A SIMPLE METHOD OF FINDING THE PRINCIPAL IONIC SUSCEPTIBILITIES OF CRYSTALS

J. K. GHOSE
Defahtment or Physics, St. John's Collequc, Aara
(Recoved August 23, 1965; Resubmitted November 30, 1965 and April 12. 1966)

Abstract

It is shown that the principal ionic ansotropies in triclinic as well as othor "Mrituls ciun be calculated from just the values of magnetic anisotropy in any two planes and X-ray deta regarding the angular orientation of tho ions. Slightly less arcurate valueb may be oblained from measurements of anisotropy and the direction of maximum suscoptibility in a single plane of the erystal. In case of uniaxial symmetry of the ions, the prinerpal tonie ambotropy can bo calculated from a single measurement of mugnotic anisotropy in any one plane of tho crystat. Addational observation of muximum susceptiblity in only one plane, is sufforent for calculating the principal iomic susceptibilties. The probable orrors ure redured by choosing a plane of large anisotropy.

INJRODUC'ION

Magnetic susceptibility tensor of a crystal is the resultant of the ionic or molocular susceptibility tensors of the magnotic ions or molecules in the unit cell of the crystal. The ultimate quantity of interost is the ionic or molecular susceptilility tensor because of its use in the investigation of ligand fields. The usual procedure is to first determine the erystalline magnetic suscoptibility tensor. Satisfactory methods could not be found easily for triclinic crystals. Krishnan and Mookherjee $(\mathbf{1 9 3 6}, 1938)$ had usod a trial and error method of cal(ulation requiring a large number of measurements of anisotropy in different planow. Ghosh and Bagchi (1962) had proposed a method requiring the monsurements of hoth maximum susceptibility and anisotropy in five different planes in addition to the avcrage susceptibility of the crystal. The author (Ghose, 1964) had disrussed several alternative methods of calculating the principal suscoplibilities and directions of the principal axes using the transformation laws for covariant and contravariant tonsor matrices in oblique cuordinates. Each method requires just six observations and imposes no restrictions as to the planes of measurement. One of them, in contrast with the method of Ghosh and Bagchi (1962), requires only the values of maximum susceptibility and anisotropy in three different planes. Sovoral other methods designed for greater accuracy of rosults are being published elsewhere (Ghose, 1966 a, b).

Ghosh and Mitra (1964) pointed out that instead of first detormining the susceptibility tensor for the crystal, it is possible to calculate the ionic susceptibility tensor directly from the magnetic measurements and the X-ray data regarding the angular orientations of the magnetic ions or molecules. This brings in a groat
economy in the labours of numerical oalculation. In most cases the prinoipal ionic susceptibilities can be calculated by solving just one set of simultanoous linear equations.

This elegant method of calculation has two rather subtle drawbacks. Firstly it requires more than the minimum number of observations necessary in principle. The sum of the maximum and the minimum susceptibilities in a plane of the crystal was considored as a single piece of information. Actually it requires the measuremonts of both maximum susceptibility and anisotropy. Thus for uniaxial symmetry of ions, since only the axial principal susceptibility $K_{\| \mid}$and the lateral principal susceptibility K_{\perp} of the ion have to be calculated, just two obsorvations in addition to the data regarding the orientations of the ions should be sufficient The mothod of Glosh and Mitra requires the determination of anisotropy and maxinum susceptibility in one plane of the crystal, as well as the average strsceptibility of the crystal The second drawback is a considerable loss of accuracy due to the use of two susceptibility valuos in the calculations. This is not immediately solf-evident from the equations but will be proved here and the cause of this inacecuracy will be traced so that it may be avoided.

An alternative method of calculating the ionic susceptibilities directly from tho observations will be presented here. It will be shown that the principal ionue anisotropy ($K_{\|}-K_{\perp}$), for axially symmetrical ions can be obtained from only one measuroment of magnetic anisotropy in a specified plane, togethor with X-ray data. In the absence of symmetry the principal ionic anisotropios may be calculated from two anisotropy measurements In addition to these observations, just ono measuroment of either maximum suscoptibility in a plane or the average suscoptibility of the erystal is sufficient for calculating the principal ionce suscoptıbilitios. Not only for triclinic, but for all crystals, this method domands fewor observations and simplifies calculations. Apart from the orrors in the measuremont of magnotic anisotropy in one case and also absoluto susceptibility in the other, the major source of orror in the proposed method is the inaccuracy of the X-ray data usert. In due course it has been proved that the latter error may be minimised by choosing a plane of measuroment such that the obsorved anisotropy is large. The final error is then oxpected to be no more than that with the lengthy indirect mothods and smaller in some cases.

Ionic and crystalline susceptibilities

Let the cosings of the angles between the principal ionic axes K_{1}, K_{2}, K_{3} of any magnetic ion and any set of orthogonal axes x, y, z, fixed in the crystal, be as follows:

The direction cosines $\cos \phi_{i}{ }^{i}, \cos \phi_{i}{ }^{b}, \cos \phi_{i}{ }^{0}$, of each ionic axis K_{1} with respect to the crystallographio axes a, b, c, are known from the X-ray data. Hence α_{b}, β_{1} and γ_{i} may be easily calculated. It has been shown by Ghose (1965) that if the orthogonal axes are so chosen that the z axis coincides with the c axis and the a axis lios in tho $a-c$ plane and closo to the a axis, then α_{i}, β_{i} and γ_{i} can be calculated without any ambiguity by the following matrix equation.

$$
\begin{align*}
& {\left[\alpha_{i} \beta_{i} \gamma_{1}\right]=\left[\cos \phi_{i}{ }^{a} \cos \phi_{i}{ }^{b} \cos \phi_{i}{ }^{c}\right] \quad{ }^{-} \frac{1}{\sin \beta} \frac{\cos \alpha \cos \beta-\cos \gamma}{M \sin \beta} 0^{-}} \\
& 0 \quad \frac{\sin \beta}{\bar{M}} \\
& L_{-\sin \beta}^{\cos \beta} \quad \frac{\cos \beta \cos \gamma-\cos \alpha}{M \sin \beta^{--}} \tag{1}
\end{align*}
$$

where α, β, γ aro the triclinic angles and M is the positive square root of ($1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma$). There is no ambignity. Similar matrix relations may bo obtained if any other set of orthogonal axos is selectorl

In most of the actual probloms it would be necossary to calculate the values of only γ_{ι}. A shorter method of calculating it for different directions of z axıs will bo discussed lator.

If in the unit cell thore are n ions of a particular type with different orientiations, then the susceptibility matrix for the crystal is $1 / n$ tmes tho sum of tho susceptibility matricos for the n ions. Thus in the x, y, z coordinate systom, the susceptibility matrix is

$$
\left.\left.\left.\begin{array}{lll}
\chi_{11} & \chi_{12} & \chi_{13} \tag{2}\\
\chi_{12} & \chi_{22} & \chi_{23} \\
\chi_{13} & \chi_{23} & \chi_{33}
\end{array}\right]={ }^{1} \Sigma \quad \begin{array}{rrr}
-\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{0} & \beta_{2} & \beta_{3} \\
-\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right]\left[\begin{array}{c}
K_{1} \\
K_{2} \\
\\
K_{3}
\end{array}\right]\left[\begin{array}{lll}
\alpha_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right]\right\}
$$

Probable errors of existing methods

Tho observed values of anisotropy, maximum susceptibility and average susceptibility are subject to errors of the order of 0.1%. The ostimated error in smullost for anisotropy and is $\mathbf{0 . 1 \%}$ (Krishnan and Banerji, 1935; Datta, 1953, 1954). The error in the values of maximum susceptibility may be about 0.2% (Dutta Roy, 1955) or slightly less (Das, 1963) The orror in measuring avorage susceptibility for powdered samples may be largor still. Thus the estimated errors in the last two quantities is never less than 0.1%.

For uniaxial symmetry of the magnetic ion, i.e., $K_{1}=K_{2}=K_{\perp}$ and $K_{3}=K_{\|}$, Ghosh and Mitra proved that

$$
\begin{equation*}
K_{\| \|}\left(1-\frac{1}{n} \Sigma \alpha_{3}{ }^{2}\right)+K_{\perp}\left(1+\frac{1}{n} \Sigma \alpha_{3}{ }^{2}\right)=2 \chi_{m a u}-A \tag{3}
\end{equation*}
$$

whore $\chi_{\text {max }}$ and A are the maximum susceptiblity and anisotropy in the $y-\hat{z}$ plane. Also for the mean susceptibility, we have

$$
\begin{equation*}
\bar{x}=\frac{1}{8}\left(2 K_{\perp}+K_{\| \|}\right) \tag{4}
\end{equation*}
$$

Solving equations (3) and (4), wo get

$$
\begin{equation*}
\left(K_{\| \mid}-K_{\perp}\right)=\frac{2 \chi_{m \alpha_{x}}-A-2 \bar{x}}{1 \Sigma \alpha_{-1}^{2}} \tag{5}
\end{equation*}
$$

This is an exact relation without any approximation. If the magnitude of tho errors in the values of $\chi_{\text {max }}, A$ and $\bar{\chi}$ be $\partial \chi_{\text {max }}, \partial A$ and $\partial \overline{\mathrm{x}}$, then the magnitude of the error in the calculated value of ionic anisotropy is given by

$$
\begin{gathered}
\partial\left(K_{\|}-K_{\perp}\right)=\frac{2 \partial \chi_{\max }+\partial A-+2 \partial \bar{x}}{}+\frac{\left.2 \chi_{\max }-A-2 \bar{\chi}\right) \partial\left(\Sigma \alpha_{3}{ }^{2}\right)}{n \cdot\left(\frac{1}{\partial}-\frac{\Sigma \alpha_{3}{ }^{2}}{n}\right)} \\
\left.\frac{1}{n}\right)_{3}{ }^{2}
\end{gathered}
$$

Neglecting ∂A the error in anisotropy and the socond term on the right hand wrde which is clue to error in X-ray data, the percentage error in ibnic anisotropy is equal to

$$
\frac{200\left(\partial \lambda_{\max }+\partial \bar{x}\right)}{2 \chi_{\max }-2 \bar{x}-A} .
$$

In any givon caso this minimum estimated error can be casily calculated becinase $\partial \chi_{m \times x}=0.1 \%$ of $\chi_{m a x}=\frac{\chi_{m a x}}{1000}$, and $\partial \bar{x}=1000^{\circ}$. Sinco $\chi_{\text {ma.v }}$ and $\bar{\chi}$ are largo quantities, the absolute orrors $\partial \chi_{\text {max }}$ and $\partial \bar{\chi}$ are quite large; on the othor hand tho denominator in the above expression for percentage error is very small. So the, accuracy of ionic anisotropy calculated by this mothod will be necessarily small. Substituting the values of $\chi_{\text {max }}, \bar{\chi}$ etc. given by Ghosh and Mitra (1964), the error in principal ionic anisotropy in the caso of $\mathrm{CuSo}_{4} \cdot 5 \mathrm{H}_{2} 0$, is found to be about 25%. Similarly for their deternination of the prinoipal ionic anisotropy of NiSO_{4}. $\mathbf{7} \mathrm{H}_{2} \mathrm{O}$, the ostimated orror is found to range from 20% to 60% for the difforent sets of observations given by them. Actually the errors must be still larger due to inaccuracies in the \mathbf{X}-ray data. The apparently* close agreement with previons workers' rosults, must be due to ooincidence. Also the direction cosines of the letragonal axis of the second copper ion as calculated by them from \mathbf{X}-ray data, have an error of about 5%. Proceeding in the same way it can be proved that in the absence of symmotry too, the method of Ghosh and Mitra is likely to give inaccurate results. The only causo of these inaccuracies is the faot that a difference of two large quantities, the maximum susceptibility in a plane and the averago

A Simple Method of Finding the Principal, etc.

susceptibility, has been used in calculating a small quantity, the primeipal ionic amsotropy

The same cause may load to similar large errots in othor mothods of calculatuons as well. Thus, following Londsdale and Krishnan (1936), if $\chi_{a}, \chi_{b}, \chi_{c}$ are the observed susceptibilitios along the a, b and c axes of any orthorhombic erystal, thon

$$
\left(K_{\perp}-K_{\|}\right)=\frac{\chi_{b}-\chi_{a}}{\alpha_{3}^{2}-\beta_{3}{ }^{2}}
$$

If the quantity ($\chi_{b}-\chi_{a}$) can be measured directly then tho percentage error need not be largo On the other hand if χ_{b} and χ_{a} aro measurod independently, then
 $\chi_{b}-\chi_{a}$
and 15 considerable. As regards the error due to X-ray data, it will be small if the difference in the magnitudes of α_{3} and β_{3} is large

This defect is also common to many methods of determining the magnetic susceptubility tensor for crystals. Ghose $(1964,1966)$ has shown that if more than onc olsorvation of the absolute valur of susceptibility have to be used for calculating the elements of the tensor matrix, thon large orrors are inovitable. Although the percentage orror in the value of any of the calculatell principal susecptihilities is not much larger than those in the ohserved values of suscoptibilhtes, the percontage error in the values of the prinoipal anisotropies is much larger and tho calculated directions of the principal axes are not accurate. Evon if the primeipnl susceptrbilitios can be diroctly measured, the error in the calculated principal auisotropies will be large bocause each is a small difference of two large quantitios. On the othor hand, the use of several measurements of anisotropy (and also direction cosines of maximum susceptibility in a plane) does not introduce such large orrors in the result because the absolute values of the errors are small.

The method of Krishnan and Mookherji (1938) is free of this defect. But the trial and error procedure makes exact calculation so lengthy as to be almost impossible. Moreover, the directions of the M axes and the principal anisotropios are detormined more offectively by those planes for which observed anisotropy is sunall so that probable error is comparatively lange.

Proposed methods

For the orthogonal coordinate system x, y, z, if $\chi_{m a c}$ and A be the observed maximum susceptibility and the anisotropy in x-y plane and ψ be the angle which the direction of maximum susceptibility in this plane makes with the x axis, thon the following equations (Ghose, 1964) relating the elements of [$\chi_{m n}$], the suscoptibility tensor matrix can be written down.

$$
\begin{equation*}
\chi_{11}=\chi_{\text {max }}-A \sin ^{2} \psi \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& x_{22}=x_{\max }-A \cos ^{2} \psi \tag{7}\\
& x_{12}=A \sin \psi \cos \psi \tag{8}
\end{align*}
$$

Elliminating $\chi_{\text {max }}$ between oquations (6) and (7), we gel

$$
\begin{equation*}
\left(\chi_{11}-\chi_{22}\right)=A \cos 2 \psi \tag{9}
\end{equation*}
$$

Substituting the values of χ_{11} etc. from equation (2) in equations (8) and (9), wo get

$$
\begin{gather*}
\left(K_{2}-K_{1}\right) \Sigma \alpha_{2} \beta_{2}+\left(K_{3}-K_{1}\right) \Sigma \alpha_{3} \beta_{3}=n A / 2 \cdot \sin 2 \psi \tag{10}\\
\left(K_{2}-K_{1}\right) \Sigma\left(\alpha_{2}{ }^{2}-\beta_{2}{ }^{2}\right)+\left(K_{3}-K_{1}\right) \Sigma\left(\alpha_{3}{ }^{2}-\beta_{3}{ }^{2}\right)=n A \cdot \cos 2 \psi \tag{11}
\end{gather*}
$$

The values of α_{2}, β_{2}, otc. are known from the X-ray data and either oquation (J) or some altornative equation. So if A and ψ are measured for the plano $x-y$, then the principal ionic anisotropies, $\left(K_{2}-K_{1}\right)$ and $\left(K_{3}-K_{1}\right)$ may be found by solving equations (10) and (11). In case of axial symmotry of tho 10 , a single equation is sufficient.

$$
\begin{equation*}
\left(K_{\|}-K_{\perp}\right)=\frac{\iota_{4}}{n} \quad \cdot \frac{\sin 2 \psi}{\Sigma \bar{\alpha}_{3} \beta_{3}} \quad \frac{n A \cdot \cos 2 \psi}{\Sigma\left(\alpha_{3}^{2}-\beta_{3}{ }^{2}\right)} \tag{12}
\end{equation*}
$$

Thus the principal ionic anisotropies can be calculated from the X-ray data and a single measuroment of A and ψ in one plano. If the orthogonal coordinates choson are those corresponding to equation (1), then A is the anisotropy in a plane perpendicular to the crystallographic c axis and ψ is tho angle which the direc. tion of maximum susceptibility in this plane makes with the $a-c$ plane. However it is difficult to determine accuratoly tho value of ψ. But while measuring tho anisotropy A, the approximate value of ψ may be easily found for the same plane of observation without requiring any special equipment. Honce the approximate valuos of the principal ionic anisotropies may be calculated for olliminating ambiguities of results calculated by other methods.

Elliminating ψ between equations (10) and (11) we get

$$
\begin{array}{r}
\left\{\left(K_{2}-K_{1}\right) \Sigma\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)+\left(K_{3}-K_{1}\right) \Sigma\left(\alpha_{3}^{2}-\beta_{3}^{2}\right)\right\}^{2}+4\left\{\left(K_{2}-K_{1}\right) \Sigma \alpha_{2} \beta_{2}\right. \\
\left.+\left(K_{3}-K_{1}\right) \Sigma \alpha_{3} \beta_{3}\right\}^{2}=n^{2} A^{2} \tag{13}
\end{array}
$$

The summations are for the n ions and A is the anisotropy in $x-y$ plane. For the coordinatos corresponding to equation (1), the $x-y$ plane is perpendicular to the c axis and the $x-z$ plane is identical with the crystallographic $a-c$ planu. If \bar{A} be the anisotropy measured in $x-z$ plane, then

$$
\begin{array}{r}
\left\{\left(K_{2}-K_{1}\right) \Sigma\left(\alpha_{2}^{2}-\gamma_{2}^{2}\right)+\left(K_{3}-K_{1}\right) \Sigma\left(\alpha_{3}^{2}-\gamma_{3}^{2}\right)\right\}^{2}+4\left\{\left(K_{2}-K_{1}\right) \Sigma \alpha_{2} \gamma_{2}\right. \\
\left.+\left(K_{9}-K_{1}\right) \Sigma \alpha_{3} \gamma_{3}\right\}^{2}=n^{2} \mathbb{A}^{2} \tag{14}
\end{array}
$$

Equations (13) and (14) are simultaneous quadratic equations in ($\boldsymbol{K}_{2}-K_{1}$) and ($K_{3}-K_{1}$). Such equations may bo solved without difficulty and the numerical values of the principal ionic anisotropios may be calculated. But in genoral thore will be four alternative sets of solutions of which only one is correct To resolve this ambiguity it will be nocessary to note the approximate valuo of ψ in one of the positions for measuring the anisotropy of the crystal and calculate the approximate values of the principal ionic anisotropies by equations (10) and (11). Of the four alternative sets of solutions previously obtained, the one which is closost to this approximato solution, will be the correct ono

In case of axial symmetry of the ions. equation (13) simplifies to

$$
\begin{equation*}
\left(K_{\|}-K_{1}\right)=\frac{ \pm n A}{\left\{\left(\overline{\alpha_{3}^{2}}-\Sigma \beta_{3}^{2}\right)^{2}+4\left(\overline{\left.\Sigma_{3} \beta_{3}\right)^{2}}\right\}^{4}\right.} \tag{15}
\end{equation*}
$$

Thus tho principal iome anisotropy can be calculated from a singlo moasurement of anisotropy A in $x-y$ plane, which may be chosen arbitrarily for experimental (onvenience. To choose the correct sign in eauation (15), we note from equation (12) that the positive sign is to be taken if $\Sigma \alpha_{3} \beta_{3}$ is positive and at the same time $\sin 2 \psi$ is positive, i.e, if the diroction of maximum suscoptibilty in this plane lies between the positive directions of x and y axes.

Somo special cases are worth noticing. In orthoromber crystals, rlue to the symmetry of orientation of ions in the unit coll, ($\Sigma \alpha_{3}, \beta_{3}$) is equal to zero, while, the squares of α and β have the same value for each ion. So equation (15) roducos to the relation given by Lonsdale and Krishnan (1936)

On the other hand of all ions aro magnetically equivalent, equation (15) simplifies to

$$
\begin{equation*}
\left(K_{11}-K_{1}\right)=\frac{ \pm A}{\alpha_{3}^{2}+\beta_{3}^{2}}=\frac{ \pm A}{1-\gamma_{3}^{2}} \tag{16}
\end{equation*}
$$

Again in many triclinic crystals like $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, there are only two mag. netically inequivlent ions with axial symmetry. If tho direetion cosines of the second ion be distinguished by a dash suffix, then equation (15) reduces to,

$$
\begin{aligned}
& \left(K_{\|}-K_{\perp}\right)=\frac{ \pm 2 A}{\left\{\left(\alpha_{3}^{2}-\beta_{3}{ }^{2}+\alpha_{3}^{\prime 2}-\beta_{3}^{\prime 2}\right)^{2}+4\left(\alpha_{3} \beta_{3}+\bar{\alpha}_{3}{ }^{\prime} \bar{\beta}_{3}^{\prime}\right)^{\prime}\right\}^{\mathbf{d}}}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{ \pm 2 A}{\left\{\left(\gamma_{3}{ }^{2}-\gamma_{3}{ }^{2}\right)^{2}+4\left(\cos \phi-\gamma_{3} \gamma_{a}{ }^{\prime}\right)^{2}\right\}^{\ddagger}} \tag{17}
\end{align*}
$$

whore ϕ is the angle between the axes of these two ions.
The quantities γ_{3} and γ_{3}^{\prime} are the cosines of the anglos between the magnotio axes of the ions and the z axis or the normal to the plane in which anisotropy
has been measured. So whon using equations (16) and (17), it will be more convevenient to calculate γ_{s} and γ^{\prime} directly instead of by equation (1) or its equivalont For this purpose the unit normal may be expressed as a contravariant vector matrix, as will be illustrated in duc course. A unit covariant vector in the direction of the axis of an ion may be expressed by the matrix $\left[\cos \phi_{3}{ }^{a} \cos \phi_{3}{ }^{6}\right.$ $\cos \phi_{3}{ }^{\circ}$]. So γ_{3} is the scaler product of these two vectors and is equal to the product of the two matrices.

Probable errors in the proposed methods

The mothods of calculation discussed in the last section, do not involve small difforencos of large quantities like absolute values of susceptibility. So the porcentage errors would be of the same order as in the measurement of anisotropy but for the errors introduced through the X-ray data. The effect of the latter can be roduced by a juclicious selection of the plano in which anisntropy is messured.

Consider first the simplost case where all ions in the unit cell are magnetically equivalont, and have axial symmetry. The principal ionic anisotropy is to be calculatod by equation (16). If the direction cosine γ_{s} be equal to $\cos \theta$, then the maximum percentago error in the calculated value of the principal ionic anisotropy will be

$$
\begin{equation*}
\frac{\partial\left(K_{\|}-K_{\perp}\right)}{\left(K_{\|}--K_{\perp}\right)} \cdot 100=\frac{\partial A}{A} \cdot 100+200 \cdot \frac{\cos \theta}{\sin \theta} \cdot \partial \theta \tag{18}
\end{equation*}
$$

The first term on the right hand side of this equation is the perecntage orror introduced by magnetic measurement and is no more than that in the measurement of anisotropy. The percentage error due to an error of half a degree in the X-ray data is $\frac{200 \pi}{360} \cdot \frac{\cos \theta}{\sin \theta}$, or, $\quad \begin{gathered}200 \pi \\ 360\end{gathered} \cdot\left(\frac{A_{3}}{A}-1\right)^{\frac{3}{t}}$, where A is the obsorved anisotropy and $A_{\text {t }}$ is the principal onic anisotropy, which in this case is the maximum observable anisotropy. This error is very large when the observed anisotropy is nearly zoro. On the other hand. when the observed anisotropy is maximum, the error is negligible compared to oven the 0.1% orror due to anisotropy measuremont. When γ_{3} is 0.5 , the error is near about 1%. So for greater accuracy, the plane of moasurement should be so chosen that the observed anisotropy is large.

In case of two ions in the unit coll, an expression for the maximum error can be obtained from equation (17). Putting $\left(\gamma_{3}{ }^{\prime 2}-\gamma_{3}{ }^{2}\right)=R \cos \omega ; 2\left(\cos \phi-\gamma_{3} \gamma_{s}{ }^{\prime}\right)$ $=\mathrm{R} \sin \omega ; \gamma_{3}=\cos \theta$ and $\gamma_{\mathrm{a}}{ }^{\prime}=\cos \theta^{\prime}$, we get the following expression for fractional error.

$$
\begin{aligned}
\frac{\partial\left(K_{\|}-K_{\perp}\right)}{\left(K_{\|-K_{\perp}}\right)}=\frac{\partial A}{A} & +\frac{\cos \omega}{R}\left\{干 \sin 2 \theta^{\prime} \partial \theta^{\prime}+\sin 2 \theta \cdot \partial \theta\right\} \\
& +\frac{2 \sin \omega}{R}\left\{\sin \phi \partial \phi \pm \cos \theta \sin \theta^{\prime} \partial \theta^{\prime}+\cos \theta^{\prime} \sin \theta \partial \theta\right\}
\end{aligned}
$$

Supposing the maximum errors $\partial \theta, \partial \theta^{\prime}$ and $\partial \phi$ due to errors in X-ray data, to be each half dogree or $\pi / 360$ radian, the maximum percentage error

$$
\begin{align*}
& =\frac{\partial A}{A^{-}} \cdot 100+\frac{100 \pi}{360 \cdot R}\left\{\cos \omega\left(\sin 2 \theta \mp \sin 2 \theta^{\prime}\right)+2 \sin \omega\left(\sin \phi+\sin \theta \pm \theta^{\prime}\right)\right\} \tag{19}\\
& \leqslant \frac{\partial A}{A} \cdot 100+\frac{100 \pi}{360 \cdot R}\{2 \cos \omega+4 \sin \omega\} \\
& \leqslant \frac{\partial A}{A} \cdot 100+\frac{100 \pi 2(5)^{\frac{1}{i}}}{360 \cdot R}
\end{align*}
$$

Tho second term represents the maximum limiting value of the percentage error due to X -ray data and is equal to $3.9 / R$. The value of R, the denommator in equation (17), lies between 0 and 2 . If the observed ansotropy A is large, then R is also large and the orror is small. The anisotrojy A is maximum when tho normal to the plane of measurement bisects the larger angle betwoen the magnotic axes of the two ions. Then θ and θ^{\prime} are oqual to $(\pi \pm \phi) / 2$ or $\pm \phi / 2$, according as ϕ is greater than or less than $\pi / 2$. Substituting these values in equation (19), the maximum error when the observed anisotropy is largost, is found to be $\frac{100 \pi \sin \phi}{360(1+3 \cos \phi)} \%$, porvided that oniy the numerical value of cos ϕ be used in thas exprossion. For $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in particular, this orror is rather largo, namely about 2.3%, because $\cos \phi$ has the low value of 0.1633 . On the other hand. If the angle between the magnetic axes of two ions be small, then the arror mutroduced by X-ray data can be made negligibly small.

In case of more than two ions or in the absence of axial symunetry of the sons, it is not possible to got a concise algebraie expression for the percentage arror. However, equation (15) indicates that firstly the percontage error introlucerl by magnetic measurements is equal to that in measuring tho anisotropy of the crystul in a plane. Secondly, the error due to X-ray data is minimsed if tho denominator is large which will be the case if the measured anisotropy is near about the maximum observable value.

Example of $\mathrm{CuSO}_{a} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

According to tho X-ray data given by Beevers and Lipson (1934), each unit cell of copper sulphate crystal contains two coppor ions, each of which is at tho contre of an octahodron composed of four oxygen atoms in a plane and belonging to water molocules, and two other oxygen atoms belonging to sulphate groups at the two vertices.

$$
\text { Let the matrix }\left[\theta_{m_{n}}\right]=\left[\begin{array}{ccc}
1 & \cos \gamma & \cos \beta \\
\cos \gamma & 1 & \cos \alpha \\
\cos \beta & \cos \alpha & 1
\end{array}\right]
$$

J. K. Ghose

where α, β and γ are the crystallographic triclinic angles, $82^{\circ} 16^{\prime}, 107^{\circ} 26^{\prime}$ and $102^{\circ} 40^{\prime}$ respoctively. Hence the reciprocal matrix is

$$
\left[O_{m n}\right]^{-1}=\left[\begin{array}{rrr}
1.1394 & 0.2076 & 0.3135 \\
0.2076 & 1.0562 & -0.0799 \\
0.3135 & -0.0799 & 1.1047
\end{array}\right]
$$

Krishnan and Mookherji (1938) have taken the lines joining the sulphate oxygens at the vertices of the octahodrons, as the magnetic axes of the ions. Taking the crystallographic axes a, b, c, as the coordinate axes, the obliquo cartisian coordinate (x, y, z) of any atom is found by multiplying the positions given by Beovers and Lipson, by a, b, c the dimensions of tho unit cell. A lino joining two atoms in positions (x_{1}, y_{1}, z_{2}) and (x_{2}, y_{2}, z_{2}) may bo oxpressed (Ghose, 1964) as a contravariant vector matrix

$$
\left[\begin{array}{l}
\left(x_{2}-x_{1}\right) \\
\left(y_{2}-y_{1}\right) \\
\left(z_{3}-z_{1}\right)
\end{array}\right]
$$

or as a covariant matrix $\left.\left[\begin{array}{ll}U_{1} U_{2} & U_{3}\end{array}\right]=\mid \theta_{m n}\right]\left[\begin{array}{l}\left(x_{2}-x_{1}\right) \\ \left(y_{2}-y_{1}\right) \\ \left(z_{2}-z_{1}\right)\end{array}\right]$
On dividing U_{1}, U_{2}, U_{3} by the length of the vector, i e., the square root of the product of the covariant and contravariant matrices, we get the diroction cosiness of this line The latter form a unit covariant vector matrix $\left[\cos \phi^{a} \cos \phi^{b} \cos \phi^{b}\right]$ The calculaterl values for Z_{1} and Z_{2}, the axes of the two copper ions agree with those given by Krishnan and Muokhorji and are shown in Table 1.

Howover, the octahedrous are not regular and the water oxygens are closer to the copper ions. So the magnotic axes are likely to be closor to tho normals to the planes of water oxygons. The lines joining one of these oxygens with adjacent oxygens may bo expressed as before by two contravariant matrices

$$
\left[\begin{array}{l}
X \\
\boldsymbol{Y} \\
Z
\end{array}\right] \text { and }\left[\begin{array}{l}
X^{\prime} \\
\boldsymbol{Y}^{\prime} \\
Z^{\prime}
\end{array}\right]
$$

A normal to the plane containing these two lines is given by (Ghose, 1965) by the covariant vector matrix

$$
\left[\begin{array}{lll}
V_{1} & V_{2} & V_{3}
\end{array}\right]=[(Y Z-Z Y)(Z X-X Z)(X Y-Y Z)]
$$

To get the direction cosines, V_{1}, V_{2}, V_{3} are divided by the square root of the matrix product

$$
\left[\begin{array}{lll}
V_{1} & V_{2} & V_{3}
\end{array}\right]\left[\theta_{m n}\right]^{-1} \quad\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]
$$

These values for T_{1} and T_{2}, the tetragonal axes of the two oopper ions are shown in Table I. Those for T_{2} differ considerably from the corresponding values calculated by Ghosh and Mitra (1964).

A Simple Method of Finding the Principal, etc.

TABLE I

	$\cos \phi^{a}$	$\cos \phi^{b}$	
Z_{1}	0.2026	-06479	0.6179
Z_{2}	03372	07489	03567
$\mathrm{~T}_{1}$	0.0616	-0.6525	0.6522
$\mathrm{~T}_{2}$	0.3064	07104	03823

To calculate the ionic amsotropy, oquation (17) may be used. Tho angle betwoon the two ionic axes, eithor Z_{1} and Z_{2}, or T_{1} and T_{2}, is obtainod easily by forming the scalar product of tho two unit vectors, and is given by

$$
\cos \phi=\left[\cos \phi_{1}{ }^{a} \cos \phi_{1}{ }^{b} \cos \phi_{1}{ }^{c}\right]\left[\theta_{m n n}\right]^{-1}\left[\begin{array}{l}
\cos \phi_{a^{a}}{ }^{a} \\
\cos \phi_{b^{b}} \\
\cos \phi_{2}{ }^{c}
\end{array}\right]
$$

The value of $\cos \phi$ is thus found to be -0.1355 for Z_{1}, Z_{1} axes, and -0.1633 for T_{1}, T_{2} axes.

To find the valuos of γ_{3} and $\gamma^{\prime}{ }_{3}$, whatever be the plane in whech anisotropy is measured, the unit normal to the plane can bo exprexsed as a contravariant vector matrix with respect to the crystallographic axes (Ghose, 1955). If the plane of measuroment be ($h k l$), then the normal is a covariant vector $\left[\begin{array}{lll}\frac{k}{a} & \frac{k}{b} & \frac{l}{c}\end{array}\right]$ or a contravariant vector $\left[\begin{array}{lll}V^{\mathbf{1}} & V^{2} & V^{3}\end{array}\right]=\left[\begin{array}{lll}h & k & l \\ a & b & c\end{array}\right]\left[\begin{array}{lll}\theta_{m n}\end{array}\right]^{-1}$. Dividing carll olemont V^{1} ete., by the magnitude of the vector, $\mathrm{i} e$., the square root of $\left[\begin{array}{lll}V^{1} & V^{2} & V^{3}\end{array}\right]\left[\begin{array}{ll}\theta_{m n}\end{array}\right]\left[\begin{array}{l}V^{1} \\ V^{2} \\ V^{3}\end{array}\right]$, we got a unit contravariant vector, say

$$
\left.\begin{array}{l}
v^{1} \\
v^{2} \\
v^{3}
\end{array}\right] .
$$

Again if the plane of measuroment bo perpendicular to both the planes (hld) ıcl ($h^{\prime} k^{\prime} l^{\prime}$) then the normal is a contravariant vector

$$
\left[\begin{array}{l}
V^{\mathbf{1}} \\
V^{2} \\
V^{3}
\end{array}\right]=\left[\begin{array}{l}
a\left(k l^{\prime}-h^{\prime} l\right) \\
b\left(l h^{\prime}-l^{\prime} h\right) \\
c\left(h k^{\prime}-h^{\prime} k\right)
\end{array}\right] \text {, which may be changed to }
$$

a unit vector as before. If during moasurements, one of the crystallographic axes is the normal, then the unit contravariant matrix has a every simple form.
Thus with the c axis normal, it is euqal to $\left[\begin{array}{c}0 \\ 0 \\ 1: \cdot\end{array}\right]$.

Now γ, γ^{\prime}, are the matrix products of tho contravariant unit matrices in the direction of the normal to tho plane of measurement and the covariant unt matrices in the directions of the magnetic axes of the two ions.

Krishnan and Mookherji (1938) have given the obsorvod values of anisotropy in elght different planes of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{\mathbf{z}} \mathrm{O}$ crystal. These are shown in Table II. The principal ionic anisotropy has been calculated in each case. The values obtained ly using T_{1} and T_{2}, the normals to the planes of water oxygens, aro shown in the lust column, while those obtained by using Z_{1} and Z_{2}, the directions of octahedron vorticos, are shown in the column last but one.

TABLE II

Mode of suspension	Obsorved Amsoliropy	Calculated tonic ansotropy	
		(Z)	(T)
(111) horiz,	26	180	130
\boldsymbol{a} axis vert.	60	290	303
(10) horiz.	117	403	412
(100) horiz.	146	435	513
C axis verl.	183	485	421
(110) horiz.	213	572	578
(100) and (111) vert.	263	550	565
(1i0) and (111) veit.	204	542	562

It is found that as ohserved anisotropy increases, the calculated values of ionic anisotropy become more consistant, as was to be expected from the discussion of probable error in the last section. The last three sets indicate a value of 560 with a probable crror of magnitude 20 , i.e., about 4%. Actually a much highor error should bo expected due to the uncertanty regarding the directions of the magnetic axes of the copper ions. From Table I, it is seen that the angle between the direction of the normal to the plane of water oxygens and the direction of the line of the sulphate oxygens at the vertices of the octahodron, is nineteen degrees for the first copper ion and four degroes for the second. Similar variations in the value of ionic anisotropy calculated with the two sets of axes indicate that neither of them may be considered more correct than the other.

Krishnan and Mookherji (1938) obtained a value of 550 for the ionic ansotropy. As a first step they determined the directions of two magnetic axes by trial and (rror, such that the ratio $A /\left(\sin \theta \sin \theta^{\prime}\right)$ is constant whero θ and θ^{\prime} aro the angles
between the normal to the plane of measurement and the magnotic axes. Howpver, with the best fit that they could obtain, the ratio varied between 273 and 296 or by about 4% indicating a eorresponding maximum error in either the moasurements of anisotropy or in the suspensions of the crystal. Consequontly, the errors m the last three Sets of values in Table II are no more than the maximum errors due to anisotropy measuroment.

Moro satisfactory rosults can not be expected for the copper sulphate erystal Firstly, tho oxygen octahedrons surrounding the two eoppor ions aro not exactly smilar, so that the nagnetic susceptibilities of the two ions are probably difforent Secondly, the octahedrons are not regular, so that axial symmetry of the ions in only approximate And lastly greater accuracy can he oxpected in those crystals where the ionic axos are not so noarly perpondicular to each othor.

Principal ionic susceptibilities

To dotormine tho principal ionic suscoptibilities, it is necessary to have one measuremont of absolute value of susceptibility, such as the mean suscoptibility of the crystal or the maximum susceptibility in one of the coordinate planes If the average susceptibility $\bar{\chi}$ is accurately known, K_{1} may be calculated by the oquation

$$
3 K_{1}+\left(K_{2}-K_{1}\right)+\left(K_{3}-K_{1}\right)=3 \overline{\mathrm{x}}
$$

Alternatively, the maximum susceptibility in a plane of the crystal may bo, detormined with sufficient accuracy. Adding equations (6) and (7), we get the equation

$$
\chi_{11}+\chi_{22}=2 \chi_{\max }-A
$$

Substituting the value of χ_{11} etc. from equation (2), and using the orthogonal propertios of α_{1}, β_{1}, etc., we get

$$
2 K_{1}+\left(K_{2}-K_{1}\right)\left(1-\frac{\Sigma \gamma_{2}{ }^{2}}{n}\right)+\left(K_{3}-K_{1}\right)\left(1-\frac{\Sigma \gamma_{3}{ }^{2}}{n}\right)=2 \chi_{\max }-A
$$

Substituting the calculated values of $\left(K_{2}-K_{1}\right)$ and ($K_{3}-K_{1}$), as woll as the observed valuos of $\chi_{\text {max }}$ and A, the maximum susceptibility and anisotropy in $x-y$ plane, the value of K_{1} may be calculated. In case of axial symmetry of the ions, the same equation reduces to a simpler form,

$$
2 K_{\perp}+\left(K_{\|}-K_{\perp}\right)\left(1-\frac{\Sigma \gamma_{3}^{2}}{n}\right)=2 \chi_{\max }-A
$$

The error in K_{1}, or in K_{1} should be of the same order as the error in determining $\chi_{\text {max }}$, i.e., 0.2% because the other quantities in the equations are small. The same error will occur in the values of the other principal ionic susceptibilities calculated from the values of principal ionic anisotropies, because the latter quantities being small the absolute magnitudes of their errors will also he small,

REFERENCES

Beevors, C. A. and Lipson., H., 1934, Proc. Roy. Soc. A., 146, $\boxed{60}$
Jıtta, S. K., 1953, Indian J Phys, 27, 154;
… ---, 1054, Tndran J. Phys., 28239
Dutta Roy, S. K, 1955, Indian J. Phys., 29, 429.

——, 1965, Indian J. Phys., 89, 400.
————, 1966a, Ind. J. pure uppl. Phys., 4, 175.
——..., 1966b, Ind. J. pure appl. Phys.
Chosh, U. S. and Bagchi, R. N., 1962, Indian J. Phys., 86, 538.
Ghosh, U. S. and Mitra, S , 1964, Indian J. Phys., 88, 19.
Kriahnan. K. S. and 13nnerjer, S., 1934-35, Phil Trans., 234A, 265.
Krıshnun, K S. und Mookliorji. A., 1936, Phys Rev., 50, 860
—_ - --_ 1038, Phys. Rev., 54, 534.
Lonsdate, K. and Krishnan. K. S. 19:66, Proc. Roy. Soc. A., 156, 597.

