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ABSTRACT. It 1sshown that the principal ionic amsotropes in triclinic as well as obhor
rysluls con he coleulated from just the values of magnetic anisotropy in any two planes and
X-ray data regarding the angular orientation of the 1ons. Shightly less areurate valuos may
be oblained from measurements of anisoiropy and the direction of maximum suscoptability
m u smglo plane of the erystal. In case of uniaxial symmetry of the 1ons, the prineipal wonie
amsotropy can be calculated from a single emont of muagnotic anisotropy m any one
plane of tho erysin!.  Additional observation of muxunum ssceptibility 1y only one plano,
w sufficient for caleuloting tho principal iome suscoptibibties. The probable errors wre re-
(ured by chooging o plane of large anisotropy.

INTRODUCTION

Magnetic susceptibility tensor of a crystal is the resultant of the ionic or
molocular susceptibility tensors of the magnetic ions or molecules in the unit
cell of the crystal. The ultimate quantity of intercst 1s the ionic or molecular
susceptibility tensor becanse of ils use in the investigation of ligand fields, The
wsual procedure is to first determine the crystalline magnelic suscoptibility
tensor. Satisfactory methods could not be found casily for triclinic crystals.
Krishnan and Mookherjee (1936, 1938) had used a trial and error method of cal-
tulation requiring a large number of measurements of anisotropy in different planes.
Ghosh and Bagchi (1962) had proposed a method requiring tho mensurements
of hoth maximum susceptibility and anisotropy in five different planes in addition
to the average susceptibility of the crystal. The author (Ghose, 1964) had dis-
cussed several alternative methods of calculating the principal suscoptibilities and
directions of the principal axes using the transformation laws for covariant and
contravariant tonsor matrices in oblique coordinates. Tach method requires just
X obgervaticns and imposes no restrictions as to the planes of measurement.
Ono of them, in contrast with the method of Ghosh and Bagchi (1962), requires
only the values of maximum susceptibility and anisotropy in three different planes.
Sovoral other methods designed for greater accuracy of rosults aro being published
olsewhere (Ghose, 1966 a, b).

Ghosh and Mitra (1964) pointed out that instead of first determining the
susceptibility temsor for the crystal, it is possible to caleulate the ionic ptibility
tonsor directly from the magnetic measurements and the X.ray data regarding the
anguler orientations of the magnetic ions or molecules. This brings in & groat
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economy in the labours of numerical calculation. In most cases the principal
jonic susceptibilities can be calculated by solving just one set of simultaneous
linear ocquations.

This clegant method of caloulation has two rather subtle drawbacks. Firstly
it requires more than the minimum number of observations necessary in principle,
The sum of the maximum and the minimum susceptibilities in a plane of the crystal
wasg considored as a single piece of information. Actually it requires the measure-
monts of both maximum susceptibility and anisotropy. Thus for uniaxial sym.
metry of ions, since only the axial principal susceptibility K and the lateral
prineipal susceptibility K’ of the ion have to be calculated, just two obdprvations
in addition to the data regarding the orientations of the ions should be gufficient
The method of Ghosh and Mitra requires the determination of anisotrbpy and
maxnnum susceptibility in one plane of tho orystal, as well as the average siscopti-
bility of the crystal The second drawback is a congiderable loss of accuracy
due to tho use of two susceptibility values in tho calculations. This is not imune-
diately solf-ovident from the equations but will be proved here and the cause of
this inaccuracy will bo traced so that it may be avoided.

An aliernative method of calculating the ionic susceptibilities directly from
tho observations will bo presented here. It will be shown that 4he principal iome
anisotropy (K| — K,), for axially symmetrical ions can be obtained from. only one
measurement of magnetic anisotropy in a specified plane, together with X-ray
data. In the absence of symmetry the principal ionic anisotropies may be cal-
culated from two anisotropy measurements In addition to these observations,
just ono measuroment of cither maximum susceptibility in a plane or the averago
susceptibility of tho crystal is sufficient for caleulating the principal ionic suscopti-
bilities. Not only for triclinic, but for all crystals, this method demands fewer
obgervations and simplifies caleulations. Apart from the errors in the measuremont
of magnotic anisotropy in one case and also absoluto susceptibility in the othor,
the major source of orror in the proposed method is the inaccuracy of the X-ray
data used. In due course it has been proved that the latter error may be mini-
mised by choosing & plane of measuroment such that the observed anisotropy 15
large. The {inal error is then oxpected to be no more than that with the lengthy
indirect methods and smaller in some cases.

Ionic and crystalline susceptibiliti

Let the cosines of the angles belween the sprincipal ionic axes K, K,, £,
of any magnetic ion and any set of orthogonal axes z,y, 2, fixed in the crystal,
be as follows :

x 'y z
B K, oy A 71
- K, oy A Yar-. -
- Ky - ap -~ fs vs -
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The direction cosines cos ¢%, cos ¢,%, cos @,°, of each ionic axis K, with respoct to
the crystallographio axes @, b, ¢, are known from the X-ray data. Honce a,, /,
and y; may be easily calculated. It has buen shown by Ghosoe (1965) that if the
orthogonal axes are so chosen that tho z axis coincides with tho ¢ axis and the
axis lics in tho a—c plane and close to the a axis, then oy, §; and y, can be cal-
culated without any ambiguity by the following matrix equation.

1 s — ¢ .
Let; By 2] = [cos ¢;* cos ¢|'b cos ] Sill_ﬂ ‘%(%W—L—"——S Y0
0 sm 7
M

cos f cos feosy—cosa
|_sing Mempg m
whero a, f,7 are the triclinic angles and M is the positive square root of
(1 —cos?oc—cos2f—con2y+2co8 o cos f cosy). There is no ambiguity. Similar

matrix relations may be obtained if any other set of orthogonal axos is selectord
In most of the actual probloms it would be necessary o calculato tho values

ol only y,. A shorler method of calculating it for different directions of z axm
will be discussed lator.

1f in tho umit cell thore aro » ions of a particular type with different orienta-
tions, then the susceptibility matrix for the crystal is I/n tumes tho sum of the
susceptibility matricos for the # ions. Thus in the , y, 2 coordinato systom, the
suscoptibility matrix is

v ‘o, o, a K. o
Wk k] e R R[N [R 4]
Xz Xsz Xas Y Y2 Ysd L Ky as fa Vs
e (2)

Probable errors of existing methods

Tho ohserved values of anisotropy, maximum suscoptibility and average
susceptibility are subject to errors of the order of 0.1 %. The ostimated error 1
smallest for anisotropy and is 0.1% (Krishnan and Banerji, 1935; Datta, 1953,
1954). The orror in the values of maximum susceptibility may be about 0.2%
(Dutta Roy, 1955) or slightly less (Das, 1963) The error in measuring avorage
susceptibility for powdered samples may be largor gtill. Thus the estimatod
errors in tho last two quantities is never less than 0.1%.

For uniaxial symmetry of the magnetic ion, ie,K, = K, =K, and K; = Ky,
Ghosh and Mitra proved that

K\ (1— %Za,’) +KJ_( 1+‘;1; 2“3‘) =2x1mta:_'A (3)
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whore Y., and A are the maximum susceptibility and anisotropy in the y—
plane. Also for the mean susceptibility, woe have

R = 32K, 1K) e (4)
Solving equations (3) and (4), we get

(By—K,) = 2Xmua—A—2X
. Sa? o (3

This is an exact relation without any approximation. If the mu.gnitu)le of the
orrors in the values of Ypge, A and X be 0xuq 04 and 9%, then the magnitude of
the error in the calculated value of ionic anisotropy is given by

K —K,) = QeXﬂq.nfl'aA;l'2_ai__+ 2¥man— A—2%)3(Say®)
j— % n- (%,$ﬁﬂf)

n n

Neglecting d4 the error in anisotropy and the socond termi on tho right hand sile
which ig due to error in X-ray data, the percentage error in ibnic anisotropy is
equal to

200(9Xmast9X) -
2Xman—2X—A

In any givon caso this minimum estimated error can he casily calculated becnuse

OxXmae= 0.1% of Xmau= 1’%’6’(‘; , and 9% = Since Ypa, and X are largo quan-

1000°
tities, the absolute orrors dx.. and 0X are quite large; on the other hand tho
denominator in the above expression for percentage error is very small. So the
accuracy of ionic anisotropy calculated by this mothod will ho necossarily small.
Substituting the values of Xy, X etc. given by Ghogh and Mitra (1964), the error
in principal ionic anisotropy in the case of CuSo, - 5H,0, is found Lo be about 25%.
Similarly for their determination of the principal ionic anisotropy of NiSO, -
7H,0, the ostimated orror is found to range from 209, to 609, for the different seis
of observations given by them. Actually the errors must be still larger due to
inaccuracies in the X-ray data. The apparently*close agreemont with previous
workers’ rosults, must he due to ooincidence. Also the direction cosines of the
tetragonal axis of the second copper ion as calculated by them from X-ray data,
have an error of about 5%,. Proceeding in the same way it can be proved that in
the absence of symmetry too, the method of Ghosh and Mitra is likely to give
inaccurate results. The only cause of these inaccuracies is the faot that a difference
of two large quantities, the maximum susceptibility in a plane and the averagoe
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susoeptibility, has been used in calculating a small quantity, tho principal jonic
anisolropy

The same vause may lead to similar large ervors in othor mothods of caleula-
tions as well.  Thus, following Londsdale and Krishnan (1936), if Xav Xpo Xe are
the observed susceptibilitios along the a, b and ¢ axes of any orthorhombic erystal,
thon

(Bo—Ky) = X=X

org®—fI®
11 the quantity (x;—3x,) can he measured dirocily then tho percentage error noed
not he large  On the other hand il ¥, and y, are measurerd independently, then

100(3y, i-2y,),

Xo—Xa
and 15 considorable. As regards the error duc to X-ray data, it will he small if
the difference in the magnitudes of oy and £, is large

assuniing the X-ray data to be correct, the pereentage ororr is

This defect is also common to many methods of determining the magnetic
susceptibility tensor for erystals. Ghosc (1964, 1966) hag shown that if more than
one ohsorvation of the absolute value of susceptibility have to be used for cal-
aulating the elemonts of the tensor matrix, thon large crrors are incvitablo. Al-
though the percentage error in the value of any of the calculated principal suscep-
tihilitics is not mich larger than those in the ohserved values of suscoptibilitios,
the percontage error in the values of the principal anisotropiesis muchlarger and tho
caleulated directions of the principal axes are not accurate. Evon if the prmcipal
suscepbibilitics can bo diroctly measured, the error in the caleulated principal
auisotropies will be large because each is a small difference of two large quantitios.
On the othor hand, the uso of several measuremenis of anisolropy (and also
diroction cosines of maximum susceptibility in o plane) does not iniroduce such
large orrors in the result because the absolule values of the errors are small,

The method of Krishnan and Mookherji (1938) is trec of this defect. But the
trial and orror procedure makes exact caleulation so lengihy as to be almost im-
possible.  Moreover, the directions of tho M axes and the principal anisotropios
aro detormined more offoctively by those planes for which observed anisotropy
18 sinall so that probable error is comparatively large.

Proposed methods

For the orthogonal coordinate system z, ¥, 2, if Xpa. 8nd A be the observed
maximum susceptibility and the anisotropy in z-y plane and ¥ be the angle which
the direction of maximum susceptibility in this plane makes with tho « axis, thon
the following equations (Ghose, 1964) rolating the elements of [Xunl, the suscopti-
hility tensor matrix can be written down.

R11 = Xmag—4 8in®Yr - (8)
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Xoz = Xmaz—A co8 B e ()
X1z = A sin ¢ cos e (8)
Elliminating x,;., between oquations (6) and (7), we gel

(X1—Xuz) = 4 008 2¢ e (9)

Substituting the values of x,, etc. from equation (2) in equations (8) and (9), wu
get

i

(Ky—Ky)Zayfly+(Ky— Ky ) Zagfly = nA[2 . sin 24 \'\ - (10)

(Ka— K )50 — f)+ (Ky—K;)S(0g— ) = nd - cos 29 . (11)

The values of a,, f,, otc. are known from the X-ray data and either oquation
(1) or some alternative equation. So if 4 and y arc measured for the plano z—y,
then the principal ionic anisotropies, (K,—K,) and (K;—K,) may be found by
solving equations (10) and (11). In case of axial symmotry of tho ion, a single
equation is sufficient.

(Ky—K,) = ™ sin 2y nd . cos 2y L)

? Zagfy AoF—f:)

Thus the principal ionic anisotropies can bo calculated from the X-ray data and
a single measuroment of 4 and ¢ in one plano. If the orthogonal coordinatos
choson are those corresponding to equation (1), then A4 is the anisotropy in a plane
perpendicular to the crystallographic ¢ axis and ¢ is tho angle which the direc-
tion of maximum susceptibility in this plane makes with the a—c plane. How-
ever it is difficult to determine accuratoly tho value of . But while measuring
tho anisotropy A4, the approximate value of yr may be easily found for the same
plane of observation without requiring any special equipment. Honce tho approxi-
mate valuos of the principal ionic anisotropies may be calculated for clliminating
ambiguities of results calculated by other methods.

Elliminating ¥ botween equations (10) and (11) we get
{(K,—KI)Z(usa—ﬂgﬂ)+(K,—Kl)E(ua’——ﬂ,’)}’—|—4{(K2—K1)Em2ﬂz
HE—K ) Zayf3)* = n24* as

The summations arc for the » ions and A is the anisotropy in x—y plane. For
the coordinatos corresponding to equation (1), the x—y plane is perpendicular to
the ¢ axis and the x—z plane is identical with the crystallographic a—c plane.
If A be the anisotropy measured in z—z plane, thon

{(KE—KI)Z(%E_-'};"A‘)_HK“_ 1)2('132“‘752)}3‘*‘4{(Kz“‘K1) Zagy,
+(Ey—K)Zagyy)* = n2A® (14
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Bquations (13) and (14) are simultaneous quadratic equations in (K,—K;) and
(K3—Ky). Such equations may bo solved without difficulty and the nunerical
values of the principal ionic anisotropios may be calculated. But in gonoral
there will be four alternative sets of solutions of which only one is correct.  To
rosolve this ambiguily it will be nocessary 1o noto the approximate valuo of ¢ in
one of the positions for measuring the anisotropy of the crystal and caleulate the
approximato values of the principal ionic anisotropies by equations (10) and (11).
Of the four alternative sets of solutions previously obtained. the one which s
closost to this approximate solution, will be the correct ono

Tn case of axial symmetry of the ions. equation (13) simphfies 1o

Ky~ o xm

- BD = (s racsfy ao
Thus tho principal 10mc anisotropy can be calenlated from a single meagsuremont
of anisotropy A4 in x—y plane, which may he chosen arbitrarily for experimental
convenience. To choose the correct sign in eauation (15), we note from equation
(12) that the positive sign is to be takon if T o,y 18 positive and at the spme timo
sin 2y is positive, i.c , if the diroction of maximum suscoptibility in this plane lies
hetweon the positive directions of x and y axes.

Somo special cases are worth noticing. In orthorombie crystals, due to the
symmotry of orientation of ions in tho unit coll, (Zay. A,) 18 equal to zoro, whilo
the squares of a and £ have the same value for each ion. So equation (15)
roducos to the relation given by Lonsdale and Krishnan (1936)

On the other hand 1if all jons are magnetically oquivalent, equation (15)
simplifies to

A +A4 .
Ry—K,) — =4 . 4 (16)
K 4 oty -fg® T—7s®

Again in many triclinic erystals like CuSO, - 6H,0, there are only two mag-
netically inequivlent ions with axial symmetry. 1If the direction cosines of the
second ion be distinguished by a dash suffix, then equation (15) reduces to

—K,) = +24 S
(R = AT a A e+l PP
- I S —
(o™ Bt — g — )+ ey H Aol VL
£24 L)

T {rs = 7s P 4(o08 $—Yay: VI
where ¢ is the angle between the axes of these two ions.

The quantities v, and 'y are the cosines of the angles between tho magnotio
axes of the jons and the z axis or the normal to the plane in which anisotropy
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has heen moasured. So when using equations (16) and (17), it will be more conve-
veniont to caleulate y, and y', directly instead of by equation (1) or its equivalont
For this purpose the unit normal may bo expressed as a contravariani voctor
matrix, as will he illustrated in due course. A unit covariant vector in the diroc-
tion of the axis of an ion may be expressed by tho matrix [cos¢@y® cosd,’
cos §°]. Bo 7y, is the scaler product of these two veclors and is equal to the
product of the two matrices.

Probable errors in the proposed methods

The methods of calculation discussed in the last section, do not involve small
difforencos of large quantities liko absolute values of susceptibility. So *lle por-
centage errors would be of the same order as in tho measurement of anigotropy
but for the errors introduced through the X-ray data. The effoct of the Jatter
can bo reduced by a judicious selection of the plane in which anisotropy is messured.

Consider first the simplost case where all ions in the unit cell are magnetically
equivalent, and have axial symmetry. The principal jonic anisotropy is 1o bo
caleulatod by equation (16). If the direction cosine y, be equal to cos 0, then tho
maximum percentago crror in the calenlated value of the principal ionie anisotropy
will be

oK)~ K,) 94 cos 0
St 100 = 2 .1004-200. == . 90 ... (18
(K --K)) A + sin 0 (%)
The first torm on the right hand side of this equation is the percentage orror intro-
duced by magnotic measurement and is no more than that in the measurement of
anisotropy. The percentagoe error due to an error of half a degree in the X-ray

data is %%(:)" . :E:’T? , or, 2;)((5)(;' . (%‘ — 1)%, where A is the observed anisotropy
and A, is the principal 1onic anisotropy, which in this case is the maximum oh-
sorvable anisotropy. This orror is very large when the observed anisotropy is
nearly zoro. On the other hand. when the observed anisotropy is maximuny,
the orror is negligible compared to even the 0.1% error due to anisotropy measure-
mont. Whon ¥, is 0.5, tho crror is near about 1%. So for greater accuracy, the
plane of moasurement should be so chosen that the observed anisotropy is large.

In case of two ions in the unit cell, an expression for the maximum error can
be obtained from equation (17). Putting (y4'2—7,?) = R cos w; 2(cos P—7sYs)
= R sin ©; y, = cos 6 and y,’= oos &', we get the following expression for frac-
tional error.

oI, —K,) _ 04

o= D2C {F win 20/06'+-sin 20.06)
- 4,

2 8in ©

TR

{ sin g - cos 6 sin 696’ +-cos 6’ sin 36}
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Supposing the maximum errors 86, 39’ and 8¢ due to errors in X-ray data, to be
each half dogree or #/360 radian, the maximum percentage error

a4 100 N N "1 oo . . -
= 100—}—3__%{005 o(sin 20F sin 26')4-2sin w(sin g-+-sin GL6)} (19)
0A 1007 |, .
< i 1004- S0 {2cos w4-48in o}
64 10072(5)%
i | —Bmao)!
< -g 10+ SeR

The sovond term represents the maximum lnniting value of the porcentage error
due to X-ray date and 18 equal to 3.9/R. The value of R, the denommator in
equation (17), lies between 0 and 2. 1f the observed ansotropy 4 is large, then

R is also large and the orror is small. The anisotropy -4 is maximum when the

normal to the plane of measurement bisects the larger angle hotwoen the magnotic
axes of the two jons.  Then 6 and 6" are oqual to (7 3 ¢)/2 or 4-¢/2, according as
¢ is greater than or less than 7/2. Substituting these values in equation (19),
tho maximum error when the observed anisotropy is largest, is found to be
73637?19_:_3%%[6?@ %, porvided that oniy the numerical valne of cos¢ be used in
thns  exprossion. For CulSO,5H,0 in particular, this orrov s rather largo,
namely about 2.3%, because cos ¢ has the low value of 0.1633.  On tho other hand.
if the angle belween the magnetic axos of two ions he small, then the orror
mtroduced by X-ray data can be made negligihly small.

In case of more than two ions or in the absence of axial syminetry of the ns,
1L 16 not possible to got a concise algebraic expression for the percentage orror.
However, equation (15) indicates that firstly the percontage orror introduced by
magnetic measurements is equal to that in measuring tho anisotropy of tho crystal
in a plane. Secendly, the error due to X-ray data 18 minimisod if the denoninator
is Jarge which will be the case if the measured anisotropy is near about the maxi-
mum observable value.

xample of CuSObH,0

According to the X-ray data given by Beovers and Lipson (1934), cach unit
cell of copper sulphate crystal contains two coppor 10ns, cach of which 1s at the
contro of an octahodron composed of four oxygen atoms in & planc and belonging
to water molocules, and two other oxygen atoms belonging to sulphate groups
at tho two vertices.

Let the matrix [Om,] = 1 cos y  cosf
cos y 1 cos
cos 008 & 1
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where a, f and y are the crystallographic triclinic angles, 82°16’, 107°26’ and
102940’ rospoctively. Hence the reciprocal matrix is

0.2076 1.05662 —0.0799

O] = l: 1.1394 0.2076 0.3135
0.3136 —0.0799 1.1047

Krishnan and Mookherji (1938) have taken the lines joining the sulphate
oxygens at the vortices of the octahodrons, as the magnetic axes of the ions.
Taking the crystallographic axes a, b, ¢, as the coordinate axes, the obliqgo carti-
sian coordinate (x, y,2) of any atom is found by multiplying the positions given
by Becvers and Lipson, by @, b, ¢ the dimensions of tho unit cell. 4 lino‘ joining
two atoms in positions (x,, ¥y, 2;) and (x,, ¥,, 2;) may bo oxpressed (Ghostg, 1964)

as & contravariant vector matrix |

A
[ (Ya—Wy) :|
(23—2y)

(2p—1,)
or as a covariant matnix (U U, Usgl = [04,] [ (Ys— ) ]
(2a—21)

On dividmg U,, {7,, U by the length of the vector, i e., the square root of the
product of the covariant and contravariant matrices, we get the diroction cosines
of this line Tho latter form a unit covariant vector matrix [cos ¢% cos ¢® cos ¢°]
The calculated vatucs for Z; and Z,, the axes of the two copper ions agree with
those given by Krishnan and Mookherji and are shown in Table 1.

Howover, the oclahedrous are not regular and the water oxygeus are closer
to the copper ions. So the magnotic axes arc likely to be closor to tho normals
to the planes of water oxygens. The lines joining one of these oxygens with ad-
jacont oxygons may be oxpressed as before by two contravariani matrices

X and X
Y Y .
Z z
A normal to the plane containing these two lines is given by (Ghose, 1965) by the

covariant vector matrix
[Vy Vo Vil =UYZ—2Y) (ZX—XZ) (XY—YZ)]
To got the direction cosines, V,, V,, V, aro divided by the square root of the matrix
product
[Vy Vy ValOmal™ [ Vi
Ve
Va
These values for T and T',, the tetragonal axes of the two copper ions are shown

in Table I. Those for 7 differ considerably from the corresponding values cal-
culated by Ghosh and Mitra (1964).
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TABLE I
008 @& cos pb cos ¢
Z, 0.2026  —0 6479 06179
2, 0 3372 0 7489 0 3567
T, 0.0616  —0.6525 0.6522
T 0.3064 0 104 0 3823

To calculate the iomic amwotropy, equation (17) may bLe used. Tho anglo
hutwoon the two ionic axes, eithor Z, and Z,, or 7', und 7',, is obtained cagily by
forming the scalar product of the two unit vectors, and is given by

08 ¢ = [c08 @* 008 ¢® co8 @, 1[0n] 2 cos gyt
cos @0
COB @,°
The value of cos ¢ is thus found to be —0.1355 for Z,, Z, axcs, and —0.1633 for
T, T, axes.

To find the values of y, and y’,, whatevoer be the plane in which anisotropy
18 measured, the unit normal to the plane can bo exprexsed as a contravariant voctor
matrix with respect to the crystallographic axos (Ghose, 1955). If the planc of

moasurement be (%&l), then the normal is a covariant vu(:Lor[ll: ’% L ] or u contra-
c

1
h k E] 10mn]™t. Dividing cach olemont V! etc.,

variant veotor[ V1 V2 V3 z[ ub ¢

Vl
by the magnitude of the voctor, i 6., the square root of [V* ¥2 V3][0mn] [ V';] , Wo
VS

Ul

gol a unit contravariant vector, say v2 ] .
3
v

Again if the plane of measuroment bo perpendicular to hoth tho planes (hkl)
ul (A'E'l') then the normal is a contravariant voctor

v a(kl'—Fk'T)
V2| = b(lh'—1'h) , which may be changed to
Ve c(hk'—h'k)

a umt vector as before. If during mossurcments, one of tho crystallographic
axes is the normal, then the unit contravariant matrix has a cvery simple form.

(]
Thus with the ¢ axis normal, it is euqal to |: 0 ] .
- l. -

4
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Now 7v,y', are the matrix products of the contravariant unit matrices in
the direction of the normal to the planc of measurement and the covariant umt
matrices in the directions of the magnetic axes of the two ions.

Krishnan and Mookherji (1938) have given the obsorved values of anisotropy
in eight different planes of CuSQ0,5H,O crystal. These are shown in Tablo II.
Tho principal ionic anisotropy has been caloulatod in cach case. The values
obtained by wsing 7', and T,, the normals to the planes of water oxygens, aro
shown in the lust column, while those obtained by using Z, and Z,, the directiony
of octahedron vorticos, are shown in the column last but one.

TABLE II

Obsorved Calculatod
Mode of suspension  Amsolropy tonic amsotropy

(2) (T)

(111) horiz. 26 180 130
a axis verl. 60 290 303
(T10) honz, 117 403 412
(100) horiz. 146 435 518
C axis vert. 183 485 421
(110) hornz. 213 572 578
(100) and (T11) vert. 263 550 565
(110) and (111) vext. 204 542 562

It is found that as ohserved anisotropy increases, the calculated values of
ionic anisotropy become more consistant, as was to be expected from tho discus-
gion of probable error in the last section. The last three sets indicate a valuo of
560 with a probable orror of magnitude 20, i.e., about 4%. Actually a much
higher orror should bo expected due to the uncertainty regarding the directions of
the magnetic axes of the copper ions. From Table I, it is seen that tho anglo het-
ween the direction of the normal to the planc of water oxygens and the direction
of the line of the sulphate oxygens at the vertices of the octahedron, is ninetoen
degroos for the first copper ion and four degroes for the second. Similar variations
in the value of ionic anisotropy calculated with the two sots of axes indicate that
neither of them may be considered more correct than the other.

Krishnan and Mookherji (1938) obtained a value of 550 for the ionic ansotropy:
As » first stop they determined the directions of two magnetic axes by trial and
crror, such that the ratio 4/(sin 0 sin 6’) is constant whero ¢ and ¢’ are the angles
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between the normal to the plane of measurement and the magnotic axes. How-
ever, with the best fit that they could obtain, the ratio varied between 273 and 296
or by about 49, indicating a corresponding maximum error in either the moasure-
ments of anisotropy or in the suspensions of the crystal. Consequontly, the errors
m tho last three Sets of values in Table IT are no more than the maximum errors
duoe to anisotropy measurement.

Moro satisfactory rosults can not be expected for the copper sulphato crystal
Firstly, tho oxygen octahedrons surrounding the two coppor ions are not exactly
smilar, so that the magnetic susceptibilities of the two jons are probably difforont
Secondly, tho octahedrons are not regular, so that axial symmetry of the ions
only approximate  And lastly greater accuracy can ho vxpected in those crystals
whero the ionic axes are not so nearly perpendicular to each other.

Principal ionic susceptibilities

To dotormine tho principal ionic suscoptibilities, il is necessary to have one
measurement of absolute value of susceptibility, such as the mean susceptibility
of the crystal or the maximum susceptibilty 1 one of the coordinate planes
Il the average suscoptibility X is accurately known, K, may bo calculated by the
oquation

3K,+(K,—K,) +‘(Kn_K1) = 3X

Alternatively, the maximum susceptibility in a plane of the crystal may bo
detormined with sufficient accuracy. Adding equations (6) and (7), we get the
syuation

XutXez = 2¥mas—A

Substituting tho value of y,; etc. from equation (2), and using the orthogonal
propertios of a,, ff;, etc., we get

2K, +(K,—K,) ( 1—- ‘%ﬁ) -|~(Ks“'K1)( - 2‘%3*") = 2Xmar—A

Substituling the calculated values of (K,—K;) and (K,—K,), as woll as tho ob-
sorved valios of yma, and A, the maximum susceptibility and anisotropy in x—y
plane, the value of K, may be calculated. In case of axial symmetry of the ions,
the same equation reduces to a simpler form,

¥
2K, +(K||—KJ.)( 1— znﬁ ) = 2anz"‘A

The error in K, or in K, should be of the same order as the error in determin-
INE X¥pags 1.0., 0.2% because the othor quantities in the equations are smn;lll. ' .’.[’.ho
same error will occur in the values of the other principal ionic susceptibilities
calculated from the values of principal ionic anisotropies, because the latter quan-
tities being small the absolute magnitudes of their errors will also he small,
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