DYNAMICS OF THE EXTENSIONAL VIBRATION OF A FREE-FREE BAR

S. K• GHOSH and SUNIT، KUMAR BANER.JEE
Difprtment of P'ifsios, Jadaviur, Univtratty Calcutita-32

(Received Auqust 11, 1965)

Abstract

The priper diseusem the Dymmes of Vibrataon of a Free-Freo Bar excited by an melastic longitudimal Impart, taking account, of the Inorfin of Latoral Motion The problem is wrorked out using the poworful Oporational mothod Unhke other thoorios, this method is free from any usamption, und gives results of lugher necuracy. Tho prosont problom gives the oxtension and jrossure at thas atruck-ond un fundione of time, the other end ef the rod being froo.

In Section I the naturo of viloration and diaplacement of the struckend in diacusmed and in Sertion II the pressure at the struck-end at, difierent oporh is lound out as functions of timo.

TNTRODUCTION

The expression for pressure and displacement at the strock-end of a thm rod hammered by clastic loard with different end conditions has leen worked out her Ghosh (1951). But the present paper proposes to consider all the above phenomena taking accome of inerlia of bateral motion in the case of a thin rocl hummered ly an inelastic load at one end the other end remaning tree. The equation of motion in such a caso is given bv,

$$
\rho\left(\begin{array}{cc}
\frac{d^{2} \omega}{d t^{2}}-\sigma^{2} k^{2} & d^{4} \omega \tag{I}\\
d w^{2} d l^{2}
\end{array}\right)=E\binom{d^{2} \omega}{\overline{d s^{2}}}
$$

Tha second turm of the $\mathrm{L} \cdot \mathrm{H} \cdot \mathrm{S} \cdot$ of (I) $\mathrm{i} \cdot\left(\mathrm{A} \cdot \rho \sigma^{2} b^{2} \frac{d^{4} \omega}{d s^{2} \cdot d^{2}}\right.$ is due 10 the luertia of lateral motion and is the most general equation of vibration of a then rocl. An important, contribution due to the second term is that it gives the velocity of wave propiagation in the rod with higher accurary.

Explanation of the symbols used:

$E=$ Modulus of elasticity of the bar.
$\sigma=$ Poisson's ratio.
$\gamma=$ Area of cross-section of the bar.
$k=$ Radius of Gyration of a cross-section of the rod ahout its central line.
$\omega=$ Displacement of any section at any time.
$t=$ Variable time.
$l=$ Length of the rod used.
$s=$ Distance of the particle on the central line from the free-end.
$\rho=$ Volume density of the rod.
$\rho_{0}=$ Linoar density of the rod.
ω_{l} = Displacement of a particle at the struck-end.
$m=$ Mass of the load.
$c=$ Velocity of longitudinal wave along the rod.
$t_{n}=t-u \theta$, where $n=1,2,3$, etc.
$0=$ Period of free vibration of the bar. $=2 l / c$
$v_{0}=$ velocity of impuact.
$J=$ Momentum of impact $-=m v_{0}$
$P=$ Pressurc exerterl by tho load.
$D=$ Oporator $\underset{d l}{d}, \quad \eta=\frac{\sigma^{2} k^{2}}{c^{2}}$
The differential equation (1) for the extensional vibration of the rod is solved by using operational method of Heaviside instead of using St. Venant's 'Variational mothod' which is long and laborious.

Now Equation (1) in the operational notations,

$$
\frac{d^{2} \omega}{\bar{d} s^{2}}=D_{c^{2}}^{D^{2}\left(1+\eta D^{2}\right)^{-1}}
$$

Thes solution of this equation is given by.

$$
\begin{equation*}
\omega=A \cosh \frac{D\left(1+\eta D^{2}\right)^{-2}}{c} s+B \sinh \frac{D\left(1+\eta D^{2}\right)^{-\frac{1}{4}}}{r} s \tag{2}
\end{equation*}
$$

The ond-conditions are at $s=0$,

$$
\begin{align*}
& d \omega \\
& d s
\end{align*}=0
$$

and
at $\quad s=l, \quad \omega=\omega_{l}$
From (2), (3•1) and (3•2),

$$
\omega=\omega_{l} \quad \cosh \frac{D\left(1+\eta D^{2}\right)^{-\frac{1}{2}}}{c} \cdot s
$$

The equation of motion for the striking body is,

$$
\begin{equation*}
m \frac{d^{2} \omega_{l}}{d t^{2}}=-\gamma E\left(\frac{d \omega}{d s}\right)_{s=l} \tag{5}
\end{equation*}
$$

Now substituting the values of ($d \omega / d s)_{\rho-l}$ in (5) and imposing the boundary condition, the motion being started by impulse J, we get

$$
\begin{equation*}
m D^{2}+\frac{E^{\prime} \gamma}{c} D\left(1+\eta D^{2}\right)^{-\frac{1}{2}} \operatorname{ianh} \frac{D\left(1+\eta D^{2}\right)^{-\frac{1}{2}}}{c} \cdot l=D J \tag{6}
\end{equation*}
$$

Dynamics of the Extensional Vibration, etc.

The Pressure exerted by the load is,

$$
\begin{equation*}
P=m \frac{d^{2} \omega_{l}}{d t^{2}} \tag{7}
\end{equation*}
$$

From (4), (5) and (7) the expression for P is.

$$
\begin{align*}
J & =-\frac{E \gamma}{c} \omega_{l} D\left(1+\eta D^{2}\right)^{-\frac{1}{2}} \tanh \frac{D\left(1 \mid-\eta D^{2}\right)^{-1}}{c} \cdot l \tag{8}\\
& =-\frac{E \gamma}{c}\left(1+\eta D^{2}\right)^{-\frac{1}{2}} \tanh \frac{D\left(1+\eta D^{2}\right)^{-4}}{c} \cdot l \cdot \omega_{l} \tag{9}
\end{align*}
$$

Now putting $m v_{0}$ for J in (6) it is found that,

$$
\begin{equation*}
\omega_{l}-\frac{1}{\bar{F}(D)} \cdot v_{0} \tag{10}
\end{equation*}
$$

where,

$$
\begin{equation*}
F(D)=D+\underset{m c}{E \gamma}\left(1+\eta D^{2}\right)^{-3} \tanh \frac{D\left(1+\eta D^{2}\right)^{-1}}{c} l \tag{11}
\end{equation*}
$$

On substituting the exponential values for hyperbolic tangents in equation (II), neglecting terms containing η^{2} (η leing very small) in the binomial expansion of $\left(1+\eta D^{2}\right)^{-3}$ and writing $D_{1}: D+\alpha, l_{z} \cdot I \cdot \mid \beta$ we have the final form $F(D)$ to be,

$$
\begin{align*}
&\left.F(D)=\frac{D_{1} D_{2}}{(\alpha+\beta)\left[1+\exp \left\{-D\left(1-\frac{1}{2} \eta\right.\right.\right.} \overline{\left.D^{2}\right) \theta}\right] \\
& \quad \times\left[1-\frac{(D-\alpha)(D-\beta)}{D_{1} D_{2}} \exp \left\{-D\left(1-\frac{1}{2} \eta D^{2}\right) \theta\right\}\right] \tag{12}
\end{align*}
$$

where, $\quad D_{1} D_{\mathrm{a}} \equiv(D+\alpha)(D+\beta) \equiv D^{2}-\frac{2 m c}{\gamma E \eta} D-\frac{2}{\eta}$
and $-\alpha,-\beta$ are the roots of, $D^{2}-\frac{2 m c}{\gamma \bar{E} \eta} D-\frac{2}{\eta}=0$
given by,

$$
\begin{equation*}
\lceil\alpha, \beta]=-\frac{1}{2}\left[\frac{2 m c}{\gamma \bar{E} \eta} \mp\left(\frac{4 m^{2} c^{2}}{\gamma^{2} E^{2} \eta^{2}}+\frac{8}{\eta}\right)^{1}\right] \tag{15}
\end{equation*}
$$

Expanding terms under the radical sign binomially and neglecting higher powers of η other than the first we have from (15),

$$
\begin{equation*}
[\alpha, \beta]=\frac{E \gamma}{m c}-,-\frac{m c}{\gamma E^{\eta} \eta}\left(2+\frac{\gamma^{2} E^{2} \eta}{m^{2} c^{2}}\right) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
-\underset{m}{\rho_{0} r,},-\underset{\rho_{0} \sigma^{2} k^{2}}{m i c}\left(\imath+\frac{\sigma^{2} k^{2} \rho_{0}^{2}}{m^{2}}\right) \tag{16.a}
\end{equation*}
$$

whero,

$$
E=\rho c^{2}, \quad \rho_{0}=\rho \gamma, \quad \eta=\frac{\sigma^{2} k^{2}}{r^{2}} .
$$

DIEPLACEMENTAT THE IMPACT-END

The displecoment at the impact-end can mow be ohtained loy the help of oquations (10) and (12) as follows:

$$
\begin{aligned}
& w_{i}=\frac{(\alpha+\beta)\left[1-\operatorname{cxp}\left\{-D\left(1-\frac{1}{2} \eta D^{2}\right) O_{\}}\right]\right.}{D_{1} D_{2}} \\
& <\left[1-\frac{(D-\alpha)(D-\beta)}{D_{1} D_{2}} \exp \left\{-D\left(1-\underset{2}{1} \eta D^{2}\right) \theta\right\}\right]^{-1} \cdot v_{0} \\
& =\left[\frac{(\alpha+\beta)}{D_{1} D_{2}} \cdots\left\{\begin{array}{c}
2(\alpha+\beta)^{2} D \\
D_{1}^{2} D_{2}^{2}
\end{array}-\begin{array}{c}
2(\alpha+\beta) \\
D_{1} D_{2}
\end{array}\right\} \operatorname{axp}\left\{-D\left(1-\frac{1}{2} \eta D^{2}\right) O\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& -\left\{\frac{8(\alpha+\beta)^{4} D^{3}}{D_{1}^{4} D_{2}^{4}}-\frac{16(\alpha+\beta)^{3} D^{2}}{D_{1}^{3} D_{2}^{3}}+\underset{D_{1}}{10(\alpha+\beta)^{2} D} \bar{D}_{1}^{2} D_{2}^{2}{ }^{2}-\underset{D_{1} D_{2}}{2(\alpha+\beta)}\right\} \\
& +\ldots \ldots \ldots . . \exp \left\{-3 D\left(\begin{array}{ll}
1 & 1 \\
1 & \eta D^{2}
\end{array}\right) \theta\right\} \\
& \vdash(-1)^{n-1}\left\{\begin{array}{c}
2^{n}(\alpha+\beta)^{n+1} D^{n} \\
D_{1}{ }^{n+1} D_{2}{ }^{n 11}
\end{array}-\ldots-H(1)^{n} \begin{array}{c}
2(\alpha+\beta) \\
\overline{D_{1}} D_{2}
\end{array}\right\} \\
& \left.\exp \left\{-n D\left(1-\underset{2}{1} \eta_{2} D^{2}\right) \theta\right\}+\ldots\right] n_{0} \quad \ldots \tag{17}\\
& \eta \text { being }=\frac{\sigma^{2} k^{2}}{c^{2}}
\end{align*}
$$

Now wruting,

$$
\begin{gather*}
f_{1}(t)=\frac{(\alpha-\mid-\beta)}{D_{1} D_{2}} v_{0} \tag{17.1}\\
f_{2}(t)=\frac{\left.(\alpha \mid-\beta)^{2} D\right)}{D_{1}^{2} D_{2}^{2}} \cdot v_{0} \tag{17.2}\\
f_{3}(t)=\frac{(\alpha+\beta)^{3} D^{2}}{D_{1}^{8} D_{2}^{8}} v_{0} \tag{17.3}
\end{gather*}
$$

Dynamics of the Extensional Vibration, etc.

and so on,

$$
\begin{equation*}
f_{n}(1)=\underset{\left(\alpha+\frac{(\beta}{}\right)^{n} D^{n-1}}{l_{1}^{n} D_{2_{2}}^{n-1}} \tag{174}
\end{equation*}
$$

we get,

$$
\begin{aligned}
& t-\left\{1 f_{3}(t)-\left(6 f_{2}(t) \mid-2 f_{1}(t)\right\}\left(\times x_{1}\right)-2 I\right)\left(1 \quad \underset{1}{1} \eta l l^{2}\right)\left(\theta_{1}\right.
\end{aligned}
$$

$$
\begin{align*}
& -卜\left\{2 f_{1}(t)-(4 n-2) f_{2}(t)+(2 n-2)^{2} j_{3}(1)-|\ldots|(-1)^{n} 2^{n} f_{n+1}(t)\right\} \\
& \left.\exp \left\{-n D\left(1-\frac{1}{2} \eta L^{2}\right) \theta\right\}-\cdots \quad \right\rvert\, \tag{18}
\end{align*}
$$

Now shice,

$$
\begin{align*}
& l_{n}\left(I_{n}\right) \left\lvert\, \underset{2}{\frac{1}{2}} n O_{1} f_{n}^{\prime \prime \prime}{ }^{\prime \prime}\left(I_{n}\right)\right. \tag{18.1}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
& \omega_{l}=\mid f_{1}(t)-\left\{2 f_{2}\left(l_{1}\right)-2 f_{1}\left(l_{1}\right)\right\}+\left\{4 \int_{3}\left(t_{2}\right)-f_{2}\left(t_{2}\right)+2 f_{1}\left(t_{2}\right)\right\} \\
& -\left\{8 f_{4}\left(t_{3}\right) \quad 16 f_{3}\left(t_{1}\right)+10 f_{2}\left(t_{3} \quad 9 f_{1}\left(t_{3}\right)\right\}-1 \ldots\right. \\
& \mid\left\{\because f_{1}\left(l_{n}\right)-(4 n-2) f_{2}\left(t_{n}\right)+(2 n-2) j_{3}\left(t_{n}\right)-|\ldots|(-1)^{n} \underline{2} f_{n \mid 1}^{n}\left(l_{n}\right)\right\}+\ldots
\end{aligned}
$$

$$
\begin{align*}
& -\frac{3}{2} \theta \eta\left\{8 \int_{4}{ }^{\prime \prime \prime}\left(t_{3}\right)-16 f_{3}{ }^{\prime \prime \prime}\left(l_{3}\right)+10 f_{2}{ }^{\prime \prime \prime}\left(t_{3}\right)--2 f_{1}{ }^{\prime \prime \prime}\left(l_{3}\right)\right\}+-. \\
& \text {-1. } \frac{1}{2} n 0 \eta\left\{2 \int_{2}^{\prime \prime \prime}\left(t_{n}\right)-(4 n-2) f_{2}^{\prime \prime \prime}\left(t_{n}\right)-1-(2 n-2)^{2} f_{3}^{\prime \prime \prime}\left(t_{n}{ }^{\prime}-1 \ldots\right.\right. \\
& +(-1)^{\left.n \cdot 2^{n} \int_{n \mid 1}^{\prime \prime \prime}\left(t_{n}\right)\right\} \dashv \ldots 1} \tag{19}
\end{align*}
$$

Now the functions $f_{1}(t), f_{2}(l)$ etc. can be obtamed as follows.

$$
\begin{align*}
& f_{1}(t)=v_{0} A\left[\begin{array}{cc}
1 \\
\alpha & (1-c)^{-a t}-\frac{1}{\beta}\left(1-\Gamma^{-\beta t}\right)
\end{array}\right] \tag{19.1}\\
& f_{2}(t)=v_{0} A^{2}\left[\frac{1}{\alpha}(1-A+\alpha t) e^{-\alpha t}+\frac{1}{\beta}(1+A+\beta t) e^{-\beta t}\right] \tag{19.2}
\end{align*}
$$

$$
\left.\begin{array}{rl}
f_{3}(t) & =v_{0} A^{3}\left[\frac { 1 } { \alpha } \left\{\frac{3}{2}\left(A-A^{2}\right)+\frac{1}{2}(3 A-1) \alpha t-\alpha^{2} t^{2}\right.\right. \\
2^{\prime} \tag{19.3}
\end{array}\right\} e^{-\alpha t}
$$

etc.,

$$
\begin{align*}
f_{n}(l)= & =v_{0} A^{n}\left[\sum_{r-1}^{n}(-1)^{r 1} \frac{\Gamma(n+r-1)}{\Gamma(n) \Gamma(r)} R^{r-1} e^{-\alpha l}(D-\alpha)^{n-2} \underset{(n--r)^{1}}{\frac{t^{n-r}}{\Gamma}}\right. \\
& \quad-(-1)^{n} \sum_{r=1}^{n} \Gamma \frac{\Gamma(n+r-1)}{\Gamma(n) \Gamma(r)} B^{r-1} e^{-\beta t}(D-\beta)^{n-2} \frac{t^{n-r}}{(n-r)!} \tag{19.4}
\end{align*} \cdots .
$$

and so on, where,

$$
\Lambda-(\beta+\alpha) /(\beta-\alpha), \quad B=1 /(\beta-\alpha)
$$

If we now neglect the term contaming the inertia of lateral motion in oquation (1) i.e., if, $\eta-0$ we must have $A=1$, and $B-0$.
and,

$$
\begin{align*}
& f_{1}(t)={ }_{\alpha}^{p_{0}}\left(1-c^{-a l}\right)={ }_{m v_{0}}^{\rho_{0} c}\left(1-c^{-P_{0} \sigma}{ }_{m} t\right) \tag{19.1a}\\
& f_{2}(t)=\underset{\alpha}{v_{0}} \cdot \alpha t \cdot e^{-\mathrm{a} t}=\frac{m v_{0}}{\rho_{0} c} \cdot \frac{\rho_{0} c}{m} t e^{-\frac{\rho_{0} c}{m} t} \tag{2}\\
& f_{\mathrm{a}}(t)=\frac{v_{0}}{\alpha} e^{-\alpha l}\left\{\alpha t-\begin{array}{c}
\alpha^{2} l^{2} \\
2!
\end{array}\right\}=\frac{m v_{0}}{\rho_{0} c}\left\{\frac{\rho_{0} c}{m} t-\frac{\rho_{0}^{2} c^{2}}{2 m^{2}} t^{2}\right\} e^{-\frac{\rho_{0} c}{m} t} \tag{19.3a}
\end{align*}
$$

and so on. These results of $f_{1}(t), f_{2}(t)$ ete ${ }^{-}$are found similar to those obtained by Ghosh (1953).

Thus the displacement at the inpact-end at any interval of time can be found as a function of time substituting all the values of $f_{1}(t), f_{2}(t)$, ctc. in the above oquation (19).

During the interval,

$$
\begin{align*}
& 0<t<\theta, \\
& \omega_{l}=f_{1}(t) \tag{19.A}
\end{align*}
$$

After time $t=\theta$, i.e. during, $\theta<t<20$,

$$
\begin{equation*}
\omega_{l}=f_{1}(t)-2\left\{f_{2}\left(t_{1}\right)-f_{1}\left(t_{1}\right)\right\}+\frac{\theta}{2} \eta\left\{2 f_{1}^{\prime \prime \prime}\left(t_{1}\right)-2 f_{2}^{\prime \prime \prime}\left(t_{1}\right)\right\} \tag{19.B}
\end{equation*}
$$

Smilarly during，$\quad 2 \theta<1<3 \theta$ ．

$$
\begin{align*}
\omega_{l}=f_{1}(t) & +\left\{2 f_{1}\left(t_{1}\right)-2 f_{2}\left(t_{1}\right)\right\}+\left\{2 f_{1}\left(t_{2}\right)-\left\langle i f_{2}\left(t_{2}\right)-1+y_{3}\left(t_{2}\right)\right\}\right. \\
& +\frac{1}{2} \theta \eta\left\{2 f_{1}^{\prime \prime \prime}\left(t_{1}\right)-2 f_{2}^{\prime \prime \prime}\left(t_{1}\right)\right\} \\
& +{ }_{2}^{9} \theta \eta\left\{2 \int_{3}^{\prime \prime \prime}\left(t_{2}\right)-6 f_{2}^{\prime \prime \prime}\left(t_{2}\right) \vdash-4 \int_{1}^{\prime \prime \prime}\left(t_{2}\right)\right\} \tag{19.C?}
\end{align*}
$$

and so on．
Equation（19）givos the most general form of displamement at the struck end of the rod．It is found that torms of the reght hand side of（19）centam cortam number of terms to be positive and some of them to be megative．By a negative term it is understood that waves formed are reflected from the respective ende of the rod．The displacement equation（19）of the struck－cend is obtained in the func－ tional form．By putting the func tional values of $f_{1}(t) f_{2}(t)$ et．In（19）the displace－ ment is oltamed in termu of known guantities．The pressure at the standeend is duscussed in section IT．

Further，the displacement equation shows，that the wave tram does not return after reflection，as shown by the second term of equation（21）below ．
l＇ressure at the struck end．
The Pressure exerted by the load at the impact end can now be found out taking the help of equation（9）and cefuation（19）as follows：

$$
\left.P-\cdots \frac{E \gamma_{C}^{\prime}}{C}(1+\eta I)^{2}\right)^{-1 / 2} \tanh D\left(1+\eta I D^{2}\right)^{-1} . l \omega_{l}^{\prime}
$$

 and writing exponential values for hyperbolie tangent the peessure equation becomes．

$$
\begin{align*}
& P-\cdots \frac{L_{\gamma}}{C}\left(1-\frac{1}{2} \eta D^{2}\right)\left[1-2 e^{-D\left(1-\frac{1}{2} \eta L^{2}\right) \theta} \left\lvert\,-2 L_{r}-2 D\left(1-\frac{1}{2} \eta D^{2}\right) \theta\right.\right. \\
& -2 p-3 D\left(1-\frac{1}{2} \eta D^{2}\right) \theta-+2 e^{2}-4 D\left(1-\frac{t^{2}}{\eta} D^{2}\right) \theta \\
& \text { - }+\ldots \text {... 〕 } \omega_{\iota} \tag{20}
\end{align*}
$$

From Equations（19）and（20）the numerical value of phessure at the struek－end cam be writton as，

$$
\left.\begin{array}{rl}
P=\frac{\gamma E}{C}\left[f_{1}^{\prime}(t)-2 f_{2}^{\prime}\left(t_{1}\right)-\frac{1}{2} \eta\left\{f_{1}^{\prime \prime \prime}(t)-2 f_{2}^{\prime \prime \prime}\left(t_{1}\right)\right\}\right. \\
& +\left\{4 f_{3}^{\prime}{ }_{3}\left(t_{2}\right)-2 f_{2}^{\prime}\left(t_{2}\right)\right\}-\frac{1}{2} \eta\left\{4 f^{\prime \prime \prime}{ }_{3}\left(t_{2}\right) \cdot 2 f^{\prime \prime \prime}{ }_{2}\left(t_{2}\right)\right\} \\
& +川 O\left\{4 f_{3}{ }^{I V}\left(t_{2}\right)-2 f_{2}^{I T}\left(t_{2}\right)-f_{2}^{I V}\left(t_{1}\right)\right\}^{\prime}-1 \tag{21}
\end{array} \ldots .\right]
$$

Thus during the interval， $0<t \therefore 0$ the pressure is

$$
\begin{equation*}
P_{1}=\frac{E \gamma}{C^{\prime}}\left[f_{1}^{\prime}(t)-\frac{1}{2} \| f_{1}^{\prime \prime \prime}(l)\right] \tag{21.1}
\end{equation*}
$$

