjugate of 4, B’ is the complex conjugato ol 4’.

EFFECTIVYE RANGE FOLRMULA

We shall now utilize the formula (12) to develop in a strayght forward mannor
an cffoctive range formula for the scattoring of an electron by a cential fiold poten-
taal which is assamed to vanish as 7~ with no other long range components  For
this purpose it will be convenient to take the solution of the wave cquabon (1)
as o linear combination of 4/rM, M and /rM,2:

o = en/r(M, -+ DI, ) r< (8 BNT)
b= VLD (A1) e (15)

Where ¢/ and ¢ are the normalization constants and D and D' are arbitrary cons-
tants. Tt follows from the known properties of M, and M,@ (Spector 1964;
Maixner and Schafke 1954) that ¢; behaves near the origin as

byl (4t ) ( £ 1) s ()

ApK*

%= SursRu+ 1201 U

In (17), thoe powers of & higher than two are noglected.

Now we consider an electron scattered by an atomic potontinl UU(r) which is
supposed to be central. The scatltoring wave functions wu(r) satisfy the radial
wave equation

P (25
[dﬁ— (;t)_v(r)+k=]u,(r)=o ... (18)

Wo assume hore that U(r) tends to —g2r—t where 7 is sufficiently large, and that

%(0) = 0. Tt is to be noticed that when r is large, uy(r) tends to the solutions

¢y(r) of the equation (1) to which the equation (18) is reduced whon r— oo,
Taking %%, u» and ¢, ¢, as the solutions of the equations (18) and (1)

rospectively for the wave numbers k, and F, it 18 easy to show that (c.f. Bethe
1959)

- | °
lino ¢'(1)‘_;§ ¢'(2) —¢‘(2)d% ¢‘(1)I,= (kzn_klz) 4‘(¢'(l)¢l(2)_ulll)ulli))df (]_9)
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If D, and D, he the values of D in the equation (14) and 4,1 and §;® the values of
d8; corresponding to the wave numbers &, and %,, the equation (19) leads to

(}19)" ‘%“) o (80— 8M) — 1'+'fg)"]'?= sin (&0 —8®)

= (k—k2) [ SV gD —wDuy®) dr

80 that when &y = 0 and ky == & oue has i

I

]).0—2) cos &, + MDD gy 8= k2 Im(¢,‘°’ r —wV'uy)dr . (20)
BB B o
Therefore following Bothe (1949) we have for the effective range fomula
go_‘__% - ]'j)/-?ﬂ,l) sin 3!:% ro k2 (2
whero the effective range
7o =2 [ [{$"P—{ug® }ldr e (22)

Now we propose to determine a {formula from which D/g and D,/f can be calcu-
lated.

Substituting the relations
M, = §[M,® 4 M9
and M, 221 (M, — M, )
A
in the oquations (14) and (15) we gol from the equation (12) on simplification
' R(1+-cos 48;+-D sin 49)

D = D REW=D vos 44,7 sin 48,) G

Agam comparing tho asymptotic form of ¢; m (14) :
. 12 . lm , I, o\
[} .\/;’k [ sin (kr ot b‘,) -D cos( kr—fz—l—d‘,) ]
with the aysmptotic form of the actual wave function w, :
I °
%; — const. X s1n (’M‘——2 +m ) ,
we obtain a relation connecting D’ with the phase shift 7, :

m= tﬂat —D
' 1D tan s,
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On substitution of the value for D', this formula yields

tan 8 {2D— R¥D—D cos 491-+-8in 48)—Ri(L | vos 46,4 D sin 46;)

PR =TI RED—D cos 4, sindéy) - ftan 8,1 T oos 184D sy Y

Retaining only the rclevant terms, wo have

R(cot g, + )
D — SRERRLTOU :
14y cot 7, +2R20; col - (20)

Whon ! = 0 one obtains
D 4 Pk 8 R 20
—~ = & cot 1 4 22 22 2 - 2],
S hootno( 1+ pan BE S s+ 3 o

— é:ﬁx_ COH 7], +% mA% cot g4 )(1)_ AU cot? gy |-eeenes ) (26)

and ~Po 1m keot Yo = _1

27
b, " (27)

A, being the scattering length. Then from the equations (21), (26) and (27) wo
gol tho oxpansion of k col #, in the low energy hmit

. _ 1 ﬂﬂ3k7< 432kE . Bk _Bﬂ? aa
koot = — 4 +5ae 4 -PELAE 4 (an—Yivan

4208 np "_ﬂ) Bt .. . (28)
94, 34¢ 944 3

This expansion is identical with that of O"Malley et ol (1961). Fmally m order to

obtain an cxpression for tan7; wo retam only the leadmg torms mvolving 2+

in tho sories for R,? as given by the equation (13) Tt not difficult to ghow from

the equation (24) that

(211 1)2 4By o (29)
2R

tan ptan & —

which is again the sanie as that obtained by O Malley et al(1961).

PHASE SHIFTS IN ELECTRON-ATOM COLLISION

We shall now deduce an expression for phase shifts for all angular moment a
for low energy scattering of an elcetron by an atom. We shall take for the a:bnlnic
potential U(r) a scroened coulomb potential of the Allis and Morse type joined
smoothly with a long range r—* potential at somo distance 7,. The solution of the
wave function with the Allis and Morse type potential is easily obtainable in terms
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of Whittaker’s functions. Allis and Morse (1931) assumed that the mcoming elec-
tron juoved in a contral atiracltive coulomb field of the nucleus and the average
repulsive coulomb field due to the electrons of the atom. They obtamed good
rosults for low eunergy cross sections for clastic scatlering of elections by light
atoms  Wo have modified their potential with the mtention of including the long
rango potontial in the following manner :

Ulr) = —2a (} —%) r<r, e (30)
1
-~ r>r, \ .. ey
7a

Z hoing the atomic number.

The potential (/(r) depends upon the two parameters ¢ and r,. The sonti-
nuty coudition ab r, makes a dependoent on ry; there is thus arbitrarmess of tho
smgle paramoter #,  The cut-off dwtance is so selocted that the offect of screen-
ing duc to the term 2z/e 15 maximam ;

That 15, the selected value of 7y is that value of 7, for which « given by the
equation

2;{_1, _l\= ﬂj_ is mimimum.

Then we have = ( 22’12 ); e (32)

1t will be seen later that the scattermg length caleulated from U(r) defined in (30)
and (31) with this value of r, is very nearly equal to the maximum scattermg
length obtamable by varying 7,.

We have complotely ingored the effect of exchange of electrons, which is
vxpectod to play an mmportant role in low enorgy scatiering

Thoe radial equations wo have to solve are ~

d? 2 "
[ 32 _K2+L‘/r1¥__ l(l;!;,l_) ]'"’l(") —0 T T, 7 e (83)
2
and [ ;Z& T f; - l(l_'tzl)_}ul M=0 r>r .. 34)

Hore % is the wave nmmber of tho incident clectron

Ke —_—_‘ 2_Z -k* and 4K = Z (Morse and Feshbach, 1953)
a
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To obtain phaseshift 7, we shall join at r = 7, the solutions of the wave oqua-
tions for the two regions. The regular solution of the equation (33) 1 well known
(Morse and Feshbach 1953) :

wy (r) = N(2Kr)re—Er F(l+1—m; 2142, 2Kr) . (3D)
where F(l{-1—y; 21+42; 2Kr) is a confluent hypergeometric serics and N is a
constant.

Utilizing the properties of the confiuent hypor-geometric sories one readily
obtaing for the logarithmic derivative of the wave function (35) at r —

tan @ = (7§ w)r =0 = g1 —Eret (-1 —g) A1 TR S

(36)
The subseript £ and the superseript k in ®% are usod to indicate 1ts dependence on
7 and k.

Now m the enorgy rangoe considered by us, ry given by the equation (32) is
loss than (//k)} so for the solution of the cquation (34) m the region beyond 7, wo
have Lo consider the ranges, 7, < 7 << (A/k)t and (B/k)} < r <2 00 soparatoly.

When 7y < v < (#/k)} the solution of the equation (34) 18

w(r) = _Avr I:H,(l) ( Fr + 'f) _ e H,,, (k, I f)J

VL FIONN)
L Ty
By7 gy _ pw 8 -
Y [_H,m (or+ £) - sy B ( kr + )J RENE )
A1)

We have madoe use of the formulae (8) and (9) to obtain the equation (37). Nrom
the contmmty of the logarithmic derivative of the wave function at s = 7, we have

( 1—2 tan @F )( H,,'a’ iy n,,,® )

R ) )

" ( 1-32 ten q)k’) ( e~ iﬁl) By )
e
+ 2( krn ﬂ) ( o — ﬂ"z) II,+,‘1" ) 38)

The argument kry+g/r, of the Hankel functions involved in (38) are supprossed.,
On using the formulae connecting the Hankel functions with the Bessel func-
tions (Morse and Feshbach 1953) we ob tain

% — P (39)
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where cot ¥4

‘.’.(krll — %) {J’,,(:) cos vir—J'_, (z)—ﬂfj_il)(.f’,ﬂ (=) cos va—J'_,_, (z))}

sin v7r( 1—2 tan @, ) ( J, (2) — Tﬂ:ﬁ;ﬁ Jyea (z))

— ((] —2 tan ) ) {J,, (z) cos vi—dJ_, (z)_4(ﬂ:$15<']"+2 () cos vi—J_,_, (z))}
42 krrfin) EACE {ﬁl)— T (@) ) \ (40)

z standing for kry+B/ry
For the scattermg of a slow electron by a He atom the argument lcro—l—ﬂ/rn\is small
onough to justify power series expansions of the Bessol Tunctions and their deri-
vatives m (40). If for the scattering by other atoms the argnment s large, asymto-
tic expansions may he used (Watson, 1958)
Now from the equations (12) and (39) one gels
A" e
S Y

B . U0

R cosec y* sin yr sm (vir+y,F)

where tan & — — U .
1T 1Ry cosoe i ¢os vir sin (var--yp%)

whon 1= 0, tan & — f( 1-+4/%" In 'il‘_;ﬂ%w(s/z)»sr:g,e ,9%2) cob 7t

—2zafkt ... (42)
whore terms containing £ and higher powers of & are neglected.  Aguin using the
cquations (11) and (41) we get an exprossion for the phaseshifts for differont
angular momenta

”ﬂzk:
B3RIFDED
where 2 is the zero energy phaseshift for the scattoring of an eloctron by an atom.
The value of my can be dotermined from Swan’s conjecture about an extension
of Levmson’s theorem (P Swan 1955; K Levinson 1949).

We get from the equations (42) and (43)

cot 9, = —— 1—dn ke

/ﬂc( 14-4 %> 1In ’1’?—; LEyr(3/2) 430 ﬂzkﬂ) cot yf—3 mpok®

N — mym—Et (43)

1

whence lim keotyy= — ———
k—0 B cot y,°
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Thorefore the scattering length A4, is given by
Ay = f cot % e (44)

NUMERICAL CALCULATION FOR PTHASE SHINFTS
OF THE ELECTRON HELIUM SCATTERING
AT LOW ENERGIES

Though we can calculate phagoshifts 4, from the equation (43) for Jdifferent
angular momenta ! and for various hight atoms, we shall rest satisticd with the ¢al-
cmation of s-wave phawe shift 7, for e-He scattermg  Takmg e — 1 376 (in atonue
wwt) for hetium (Wickner and Das  1957), ono gets from the equation (32) the cut-
off distance ry = 1.112 (a.u.) and the cortespondmg scattermg Iength 1, s 84,
w result 1athor low compared with the recent results.  The maximum value for the
scattermg length for the atomic potential as defined m the equations (30) and (31)
18 854 corresponding to the cut off dustance 7, — 1.200 Ag these vales of 4, and
ry do not 1mprove S-wave phaseshifts and as one has to obtain thiv value of r,
(1¢. 7y — 1.3) by trial, we shall accept the value 7, = 1112 (cusaly oblamablo
Lrom the oquation (32)) for the culeulation of the phuse shifts.

Tn the table below the s-wave phasoe shifts in &-He collisions for various incidont,
energies obtamod in this work are comparod with the correspondmg values of the
samo caleulatod by LaBhan and Callaway takmg mio account both polarization
and exchange effects These authors have followoed the method of polarizoed
orbituls used by Temkin and Lamkm (1961) for a smular caleulation on phuso
shifts in e-H scattering; the resulting integro differential equations huve heon solved
numerically. Disagreement between our results and their smcreases with £, The
values of cot y,* aro also shown in the table Tho potential used m our calculation
is not very oxact but 1ts advantage is that 1t allows a fully analylic trontment.

TABLE
Energy Coty gk Mo LN

(a.u.) e.v. (presont  (Lalshan and

work) callawuy)
V] 0 0.720 (0.844)a (1.132)a
0.01 0.00136 0.701 3.1341 3 13016
0.00 0.034 0 6279 3 1016 3 0822
0 10 0 136 0 5409 3.0661 3.0180
0.1917 0 50 0.3986 3 0230 2.8972
0.26 0.85 0 3187 3.0060 2.8189
0.2712 1.00 0.2942 3 0030 2.7904

a soattering lenglh in a..
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