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ABSTRACT Wo have obtained, following Spoctoi (1904), an expression lor tho S- 
laatnx in tho uaso of an attranfcivo mvoise fourth power potoniial An olfective range loimula 
for an atomie potential with tail has also boon dorived. \ general expression loi iihaso 
slnlts Tf)̂ for difforont angular momonta I is given tor an atomic potential which is rejiri'sonted 
by a aoreenod Coulomb potential ot Albs and Morse type when'/■ iH Hinall and the long range 
r-i potential when r is large. Numorieal insults are iiresented lor lor low energy e -—Ho 
eoliision Tho effect of oxehango has lieoii neglected m our work.

I N T R O D U C T I O N

An (^xact analytical solution of tho Sclnodinger o(]uation doscrjljing tJio scatter­
ing of an oloctroii by a neutral atom js extromoly difficult due to tlie conqilexity 
ol the atomie potential. The potential surrounding tlie atom consists ol an elec­
trostatic screened Held and a polarization field mainly ol dipole nature induc(Ml 
hy tho incoming electron. The form of the latter field is usually taken as a(r)r-‘* 
where a(r) for small values of r is a complicated function hut for largo values 
of r reduces to a constant a the electric polarizability. The Schrodiuger equation 
with a central potential oir~̂  can be solved by transforming it to a modified Mathieu 
equation. O’Malloy, Spruch and Ttosenberg (1901) have shown that in the (;ase ol 
a long range potential the expansion of h cot //q in tho zero energy limit contains 
a number of terms not present in tho usual effective range lormula lor short range 
potential. Spector (1964) has made a detailed study ol tho behaviour of the 
Mathieu function and its derivative at the transition point whore tho kinetic energy 
is equal to the magnitude of tho potential energy due to the term. Ho has 
workwl out tho seattoring matrix for a ropulsivo potential hut in most physical 
problems the attractive potential comes into play. So ŵe have calculatwl tho 
scattering relations with an attractive potential. Ifurthcr in tlie zero energy 
limit /c =  0 the expansion of k cot is influenced hy tho asymptotic form of the 
potential i.e, ur~*, the expansion terms of k cot tJq agree with those ol 0  Malley et at 
(1961).

In the potential term in the Schi'odinger equation, we have taken for the 
Screened coulomb part the form due to Allis and Morse (1931) when r is small and
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WO ast3mui> that in tliiB region the polarization potential is negligible We further 
maintain tliat for largo values of r when the latter potential beciomos predominant, 
a(r) reduces to the electric polarizability a of the atom. To simplify calculation 
the exchange effect due to the indistinguishibility of the incident and atomic 
(ilectrons has been miglcctetl. A general expression for low energy phase shift 
for different angular momenta has b(»en deduced The phase shifts for zero angular 
momentujn are calculated for e“-H e scattering in the low energy region 0~1 ev 
and a comparison with similar calculations (if LaBahii and Callaway (1964) show s 
good agreement,

C A h O T J L A T I O N  O F  S-M A T H I  X

The iSohrodmgcr equation describmg low energy scattering of aiJ| electron 
ill presence of an attractive polarization potential is

( 1)

Here k is the wave number of the incident electron and fî  =  cl.
(!J''he atomic units aie used throughout our calculations),

•nie eiiuation (1) can easily be transormod into the Modified Mathieu equation 
(Spcctor 1964).

-(l-\-i)^+2fikcoaii2z j = 0

with th(̂  substitutions

and

r — {lijk)^e~  ̂ when 0 <  r ^

— when <  r <  oo

=  VrM{z)

(2)

(3)

The solutions of the eipiation (2) are the various forms of the modified Mathieu 
functions. It -will be convoniont to write down those which will bo required m 
our work ■

M,^Jiz,k)== S O V ^ )c±(23H..)Z (4)

L ^=.—00 J p = —CD
(6)

M.^^>{z,k) =  \ S (C)
L p ~ —eD J j>=—00

and are the Bessel functions of the first and second kinds. The order v 
of the Mathieu functions is a function of I and k.



When k is sufficiently small, v is given by
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the ioTjiis involving k '' cand liiglior powers of Ic being negleeii'tl Tlû  Minû  t oidb- 
eients 6'"2p(fc) which are functions of ^ occur 111 or '>,<“) These coeffi­

cients can be expressed as a (sontinued fractitm converging ra]ndly as /,-> 0 
111 fact

( )̂

When p  is negative T-' 41 ► 0 as 0
fjastly we may construct the modified Mathieu functions 1/,/=*) and fioni
the equations (5) and (6) replacing the Bessel functions , and y,, I h.V ihe
Hankel functions and Ji‘2)

The Mathieu functions and hence are contmumis Imu Lions
of '/ but their derivativews with rospê ct to /* (Jo not exist at r -  whei-eas
the functions and tlieir derivatives are continuous evoryu luu'e Because' ol
tliis discontmuit}^ of the derivatives, tlie geimiaJ soJiition of tii(> ecjiniLion (I) 
vvliicli is a liimar combination of fclie solutions or (caeJj
niultijilied by 'y//) should have different coefficients Jor r ^  i/ l̂k)- and i , - {iHk)- 

So tlici general solution of the eci[uation (1) may b(̂  tak(‘ii as

(f )' -

( -> ( i r

It is to be noted that when r is small,

r e " ( " y - ^ - 4  ) +  B y j i  r - ' i - ' r )

and when r is large

(10)

... (9a)

... (10a)
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It IS (ivjrloni from (lOa) that the Ŝ»-matrix for the scattering of a charged particle 
in till' prosciioc) of an attractive long range potential is

S{h, 1) =  i 4 !x> ( 11)

with V doliiKid in the equation (7)

To ovahiate A'fB' avo shall follow the procedures enunciated by Spoctor (1964) 
in his devtdofnuent of tJie ^V-matrix for a repulsive r~* potential In order to con­
nect the solutions (9) and (10) at the point r (/̂ /fc)̂  ̂ where their derivjitives do 
not exist. We shall make use of the Mathieu functions Jif^^^given in equation (4). 
Tljesi‘ lattei' functions and then- derivatives arc continuous every who^e. For 
sonui Tj sncli that 0 ‘t\ <  {fijk)- wo may wite

A -  aM, „ \
and determine tin*, constants a and in terms of ̂  and B  by solving above equation 
togetlier vviLli the e(juaiion

-I ^  aJf'gvH

Siniilarly for some - {fifk)'- we take

and determine y  and <5 in teiiiis of and B' The constants y  and 8 can now be 
expressed in tiirms of a and f3 by using the caonditions for the continuity of the 
solution and its derivative Avlth resiiect to r at r =  i.c. at z — 0. With

;; as defined in (3) we find that diseontinuously changes its sign at this point,

With the heli> of relation (4) wo finally get
y — p and S =  a.

TTtilizing the various pioporties of the Mathieu functions as reported in Spector 
(1901) it is easy to show that

where

A' _ }-R y{A ~B e^^‘'^)l{A-B)
B' l-R iH A e -‘̂ ’̂'^ --B)l{A~B)

' (0)

( 12)

(13)(M ^ )[r ( i -v ) /r ( i+ m)j x  ( i - J vW ( i _ v2)2) 
nogloctiiig higher powers of k 
For 1 =  0

-fto A/* ( 1 P̂ k̂̂  In /?"AV(3/2)+|l J ... (13a)

^(3/2 =  0.0365
Substituting tliî  value of A'jB' in (11) one gets an expression for the B-matrix. 
If AJB is knoum, then in principle one can determine the phaseshifts iji by virtue



of t,ho relation 8(k, 1) =  The formula (12) is of gimt im]jortaneo m the
(levolopment of tho present work. It will be worth-wliile to note that since B 
IP complex conjugate of A, B ’ is the complex coiijugabo

E F F E O T I V E  K A N G E  F O l l M E L A

We shall now utilize tho formula (12) to doveloi) in a straight forward mamior 
a.ii offoetivo range formula for the seattoring of an eloetroii by a cential field jioteii- 
tial which is assumed to vanish as i  ̂witli no other long range coniponi'iits For 
this purpose it will he convenient to take the solution of the wave CLjuation (1) 
as a linear comhination of and
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0, =  

tjii ^

r < [ i r

^ > { i r

.. (14)

... (Ifi)

Where (J and G' are the normalization constants and D and D' are arbitrary cons­
tants. Tt follows from the known properties of and (Rpector 1964;
Meixner and Schafko 1964) that (j)i behaves near the origin as

(1C)

7Tp“K“
8(l'+3/2)(l+l/2)(l-l/2) (17)

In (17), tho powers of k higher than two are neglected.
Now we consider an electron scattered by an atomic potential XJ{r) which is 

supposed to be central. The scattering wave functions Ui{r) satisfy the radial 
wave equation

g(Z+l) _ Z7(r)+F  ̂ ui{r) — 0 (18)

AVo assume here that U{r) tends to — where r is sufficiently largo, and that 
Uj(0) =  0 . It is to be noticed that wdien r is large, n,i{r) tends to the solutions 
î{r) of the equation (1) to which the equation (18) is reduced v4ion r—̂ co.

Taking and as tho solutions of tho equations (18) and (1)
respectively for the wave numbers k̂  and k̂  it is easy to show that (c.l. Bethe 
1959)

lim I 0,(2) -0 ,(2)-^  0,(i)j =  (Jfc^a-V) f (19)
r—vo| dr dr Ir o
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If Di and D,̂  bo the values of D  in tho equation (14) and and the values of 
Si cormsponding to tho wave numbers and k̂ , the equation (19) leads to

1 + ^ jA  sin (5i<i)-«ŷ <2))

0

so that wlKiii k, — 0 and k.. — k one has ;
I

j cos +  - A + " o ^  sin .5,= r  W "  h  - « ! ' " ' « , ) *  y .. (20)

Therefore following Botho (1949) wo have for tho effeotivo range foinula \

-I- sinA',=iJr.i:2
P P P

... (21)

where tho effective range
r ,= ^ 2 - ! [ W Y -{ u „ < ‘ Y\<lr ... (22)

Now wo propose to dotoimine a formula from which Djp and />q//7 can bo calcu­
lated.

Substituting tho I'olations
=  I  [JIf (̂3) +

and

j -y_ I2^ (̂l-)-cos 46 -̂]”jD sin 4̂ )̂
2,D—R{^(D—D  cos 4tf^+sin 4̂ )̂

in tho equations (14) and (15) we got from the equation (12) on simplification

... (23)

Again comparing tho asymptotic form of (j)i m (14) :

^-nk [ ““  {’‘’- - 'I  + ‘̂) ]

With the aysmptotic form of the actual wave function Ui :

h r :
'̂ i - ► const. X sin ^k r ~ ^  + ^ / j »

we obtain a relation connecting D' with the phase shift % :

1 -\-D tan Si
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On Bubstitution of th.o value for D\ this formula yields

_  taii(!?f{2Z>— | eos B sin 4(5,)

339

tan }/i
' lD ~ R i \ D —D  cos 4(5iH- siii4(5^)-f^/“tan (5,(l-|-(;os 4(5^-i; sVii 4di,) 

Retaining only the relevant terms, avo have

~
1 — (5j cot 7ji cot

When Z =  0 one obtains

ifccot^„( 1 ® /?2^V^(3/2)+

(25)

— cos 7/o (!ot ?/o+ ~  TT-ftVA COî  A/„ |........ ) (2«)

and =  Inn k eot7/o ^ ... (27)

Aq being the scattering longtJi. Then from the equations (21), (26) and (27) wo 
get the oxx)ansion of k cot //y in the low energy limit

3/1 3^„

ttP
' 3/1 a 9/13 t 3 ) f-'-

(28)

This expansion is identical with that of O’Malley et al (1901). Finally m order to 
obtain an expression for tan 7/, wo retain only the. leading terms involving A;3*+̂  
in the series for 72,̂  as given by the equation (13) It is not difficult to show from 
the equation (24) that

wliich is again the same as that obtained by O’Malley et â (1961).

p h a s e  s h i f t s  i n  e l e c t r o n - a t o m  c o l l i s i o n

We shall now deduce an expression for phase sliifts for all angular momimt a 
for low energy scattering of an electron by an atom. We shall take for the atomic 
potential U{r) a screened coulomb potential of the Allis and Morse typo joined 
f=!moothly with a long range r~̂  potential at some distance r„. The solution of the 
wave function with the Allis and Morse type potential is easily obtainable in terms
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of Wliittakor’s funotioriK. Allis and Morso (1931) assumed that tlie incoming elec­
tron moved in a central attractive coulom!) field of the nucleus and the average 
rejjulaive coukmib field due to the electrons of the atom. They obtained good 
results for low energy cross sections foi elastic scattering of elections by light 
atoms Wo liave modificKl their potential with the intention of including the long 
range i)otontial in the following manner :

V{r)- ~2z

’i
r >

... (30)

... (31)

Z being the atomic number.

The x>etciitial (f{r) dcjmiids uxDon the two parameters a and TliVj conti­
nuity condition at r„ makes a doxiendent on ro; there is thus arbitrariness of the 
smgl(̂  x̂ fliî 'iiietcr The cut-off distance is so sekuded that the effect of screen­
ing due to the term 2zja is maximum ;

That IS, the selected value of is that value of for which a given by the 
equation

2z IS mimmuni.

Then avo have (32)

It Avill bî  Slum later that the scattering length cahailated from U{r) defined in (30) 
and (31) with this value of is Auuy nearly equal to the maximum scattering 
length obtainable by vaiying r„.

Wo have comxiletely ingorod the effect of exchange of electrons, which is 
expected to play an nnxiortant role in low energy scattering 

The radial equations avo have to solve are —

and

(33)

34)

Here  ̂ is the wave number of the incident electron 

' 2Z
Q'

-  and rfK — Z (Morse and Feshbach, 1953)
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To obtain plianeshift rji we shall join at r ^  the solutions of the equa­
tions for the two regions. The regular solution of the equation (li:i) is wvW known 
(Morse and Feshbaeh 1953) :

Ui{r) =  N{2Kr)^re~^  ̂ —r/] 2Z+2, 2I\r) ... (Hfi)

where F{l ’\-\—y, 2^+2; 2Kr) is a confluent hypergoomotrie series anti iV is a 
constant.

Utilizing the properties of the confluent hy]|ier-geoinetrio sô lt̂ s omi readily 
obtains for the logarithmic derivative of the wave function (35) at r ^  r̂^

tan fl). I-1 n i + 2 ~ r , 2 l + 2 ,2 K r ,)
"  F(?-f 1 -V ; 2?+2, 2A>7)

... (36)
Tlie subscript I and the superscript k in are used to indicate its dependence on 
1 and k.

Now in the energy range considered by us, given by the equation (32) is 
less than (/?//c)- so for the solution of the ctpiation (34) in the region beyond r„ wo 
have to consider the ranges, <. {fijkŷ  and (;?//c)* r <  oo separately.

When ?”(, <  r <  {fijky the solution of the equation (34) is

<’■ ) = r  f ) -  4 W)
 ̂ +  4(v+l) L  

4(vH^i) L

(37)

4(vĤ 1)

We have made use of the formulae (8) and (9) to obtain the equation (37). From 
Uie liontmuity of the logarithmic derivative of the wave function at / =" we liave

_pk^
A
b '

(38)

The argument &rQ+/?/rQ of the Hankel functions involved in (38) are suppressed, 
On using the formulae connecting the Hankel functions with the Bessel func­

tions (Morse and Feshbaeh 1953) we obtain
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sin v7T̂  1—2 tan *1)*̂  j  ̂ (a) —
/?2/,2

4(v+l) 2 (̂ ) j

-^ (J -2  taiKl) '̂,) j (s) cos V77-— v t t — (2:)

4(v+l) + .(s )} \ . . . (40)

2 standing for k.rQ-\-pjrQ

For tlio soattoring of a slow electron hy a He atom the argument /cr„“|-/?/r„\js small 
onoiigJi to jiistilv 7)ow(‘̂ r scries expansions of the Bossol fuiu'tions and their deri­
vatives m (40). If for the scattering hy other atoms the argimieiit is large, asymto- 
tic expansions may he used (Watson, 1958)

Now from the eiiuations (12) and (39) one gets

where tan —

ir

E{  ̂cosec yi  ̂sin vtt am (v7T-\-yî )

(41)

] — Bî  cosec yi  ̂cos vtt  sin (vTr-j-ŷ *') ’ 

when I 0, tan =  fik{̂  1+^^-^“ In S/^''/c-<>(3/2)-f^^pj^ot

-iTry^^p , (42)
wher(‘ ti'̂ rms containing /c'* and higher powers of h are ncsglecterl. Again using the 
e(]uations (11) and (41) wc get an expression for the phaseshifis for different 
jmgidar momenta

V\ ^  ‘rn,i7T—^i^ irP̂ k̂ (43)
“8(?+3/2)(r+i)(«-|)

where WiTT is the zero energy phasfishift for the scattering of an electron by an atom. 
The value of mj can he determined from Swan’s conjecture about an extension 
of Levinson’s tlieorem (P Swan 1955; K  Levinson 1949).
Wo get from the equations (42) and (43)

l-^7ry?“Pcot 7/o —

flic ( 1-1-4 /?"■*!! In ^ * - 4  y?i>fcY(3/2)-|-V 

whence lim k cot 77,, =

cot y^ ^ -l  TTfi

Ai-̂ 0 P cot 7 g»
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Tlioroforc the scattering length given hy
P cot -j/Oq (44)

N U M E R I C A L  C A L C U L A T I O N  F O R  P R A S E  S H I F T S  
O F  T H E  E L E C T R O N  H E L I U M  S C A T T F U F E G  

A T L O W  E N E R Ci I IC S

Though wo can calculate phasoshifts ?/j from the (niuation (4:$) hir diiĥ rcuti 
angular nioiuenta I and for various light atoms, \vc sliall riist satislic'd with tlu* (\d- 
cmatioii of s-wave phawo shift for e~He scaUcnng Taking a — I 117(1 (m atomic 
unit) for helium (Wickner and Das 1957), one gets from the. ciination (:i2) th(‘ cut­
off distance - 1.112 (a.u.) and the conespoiiding .scattering length is .S-ll. 
a result i athor low coiniiared with the recent results. The maximum valiu' lor tlu’* 
.scattering length for tlie atomic potential as defimMi in tlie equations (1)0) and (51) 
1.S S54 eoiTesponding to the cut off distance r„ — 1.2(M) As tlû se values oi' Â  ̂ and 

do not improve /S-\\a>ve phaseshifts and as om« has to obtain tlus value oi’
(i c.'/’o — 1,3) by trial, we shall accept the value q, ^  1 ohlainablo
Irom the equation (32)) lor the calculation of the phase shifts.

In the table below the 5-wavo jiliase shifts in c-TT(̂  (iolhsions for various incident 
eneigies obtained in this work are compared with the c,orH\s])onding valiums ot the 
same calculated by LaBhan and Callaway taking into at.cmmt both poliin/.ation 
and exchange effects These authors have followed the method of jioiai’i/.efl 
orbitals used by Teinkin and Lamkin (19G1) for a similar calculation on ])luiso 
shifts in c-H scattering; the resulting integro differential eijuations have been solved 
numerically. Disagreement between our results and their snureasc.s with k. The 
values of cot are also shown in the table The potential usikI in our calculation 
is not very exact but its advantage is that it alloAvs a fully analytic treatment.

TABLE

K
(a.u.)

Energy
c.v.

Cotyo* ■no
(prosont

work)

Vo
(Lalihnn and 

Callaway)

0 0 0.720 (0.844)« (1.132)0

0.01 0.00136 0.701 3.1341 3 13016

0.05 0.034 0 6279 3 1016 3 0822

0 10 0 130 0 6409 3.0061 3.0180

0.1917 0 50 0.3986 3 0230 2.8972

0.25 0.86 0 3187 3.0060 2.8189

0.2712 1.00 0.2942 3 0030 2.7904

a scattering length in a.u.
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