CRYSTALLOGRAPHIC DATA FOR COMPLEX COPPER LUTIDINE CHLORIDE

T. Ratho anj Mrg. M. KRISHNasWamy
Regional Denginemita Colleal, Routhela
(Receivech Amral 11, 1906; Resubmitted June 1, 1966)

Abstract

Delbyo Scherrer pattern of (doppes Latidne Chloride has bepn photographed with tho holp of ligaku Camera at 1 oom temperaturoa The Powdor diftrachan datashowed that the complex belongod to the monoclinie system weth et -- $1375 \AA, b=1150 \AA$, $c=1091 \AA$ and $\beta-103^{\circ} 11^{\prime}$ The numbor of moloculos por unit coll is 4. The systomatie, oxtmolions observed are ennsistont with the spaco gromp $P^{2}{ }_{3} / n-C^{2}{ }_{2 h}$ or $P^{2{ }_{2}}-C_{2}{ }^{2}$.

INTROJUCTION

Copper Latidine Clloride $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{0} \mathrm{~N}\right)_{2} \mathrm{Cl}_{2}\right]$ is obtainable in the microcrystalline form, pmk in colour, and the diamagnctic properties of such complexes using Lutidine as ligand is of some intercst. As it is not possible to grow large erystal powder method has been resorted to, to investigate some of its crystallographre properties.

GXPGRIMENTAL

When Cupric Chloride dissolved in Ethanol is treated with ethanolic solution of Lutidine, a shinning pink crystalline substance seperates out. This is the microcrystalline complex compound of Copper Lutidine Chloride.

Filtered $\mathrm{Cu} K_{\mathrm{a}}$ radiation was obtained from a Machlett $A-2 \quad X$-ray diffraction tube running at $15 \mathrm{~m} A, 30 \mathrm{~K} . \mathrm{V}$. and the specimen was contained in a Lindmann glass capillary tube of 0.5 mm . diameter, wall thickness 0.01 mm . The Debye Scherrer pattern of the substance was obtained on a photographic film using the Rigaku Camcra of 9 cm . diamcter. The time of exposure was about 12 hours.

The interplanar distances were calculated from the measurements on the diffraction pattern with great accuracy. Attempts were made to index the powder lines in terms of cubic, tetragonal and hexagonal" systems.

Since the observed data did not fit into any ono of these systems of higher symmetry, the Lipson's method (Lipson, 1949) was tried and this also did not give sufficient number of constant differences. This evidently shows that the crystal perhaps belongs to the lower synumetry group of monoclinic or triclinic systems Therefore it became necessary to apply either De Wolffe's method (De Wolffe, 1957) or Ito's method (Ito, 1950).

EXPERIMENTAJ DATA

The X-ray data obtained are given in Table 11 Since all the sia maknown parameters are to bo determmed, the most gencral inethod of Ito (Ito, 1900) was applied.

The powder pattern was indexed by Ito's method (Ito's, 1950, Azolarolf and Buerger, 1958). The interplanar spacings and the corresponding Q values ($Q_{\text {thl }}$ $\left.=1 / d^{2} h_{k \cdot t}\right)$ are listed in Table II

In Ito's method the expression relating $\sin ^{2} \theta(Q)$ to the ecll constauts of n triclinic cell is

$$
Q_{h k l}=h^{2} a^{* 2}+k^{2} b^{* 2}+l^{2} c^{* 2}+2 h l b^{*} c^{*} \cos \alpha^{*}+2 h l c * a^{*} \cos \beta^{*}-12 h i a^{*} b^{*} \cos \gamma^{*}
$$

where $\alpha^{*}, \beta^{*}, \gamma^{*}$ and a^{*}, b^{*} and c^{*} are the reciprocal angles and axew respectively.

The first three lines in Table II were first taken as Q_{1010}, Q_{010}, and Q_{010}, Attempts were made to index the other lines with the above assumption Smen ${ }_{11}$ was not possible, the first three lines were taken again as $Q_{2 n 0}, Q_{020}$ and $Q_{1 w n}$ It can be seen from Table I that the observel Q 's are in good agreement wath the calculated Q valucs for the other higher orders of reflection.

TABLE I
Solection of Q_{200}, Q_{020}, and Q_{002}

$Q_{h k l}$	Computod	Obsorved	Erriol in Q	Q, Corrneted
Q_{200}		00227		
Q_{400}	00908	00891	$\frac{-00017}{4}--00004$	00223
Q_{600}	0.2043	-		
Q0ı0		0.0292		
Q_{040}	0.1168	01106	$+\frac{00028}{4}-+00007$	09999
$Q_{\text {ово }}$	0.2628	---		
Q_{002}		0.03465		
Q_{004}	0.1386	0.1418	$+\frac{00032}{1}=+0.0008$	003945
Q_{009}	0.3118	03190	$+\frac{0.0072}{9}=+00008$	

From Table I one gets the reciprocal cell dimensions as

$$
\begin{aligned}
& a^{*}=0.0747 \\
& b^{*}=0.08648 \\
& c^{*}=0.09412
\end{aligned}
$$

Now considering the Q values for planes hol and hol with $\beta^{*} \neq 90^{\circ}$, we have

$$
\begin{aligned}
Q_{h o l} & =h^{2} a^{* 2}+l^{2} c^{* 2}+2 h l c^{*} a^{*} \cos \beta^{*} \\
Q_{h o i} & =h^{2} a^{* 2}+l^{2} c^{* 2}-2 h l c^{*} a^{*} \cos \beta^{*} .
\end{aligned}
$$

It is scen that these quantities aro symmetrical with respect to the quantity $a^{* 2}+c^{* 2}$. By giving proper values to l and l, the two symmetrically placed lincs hol and hol were found out. Then β^{*} was calculated from

$$
\operatorname{Cos} \beta^{*}=\frac{\left(Q_{h o l}-Q_{h o l}\right)}{4 c^{*} a^{*} l l l}
$$

This β^{*} was found out to be $76^{\circ} 49^{\prime}$. The other two angles α^{*} and γ^{*} wero derived in the same way and they were found to be $\alpha^{*}=90^{\circ}$, and $\gamma^{*}-90^{\circ}$

Therefore the six parameters of the reciprocal cells are

$$
\begin{array}{ll}
a^{*}=0.0747 & \alpha^{*}=90^{\circ} \\
b^{*}=0.08648 & \beta^{*}=76^{\circ} 49^{\prime} \\
c^{*}=0.09412 & \gamma^{*}=90^{\circ}
\end{array}
$$

The direct cell dimensions aro therefore

$$
\begin{array}{ll}
a=13.75 \hat{\mathrm{~A}} & \alpha=90^{\circ} \\
b=11.56 \AA & \beta=103^{\circ} 11^{\prime} \\
c=1091 \AA & \gamma=90^{\circ} .
\end{array}
$$

The Buerger's test for reduced cell dimensions has been applied and the dimensions are found to be the reduced ones.

TABLE II

No. ol' 11nes	Intensily	d A	$\begin{gathered} Q_{h k l}=1 / d^{2} \\ \text { observed } \end{gathered}$	$\begin{gathered} Q_{h k l} \\ \text { computed } \end{gathered}$	Indicos
1.	VN	6636	0.0227	00223	200
2.	w	5.852	0) 0292	0.0299	020
				00298	210
3.	vw	5371	003465	$\begin{array}{ll} 0 & 03545 \\ 0 & 0355 \end{array}$	022
				0.0346	$10 \overline{2}$
4.	vvw	4.564	0.04799	$\begin{aligned} & 00476 \\ & 0.0474 \end{aligned}$	121
5.	w	4222	00561	0.0569	317
6.	ms	3773	0.0703	00706	202
7.	w	3538	0.0799	$\{0.0797$	003
				$\left\{\begin{array}{l}0.0797 \\ 0.0801\end{array}\right.$	
8.	H	3.350	00891	0.0892	400
				0.0896	230
9.	W	3181	0.0988	0.0991	$40 \overline{2}$
				0.0986	321

TABLE II (contd)

No. of lines	Tatennuty	d A	$\begin{gathered} Q_{h k 1}-1 / d^{2} \\ \text { olbserved } \end{gathered}$		Indicos,
10.	w	2892	01196	$\begin{array}{lll} 0 & 1196 \\ 0 & 1192 \end{array}$	$\begin{aligned} & 040 \\ & 420 \end{aligned}$
11.	m,	2750	0.1316	$\begin{array}{lll} 0 & 1311 \\ 0 & 1309 \end{array}$	$\begin{aligned} & 32: \overline{1} \\ & 141 \end{aligned}$
12	vw	2654	01418	$\begin{aligned} & 01418 \\ & 0.1420 \\ & 01420 \end{aligned}$	$\begin{aligned} & 001 \\ & 240 \\ & 114 \end{aligned}$
13.	w	2605	01473	$\begin{array}{ll} 0 & 1470 \\ 0 & 1471 \end{array}$	$\begin{aligned} & 510 \\ & 033 \end{aligned}$
14.	ms	2681	0.1501	$\begin{array}{ll} 0 & 150 ; \\ 0 & 1502 \\ 0 & 1504 \end{array}$	$\begin{aligned} & 402 \\ & 23 \overline{3} \\ & 512 \end{aligned}$
15.	vo	2.505	01503	0) 1088	303
16.	m	2433	1) 1690	$\begin{array}{lll} 0 & 1684 \\ 0 & 1685 \\ 0 & 1692 \\ 0 & 1694 \end{array}$	$\begin{aligned} & 224 \\ & 333 \\ & 341 \\ & 620 \end{aligned}$
17.	vw	2.353	0.1806	01803	422
18.	vw	2290	01907	$\begin{array}{ll} 0 & 1902 \\ 0 & 1905 \end{array}$	$\begin{aligned} & 242 \\ & 601 \end{aligned}$
19.	vw	2261	01955	$\begin{aligned} & 0.1904 \\ & 0.1059 \end{aligned}$	$\begin{aligned} & 143 \\ & 051 \end{aligned}$
20.	vw	2187	02091	$\begin{array}{ll} 0 & 2091 \\ 0 & 2090 \\ 0 & 20903 \end{array}$	$\begin{aligned} & 034 \\ & 140 \\ & 260 \end{aligned}$
21.	vw	2180	02105	$\begin{aligned} & 0.2111 \\ & 0.2103 \end{aligned}$	$\begin{aligned} & 10 \tilde{B} \\ & 63 \overline{2} \end{aligned}$
22.	m	2.104	02258	112261	333
23.	m	1.998	02505	02503	$44 \overline{3}$
24.	vw	1.834	02972	$\begin{aligned} & 0.2972 \\ & 0.2979 \\ & 02977 \end{aligned}$	$\begin{aligned} & 623 \\ & 451 \\ & 334 \end{aligned}$
25.	vw	1.770	03190	$\begin{aligned} & 0.3101 \\ & 0.3197 \\ & 0.3195 \\ & 0.3101 \\ & 0.3188 \\ & 0.3194 \end{aligned}$	$\begin{aligned} & 006 \\ & 305 \\ & 360 \\ & 31 \overline{6} \\ & 365 \\ & 651^{-} \end{aligned}$
26.	vw	1.693	03486	$\begin{aligned} & 03488 \\ & 0.3490 \\ & 03487 \end{aligned}$	$\begin{aligned} & 026 \\ & 063 \\ & 635 \end{aligned}$
27	vvw	1676	0.3559	03567	326
28.	vw	1642	0.3712	03704	$36 \overline{3}$
29.	vw	1.690	03956	0.3955	245
30	vow	1544	0.4194	$\begin{aligned} & 0.4194 \\ & 0.4190 \end{aligned}$	$\begin{array}{r} 604 \\ \mathbf{4 6 2} \end{array}$
31.	vow	1429	0.4898	0.4899	$2 \overline{56}$

The crystal therefore belongs to the monoclinic system.
Finally all the $Q_{h k l}$ values were computed using the above general formula. The powder pattern so indexed slowed the following conditions.
hkl-no condition ;
oko-odd absent.
This obviously leads to the probable space group $P 2_{1} / m-C_{2 h}{ }^{2}$ or $P 2_{1}-C_{2}{ }^{2}$.
The observed density of $1.412 \mathrm{gms} . / \mathrm{cc}$. indicates 4 molecules por unil cell; calculated density is $1.372 \mathrm{gms} . / \mathrm{cc}$.

It is however not possible to throw light on the complete structure of this substance. Further work on these lines is in progress.

ACKNOWLEDGMENT

Our thanks are duc to Dr. D. V. Raman Rao, Head of the Department of Chemistry, fur supplying the chemically pure samplo used in this work.

REFERENORS

Azroff, L. V. and Buerger, M. J , 1958, Powder Method, 150
Doyo and Wait, 1960, X-ray Powder Photography or Inorganic Chemistry. Ito, 'T, 1950, X-ray studues in Polymorphism, Muruzon Tokyo.
Lipson, H, 1949, Acta Cryst, 2, 43

