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ABSTRACT. It la shown that the principal ionic anisoiropioa in ti'iclinic na well as oLhor 
n v-'lals can be calculated from just the values of magnetic anisotropy in any two planes and 
X-i ay data regarding the angular orientation of tho ions. Slightly leas iwcuiutc valucb may 
be obtained from raeasurements of anisotropy and the direction of maximum siiscojitibjhty 
m a single plane of the crystal. In case of uniaxial symmetry ol Uio ions, the principal ionic 
iiuibotropy can bo calculated from a single measurement of magnetic anisotrojiy ni any one 
jjlano oi' the crystal. Additional observation of maximum susceptibility iji only one jilano, 
is sulbi'ient for calculating tho principal ionic susceptibilities. The probable errors uvo rc- 
durvd by choosing a plane of large anisotropy.

I N l ’ K O D U C T I O N

Magnetic susceptibility tensor o f a crystal is the resultant o f the ionic or 
molecular susceptibility tensors o f  the magnetic ions or molecules in tho unit 
cell o f tho orypstal. The ultimate <j[uantity of interest is the ionic or moliu-ular 
susceptibility tensor because o f its use in the investigation of ligand fields, Tho 
usual procedure is to first determine the crystalline magnetic susceptibility 
tensor. Satisfactory methods could not be found easily for triclinic crystals. 
Krishnan and Mookherjoe (1936, 1938) had used a trial and error method of cal- 
(Illation requiring a large number o f  measurements o f anisotropy in different planes. 
Ohosh and Bagchi (1962) had proposed a method requiring the moasuromonts 
of lioth maximum susceptibility and anisotropy in five different planes in addition 
to tho average susceptibility o f the crystal. The author (Ghose, 1964) Jiad dis
cussed several alternative methods o f calculating tho principal susceptibilities and 
directions o f the principal axes using the transformation laws for covariant and 
contravariant tensor matrices in oblique coordinates. Each method requires just

observations and imposes no restrictions as to the planes of measurement. 
One of them, in contrast with the method o f Ghosh and Bagchi (1962), requires 
only tho values o f maximum susceptibility and anisotropy in three different planes. 
iSevoral other methods designed for greater accuracy o f results are being published 
elsewhere (Ghose, 1966 a, b).

Ghosh and Mitra (1964) pointed out that instead o f fii’st determining the 
susceptibility tensor for tho crystal, it is possible to calculate the ionic susceptibility 
h>nsor directly from the magnetic measurements and the X-ray data regarding the 
s-ugular orientations o f the magnetic ions or molooulos- This brings in a great
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economy in the labours o f numerical calculation. In  most cases the principal 
ionic susceptibilities can be calculated by solving just one set o f simultaneous 
linear equations.

This elegant method o f calculation has two rather subtle drawbacks. Firsiljr 
it requires more than the minimum number o f observations necessary in principle. 
The sum o f  the maximum and the minimum susceptibilities in a plane o f the crystal 
was considered as a single piece o f  information. Actually it requires the measure- 
monts o f  both maximum susceptibility and anisotropy. Thus for uniaxial sym- 
metvy o f ions, since only the axial principal susceptibility K\\ and the lateral 
principal susceptibility o f  the ion have to be calculated, just two ob^rvations 
in addition to the data regarding the orientations o f the ions should be sufficient 
The method o f Gliosli and Mitra requires the determination o f  anisotrbpy and 
maximum sustjeptibility in one plane o f the crystal, as well as the average suscoxiti- 
bility o f the crystal Tho second drawbac;k is a considerable loss o f accura(;y 
duo to tho use of two suscejitibility values in tlio calculations. This is not imme
diately self-evident from tho equations but will be proved here and tlie (jauso of 
this inaccuracy will bo traced so that it may be avoided.

An alternative method o f calculating the ionic susceptibilities directly from 
tho observations will bo presented here. It  will be shown that ilie principal ionu* 
anisotropy {K\\— Ky), for axially symmetrical ions can be obtained from only one 
measurement o f magnetic anisotropy in a specified plane, together with X-ray 
data. In tho absem^o o f symmetry the principal ionic anisotropies may ho cal
culated from two anisotropy measurements In addition to these observations, 
just one nieasuroment o f cither maximum susceptibility in a plane or the averag<i 
susceptibility o f tho crystal is sufficient for calculating tho principal ionic suscexiti- 
bilitios. Not cmly for triclinic, but for all crystals, this method demands fewer 
observations and simplifies calculations. Apart from the errors in tho measuremoiii 
o f magnotic anisotropy in one case and also absolute susceptibility in the other, 
the major source o f error in the proposed method is the inaccuracy o f the X-ray 
data used, in  due course it has been proved that tho latter error may be mini
mised by choosing a plane o f measurement such tha-t the observed anisotropy is 
large. The final error is then expected to bo no more than that with the lengthy 
indirect methods and smaller in some cases.
Ionic and crystalline susceptibilities

Lot the cosines o f the angles between the principal ionic axes K^, Xg, Xg 
o f any magnetic ion and any set o f orthogonal axes a:, y , f i x e d  in the crystal, 
be as follows :

X y Z
oq A 7i

/9. 7 3
- «a- ■ A 7a
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The direction cosines cos cos cos <f>̂ , of each ionic axis K, with respect to 
t]ie crystallographic axes a, 6, c, are kno\m from the X-ray data. Hence fiy 
and 7t may ho easily calculated. It has been shown by Ghoso (1905) that if th(i 
orthogonal axes are so chosen that the z  axis coincides ^vith the c axis and the x  

axis lies in tho a—c plane and close to the a axis, then fii and c.aii bo cal- 
fidated without any ambiguity by the following matrix equation.

A  r J  ^  [c>os cos cos 0 / ] 1 COM OL COS /?—COS y  "̂
sin fi M  sin fi

0
~M

cos fi cos fi cos y —cos a 
_sin fi M sm ^ ( 1)

^dioro oc, f i ,y  aro the triclinic angles and ilf is the positive square root of 
(I -cos^a—cos®/?—cos^y+2cos a cosyff cosy). There is no ambiguity. Similar 
matrix relations may bo obtained if any other set o f oT thogonal axes is solectorl 

In most o f tho actual problems it would be necessary to calculate the vahuis 
ol only y .̂ A  shortei’ method o f calculating it for different directions of z axjs 
^nll bo dis(!ussed later.

I f  in tho unit cell there aro n ions of a particular type Avitli different orientji- 
tioiis, then the susceptibility matrix for the crystal is Vjn times tho sum ol tho 
susceptibility matrices for tho u ions. Thus in tho x, y ,z  coordinate system, tlie 
susceptibility matrix ie

1A'li Aba Ai3 n
Xii, Xi2 Afz3
Ai3 Aba Aaa J .7 i 7i

1 r ^ i  1 ' “ i A 7i
) K . “ a Pi 7a

.. A's J <̂*3 Pi 73.
( 2)

Probable errors o f existing methods
Tho observed values o f anisotropy, maximum susceptibility and averages 

susceptibility are subject to errors o f the order of 0.1 %. The estimated erroj- is 
smallest for anisotropy and is 0.1% (Krishnan and Banerji, 1935; Datta, 1953, 
1954). The error in tho values o f maximum susceptibility may bo about 0.2% 
(Dutta Roy, 1955) or slightly less (Das, 1963) The error in measuring average 
susceptibility for powdered samples may be larger still. Thus the o.stimated 
errors in the last two quantities is never less than 0.1%.

For uniaxial symmetry o f the magnetic ion, i.e., K^ =  =  K .̂ and =  K\\,
Ghosh and Mitra proved that

iZ a ,* ) + X i(  1 + -  2a,«) (=1)
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^^hore Xmax maximiim susceptibility and anisotropy in the
piano. Also for tho mean susceptibility, v̂o have

H =  i(2iTx+A,|)

Solving equations (3) and (4), wo get

^XfAux-^ — ̂ X

... (4)

1 S a ,2

u\oThis is an exact relation without any approximation. I f  tho magnitude o f tho 
oiTors in tho values o^ Xmax̂  ^  ^̂ ^̂ 1 x bo dxmax̂  ^ii‘l ^X, then tho magnitude of 
tlic error in tho calculated value o f ionic anisotrojiy is given by

d{K \\-K ^)^  -^ A W ^ + ^ ^ +2dx  ^  ^AW ,,"-^--2x)d(Sa3^)

» • ( * - ¥ )

Neglecting dA tho error in anisotropy and tho second term on tho right hand side 
which is due to error in X-ray data, the percentage error in ifmic anisotropy is 
equal to

200(3Xwa»+^^) ■
2a:m» . - 2 S - . 4  ■

In any given case this mininiuni estimated error can bo easily calculated because

3 x «« «=  o .i% o fA ,w .,= ^ ^ ;; ‘« , and d5< = 1000 Since Xmax and X are largo quan

tities, the absolute errors dxmax ^X are quite large; on tho other hand tho 
denominator in the above expression for percentage error is very small. So tlic 
accuracy o f ionic anisotropy calculated by this method will bo necessarily sTualJ. 
Substituting the values o f Xmax> X etc. given by Gho^i and Mitra (1964), the error 
in principal ionic anisotropy in the case o f CuSo^ ■ SHgO, is found to be about 25%. 
Similarly for their determination o f the principal ionic anisotropy o f NiS04 ■ 
7H 2O, the estimated error is found to range from 20%  to 60% for tho different sots 
o f observations given by them. Actually tho errors must be still larger due to 
inaccuracies in the X-ray data. The apparently close agreement with previous 
workers’ results, must be due to coincidence. Also the direction cosines o f the 
tetragonal axis o f the second copper ion as calculated by them from X -ray data, 
have an error o f about 5% . Proceeding in the same way it can be proved that in 
the absence o f symmetry too, the method o f Ghosh and Mitra is likely to give 
inaccurate results. The only cause o f these inaccuracies is tho fact that a difference 
o f two large quantities, the maximum susceptibility in a plane and tho average



susoeptibility, has boon usu-d in ualculaiiiig a small quantity, tbo principal ionic 
anisotropy

The same cause may load to similar large errois m other methods o f calcula- 
ijons as -well. Thus, following Londsdale and Krishnau (1936), if y,,, ŷ  arc 
the observed susceptibilities along the a, h and c axes of any orthorhombic (u ystal,
Diuii

II the quantity {Xb~~X<i) measured directly tlien the percentage orroi- need
not he largo On the other hand if Xb and y^ are measured independently, then

assuming the X -ray data to bo correiit, the percentage ororr is i
X b -X a

and js considerable. As regards the error due to X-ray data, it will be small if 
the dirferenco in the magnitudes o f cĉ  and is large

This defect is also common to many methods o f determining the magnetic 
.susceptibility tensor for crystals. Ghosc (1964, 1966) has shown tliat if more than 
one observation o f the absolute value o f  susceptibility liavo to bo used for cal
culating tlio elements o f  the tensor matrix, then largo errors are inevitable. Al
though the iiercentago error in the value o f any o f the calculated primupal siiscc.p- 
fcibilitios is not mu(;h larger than those in the observed values of susceptibilities, 
( he perooiitage eiTor in the values o f tlio x^rineipal anisotropies is much larger and the 
calculated directions o f the principal axes are not accurate. Even if the principal 
susceptibilities can bo directly measured, the error in the calculated principal 
anisotropies will bo largo because each is a small difference o f two largo quantities. 
On the other hand, the use o f several measurements of anisotropy (and also 
direction cosines o f maximum susceptibility in a plane) does not introduce such 
large errors in the result becau.se the absolute values of the errors are small.

The method o f Krishnan and Mookherji (1938) is free of this defect. But the 
trial and error jirocedure makes exact calculation so lengthy as to be almost im
possible. Moreover, the directions o f the M  axes and the principal anisotropio.s 
are determined more effectively by those planes for which observed anisotropy 
IS small BO that probable error is comparatively laige.

Proposed methods
For the orthogonal coordinate system x, y, z, if Xmaĵ  observed

maximum susceptibility and the anisotropy in x-y plane and ijr bo the angle which 
the directioxi o f  maximum susceptibility in this plane makes with the x axis, then 
the following equations (Ghose, 1964) relating the elements o f \.Xrnî> suscepti
bility tensor matrix can be written down.

Xu =  X «»m -A  s in 'f  -  (®)

A Simple Method of Finding the Principal^ etc. 461
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=  (7)

Xi2 ~  A  aim/r Gos i/r ... (8)

Elliminating Xniax betwoon equations (6) and (7), w© got

(;Vii-A:a2) =  ^ c o s 2 ^  ... (9)

Substituting the values o f etc. from equation (2) in equations (8) and (9), wu

{K^-K^)^ocJ^~\-{R^—Ki)Za.^fis ^  nAf2 . sin 2ijr ... (10)

=  nA ■ ons2 f  \... (II)

The values o f « 2> known from the X-ray data and either equation
(J) or some alternative equation. So if A  and r/r arc measured for the piano x —y, 
then the principal ionic anisotropies, {K^—K^) and {K^—K^) may bo found by 
solving equations (10) and (11). In case o f axial symmetry of the ion, a siiigĥ  
equation is sufficient.

{K n -K A  = sin 2ijr nA  ■ cos 2i/r
S S (a 3̂ —^3®)

( 12)

Thus the principal ionic anisotropies can bo calculated from the X-ray data and 
a single nieasiiroment o f A  and ^  in one plane. I f  the orthogonal coordinates 
chosen are those corresponding to equation (1), then A  is the anisotropy in a plane 
perpendicular to the crystallographic c axis and ijr is the angle which the direc
tion o f maximum susceptibility in this plane makes with the a —c plane. How
ever it is diffunilt to determine accurately the value o f ijr. But while measuring 
the anisotropy A , the approximate value o f 'ijr may be easily found for the same 
plane o f observation without requiring any special equipment. Hence the approxi
mate values o f the principal ionic anisotropies may be calculated for elliminating 
ambiguities o f results calculated by other methods.

Elliminating between equations (10) and (11) we got

((X 2-X ,)S (a2«-/?3*^ )+ (X 3 -X ,)S (a32 -/?3 «)P + 4 {(X 3 -ii:,)S M 3

+(X3-Xi)S«a/^B}® = (13)

The summations arc for the n ions and .<4 is the anisotropy in x —y  plane. For 
the coordinates corresponding to equation (1), the x —y  plane is perpendicular to 
the 0 axis and the x —z plane is identical with the crystallographic a —c piano. 
I f  A  be the anisotropy measured in x —z plane, then

{(J l3-X ,)S (a3 ’̂ -y2^)+(X3-A:,)S(a3®“ r8 ")}*+ 4{(^ 3 -X ,)S a3 73

( U )
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Equations (13) and (14) are simultaneous quadi*atic oquatioiis in and
(A"a—^ i) . Such equations may bo solved without difficulty and the numerical 
values o f the principal ionic anisotropies may be calculated. But in general 
tlioro will be four alternative sots o f solutions of which only one is corroid To 
resolve this ambiguity it will be necessary to notc> the approximatej value of \jr in 
one of the positions for measuring the anisotropy o f the crystal and calculate the 
approximate values o f the principal ionic anisotropies by equations (10 ) and (1 1 ). 
Of the four alternative sets o f solutions previously obtained, the one which is 
closest to this approximate solution, -will be the con-ect one

Tn case o f axial synunetry o f the ions, equation (13) simplifies to

(15)

Thus tho principal ionic anisotropy can bo calciilaled from a single nioasuromont 
of anisotropy A  in x —y  plane, which may be cliosen arbitrarily for experimental 
( onvonience. To choose the correct sign in eauation (15), we note from equation 
(12 ) that the positive sign is to bo taken if S  is positive and at the same time 
sin 2^  is positive, i.o , if the direction of maximum susceptibility in this plane lies 
between tho positive directions o f x  and y  axes.

Somo special cases arc worth noticing. In orthorombn; crystals, due to the 
symmetry o f orientation o f ions in tho unit coll, (Sag, fi^ is equal to zero, whiht 
the sejuaros o f a  and /? have the same value for each ion. So equation (15) 
reduces to tho relation given by Lonsdale and Krishnan (1936)

On the other band if all ions aro magnetically equivalent, equation (15) 
simplifies to

Again in many triclinic crystals like CuSO^ ■ fiHaO, there are only two mag
netically inequivlont ions with axial symmetry. I f  tho direction cosines o f the 
second ion bo distinguished by a dash suffix, then equation (15) reduces to

±2.A(ff| | -X ^ ) =

± 2 A  _____

± 2 A (17)
{(rs '“—7a*)*+4(oos rs7a')^}^

whore 0 is the angle between the axes o f these two ions.
The quantities and 7 3̂ are the cosines o f the angles between tho magnetic 

axes o f the ions aud the z gyja or the normal to the plane in which anisotropy
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has boen inoasured. So wlion Tising oq\iations (16) and (17), it will be more oonve- 
veniont t(j tialculate 73 and 7̂ 3 directly instead o f by equation (1 ) or its oquivalont 
For this xjurpoae the unit normal may bo expressed as a contravariant voctov 
matrix, a,s will bo illustrated in due course. A  unit oovariant vector in the direc
tion o f tho axis o f an ion may be expressed by the matrix [003^3® (!os0„*' 
cos 0g°], So 73 is tho scaler product o f these two vectors and is equal to tho 
product o f tho two matrices.
Probable errors in the proposed methods

Tho methods o f calculation discussed in the last section, do not involyo small 
difforoncos of largo quantities like absolute values o f susceptibility. So Ifhe per
centage errors would be o f the same order as in tho moasurement of anis^otropy 
but for the errors introducsod through the X-ray data. The effect o f the latter 
can bo reduced by a judicious selection o f the piano in which anisotropy is mcDsurerl.

Consider first tho simplest case whore all ions in tho unit cell are magnetically 
oquivalont, and have axial symmetiy. The principal ionic anisotropy is to be 
(salculatod by equation (16). I f  the direction cosine 73 be equal to oos 0, then tho 
maximum percontago ciTor in the calculated value of tho principal ionic anisotropy 
will bo

d(A||-Aa) . 100 =  ^  . lOOH-200.
A  sm 0

dO (18)

The first term on tho right hand side of this equation is the percentage error intro
duced by magneti(i measurement and is no more than that in the measurmuent of 
anisotropy. The percontago error due to an error o f half a degree in tho X-ray

data is , or, where A is the observed anisotropy
360 amO ’ ’ 360 \A I

and AI is the principal ionic anisotropy, which in this case is the maximum ob
servable anisotrt)py. This error is very large when the observed anisotropy is 
nearly zero. On the other hand, when the observed anisotropy is maximum, 
the error is negligible compared to oven the 0 .1 %  error due to anisotropy measure
ment. When 7 a is 0.5, tho error is near about 1%. So for greater accuracy, the 
plane o f measurement should be so chosen that the observed anisotropy is large.

In case of two ions in the unit coll, an expression for the maximum error can 
be obtained from equation (17). Putting (73'®—Ta®) ~  ^  2(008 6̂—7373)
=  R  sin w; 7 g =■ cos 0 and 7 a^= oos 0', w© get th© following expression for frac
tional error.

ajJIii-X x) ^ d _A
(X||—iTi) A R

sin Wd0'-\-^m 20.60}

{ sin 0 sin 0*60' -hcos 0' sin 066}
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Supposing the maximum errors dd, dd' and d<f> duo to errors in X-ray data, to bo 
each half degree or tt/360 radian, the maximum percentage error

^  ‘ to(sin 2^ ^  sm 2^')-f-2sin co(siii ^+sin ... ( l ‘ l)

<  ■ |»A I lQ(hr2(5){
^  " A '  ^  360ie

TJio second term represents the maximum limiting value ol tlû  })ercentagc ei'ror 
due to X-ray data and is equal to 3.9/22. The valium of K, the denominator in 
equation (17), lies between 0 and 2. I f  the observed ansotropy A is largo, tJion 
K is also large and tlie error is small. The anisotrojiy 1̂ is maximum when the 
normal to tlie plane o f lueaauroment bisects the larger angle between the magnetic 
axes o f the two ions. Tlion 0 and O' are equal to {n i  <̂ )j2 or 1:0/2, according as 
(J) is grcsater than or less than tt/2 . Substituting these values in equation (19), 
the maximum error when the observed anisotropy is largest, is fcmiid to be

^ r. %> porvided that only the mmierieal vahui ol‘ cos 6 he used in 3b0(ll-3  COS0) ^
this expression. For CiiSO^-fiHaO in particular, this orior is rather large,
namely about 2.3 % , because cos 0 has the low value o f 0. J 033. On the other Jiancl.
if the angle between the magnetic axes of two ions be small, then the error
introduced by X-ray data can be made nogligiblj’̂ small.

In ease o f more than two ions or in the absence o f axial symmetry ol'tho ions, 
it is not possible to got a concise algebraic expression for the percentage error. 
However, equation (15) indicates that fmstly the percentage î rror introduced by 
magnetic measuiements is equal to that in measuring the anisotropy of the crystal 
ill a plane, Socpndly, the error due to X-ray data is minimised if the denominator 
is largo which will bo the case if the measured anisotropy is near about tlio maxi
mum observable value.

l<lxamph of

According to tho X -ray data given by Bee vers and Lipsoii (1934), each unit 
cell o f  copper sulphate crystal contains two copper ions, each o f which is at tho 
t entre o f an octahedron composed o f four oxygen atoms in a plane and belonging 
to water molecules, and two other oxygen atoms belonging to sulphate groups 
at tho two vertices.

Let the matrix [̂ w*n] =

■ [

1
oos /
cos jS

cos 7 
1

cos a

cos
cos

“ 1
)S a I
i J
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wliere a, fi and y  aro the cryetallographio triclinio angles, 82°16', 107°26' and 
i02®40' respectively. Hence the reciprocal matrix is

1.1394 0.2076
0.2076 1.0662
0.3136 -0 .0 7 9 9

0.3135
-0.0799

1.1047 ]
Krislman and Mookhorji (1938) have taken the lines joining the sulphate 

oxygons at the vortices o f the octahedrons, as the magnetic axes o f the ions. 
Taking the crystallographic axes a, 6, c, as the coordinate axes, the obhqt ĵio carti- 
sian coordinate {x, y, z) o f any atom is found by multiplying the positions given 
by Boovors and Lipson, by a, h, c the dimensions o f the unit cell. A  lino '.joining 
two atoms in XJOsitions (x ,̂ y ,̂ ẑ ) and (x ,̂ y ,̂ z )̂ may bo expressed (Ghosd^ 1964) 
as a contravariant vector matrix

L (Sa-iSi) J

or as a covariant matrix [ f/g === l^wnl
r ( * a- ^ i) n
L. J

On dividing U by the length o f the veidor, i o., the square root of tlui 
product o f the covariant and contravariant matrices, we get the direction cosinc.s 
o f this line The latter form a unit co variant vector matrix [cos 0® cos cos 
The calculaterl values for and the axes o f the two copper ions agree with 
those given by Krislman and Mookhorji and aro shown in Table 1.

However, the octahedrons are not regular and the water oxygens are closer 
to the copper ions. So the magnetic axes are likely to be closer to the normals 
to the jilanes o f water oxygons. The lines joining one o f these oxygens with atl- 
jacont oxygens may bo expressed as before by  two contravariant matrices

X  ~| and 
Y  
Z

A  normal to the plane containing these two lines is given by (Ghose, 1965) by the 
covariant vector matrix

ITi ViL V̂ -\ =  i [ Y Z - Z Y )  { Z X - X Z )  { X Y - Y Z ) ]

To got the direction cosines, Fj, Fg, 
product

[ y
These values for and the tetragonal axes o f  the two copper ions are shown 
in Table I. Those for differ considerably from the corresponding values cal
culated by Ghosh and Mitra (1964).
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OOS 0 0 cos c o s

Zi 0.202G - 0  647 0 0 ,0 1 7 9

Zz 0  337 2 0 7489 0  3507

Ti 0 .0 0 1 6 — 0 .6 6 2 5 0 .6 5 2 2

Ta 0 .3 0 0 4 0 7 1 0 4 0 3823

To calculato tho ionic anisotropy, equation (17) may be usotl. TJm angle 
hetwoon the two ionic axes, either and Z ,̂ or and 7’.̂ , i« obtained easily by 
forming the scalar product o f tho two unit vectors, and is given by

(■os 0 — [cos cos <j>̂  cos r  cos j
cosL cos 0 /  J

The value o f cos is thus found to be —0.1355 for Z-̂ , Z  ̂ axes, and —0.1633 for 
T ,̂ 1\ axes.

To find the values o f and whatever be the piano in Avhich anisotropy 
IS measured, the unit normal to tho plane can bo exprexsed a,s a contravaiuant vector 
matrix with respect to tho crystallograiihic axes (Ghose, 1955). I f the plane of

\h fc Z 1measurement be ilikl), then the normal is a covariant vector -—  or a contra-
1 La 6 c J

variant veotor[F^ F®J = [  ^ ^  Dividing each element
L Co  c J

FJ etc.,

by the magnitude o f the vector, i e., the square root o f [F^ F̂ J[6̂„i,t'J

got a unit contravariant vector, say
-I

J

Again i f  the plane o f measurement bo poriiendicular to botli the plamis (hid) 
ul {h'k'V) then the normal is a contravariant vector

[^J-[
a{kV— k'l) 
h {W -V h ) 
c{hk*—h'k)

which may be changed to

a unit vector as before. I f  during measurements, one o f tlui crystallographic 
‘̂ 'Xea is the normal, then the unit contravariant matrix has a every simple form.

Thus with the c axis normal, it is euqal to

4
[ 1 ]
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Now 7 , y ', are the matrix produQt^ o f the contravariant unit matrices in 
the direction o f the normal to the piano o f measurement and the covariant umt 
matrices in the directions o f  the magnetic axes of the two ions.

Krishnan and Mookherji (1938) have given the observed values o f anisotropy 
in eight different planes o f CuSOi’bHgO crystal. These are shown in Table II. 
Tlio principal ionic anisotropy has been calculated in each case. The values 
obtained by using anrl Tg, the normals to the planes o f water oxj^gens, arc 
shown in the last column, while those obtained by using and Z ,̂ the directions 
o f octahedron vortices, are shown in the column last but one. \

T A B L E  I I

Mode of suspoiiHiou
Obsorvecl

AiUHOlropy
Calculatod 

loaif anisotropy 
(Z) (T)

(Til) horiz. 26 180 130

a axis verl . 60 290 363

(TlO) horiz. 117 403 412

(100) horiz. 146 435 513

C axis vert. 183 485 421

(110) bonz. 213 572 578

(TOO) and (Til) vert. 2G3 550 565

(llO) and (111) V P i t . 204 642 502

It is found that as observed anisotropy increases, tho calculated values ol 
ionic anisotropy become more consistant, as was to bo expected from tho discus
sion o f probable error in the last section. The last three sets indicate a value of 
560 with a probable error o f magnitude 20, i.e., about 4% . Actually a much 
higher error should bo expected due to the uncertainty regarding the directions ol 
the magnetic axes o f the copper ions. From Table I, it is seen that tho angle bet
ween the direction o f the normal to the plane o f water oxygens and the direction 
o f the line o f the sulphate oxygens at the vertices o f  the octahedron, is nineteen 
degrees for the first copper ion and four degrees for the second. Similar variations 
in the value o f ionic anisotropy calculatod with tho two sots o f axes indicate that 
neither o f them may be considered more correct than tho other.

Krishnan and Mookherji (1938) obtained a value o f 650 for the ionic ansotropy- 
As a first skip they determjned the directions o f  two magnetic axes by trial and 
error, such tliat tho ratio A /(8iD 0 sin O') is constant where 0 and O' are the angles
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between the normal to tho piano o f moasiiremont and tlie magiiotic; axes. How
ever, with the best fit that they could obtain, tli6 ratio varied between 273 and 296 
in* by about 4 %  indi(3atiiig a correspondiug luaximum error in either tho inoasur(3- 
nients o f anisotropy or in tho suspensions o f the crystal. Oonsequontly, the errors 
111 tho last three Sets o f values in Table TT are no more than the maxiinum errtira 
duo to anisotropy moasuromont.

More satisfactory results can not bo expected for the copper sulphate crystal 
Firstly, tho oxygon octahedrons surrounding the two copper ions are not exactly 
similar, so that tho magnetic susceptibilities o f tho two ions are probably different 
Secondly, the octahedrons are not regular, so that axial symmetry o f the ions is 
only approximate And lastly greater accuracy can bo expected in those crystals 
whore tho ionic axes are not so nearly perpendicular to each other.
Principal ionic susceptibilities

To determine tho principal ionic susceptibilities, it is necessary to have one 
measurement o f absolute value o f susceptibility, such as the mean susceptibility 
of tho crystal or tho maximum susceptibility in one of tho coordinate planes 
I f the average susceptibility x is accurately known, K-̂  may be calculated by the 
equation

f  =  3x

Alternatively, the maximum susceptibility in a piano o f tho crystal may bo 
determined with sufficient accuracy. Adding equations (6) and (7), wo got tho 
ccpiation

XiiH"Afaa ~  '^Xmax~^

Substituting the value o f Xn from equation (2), and using tho orthogonal 
pro]iertioB o f a^,/?i, etc., we get

( 1 -  ^

Substituting the calculated values o f {K^—K- )̂ and as ŵ (dl as tho ob
served values o f Xwaa) a-iid A , tho maximum susceptibility and anisotropy in x —y 
plane, the value o f may be calculated. In case o f axial symmetry o f the ions, 
the same equation reduces to a simpler form,

The error in K ^, or in K x  should be of the same order as tho error in determin- 
*’'8  Xmuxi i-®'! 0 .2%  because the other quantities in the equations are small. Tho 
same error will occur in tho values of the other principal ionic susceptibilities 
calculated from tho values of principal ionic anisotropies, because tho latter quan
tities being small the absolute magnitudes of tbeir errors will also he small.
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