Indian J. Phys. 43, 439—453 (1969)

Reductlon of wavefunction which transforms as complex
antisymmetric tensor to Irreducible representation
of Lorentz group ( zero mass system )
By B. S. Rajeut
Depariment of Physics, Kurukshetra University

( Received 1 April 1969 )
The reduction of the wavefunction which transf. s a pl sy ric tensor
to the irreducible representation of proper, orthoch inh, Lorentz group

for zero mass system has been discussed by giving the proofs of the essential theorems.
The change of gauge is discussed as the unphysical change in the wavefunction under
the pure Lorentz transformation. The effects of reality condition, wave equation and
the canonical formalism ns well as the second quantizations also have been discussed. By
assuming the total energy to he positive the of the ion of functi
which satisfies wave-cquation, have been calculated to give the energies for four modes
corresponding to positive and negative values of Hamiltonian density.

INTRODUCTION

The general ways of reduction of any unitary ray representation of the
proper, orthochronous, inhomogeneous Lorentz group have been discussed
by Lomont & Moses (1967) for both non-zero and zero mass systems
where for the former one obtains the Foldy (1956)-Shirokov (1958, 1959)
relations and for the latter one is Jed to the Lomont-Mose (1964) realiza-
tion. These results were used by Moses (1967) to reduce the wave-
function which transforms as an anisymmetric (real) tensors for non-
zero mass system to the irreducible representation of the proper ortho-
chtonous, inhomogeneous Lotentz group, We (Rajput 1969) extended this
reduction for of the wavefunction which transforms as complex-antisym-
metric tensor- Moses (1968) discussed the reduction of the wave-
function which transforms as real antisymmettic tensor for zero
mass system. In the present paper we discuss the reduction of wavefunc-
tion which transforms as a complex anti-symmettic tensor for zero mass
system to the irreducible representation of the inhomogeneous Lorentz
group by giving the proofs of essential theorems which are used in this
case. Here we calculate the change of gauge as the inessential change in
the wavefunction due to the operations of three generators (corresponding
t0 space time relations) of proper, orthochronous, inhomogeneous Lorentz
gtoup, We have also discussed the effect of reality condition and wave
equation on the wavefunction and the second quantization in connection
to canonical formalism. It is noted in these calculations that to tecluFe
the wavefunction, only the transformation properties are necessary while
the tequirements of the wave equation and reality condition restrict the
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number of independent irreducible representations. The results of the
present papet can be used to reduce the electromagnetic field wavefunction
to the irreducible representations,

TRANSFORMATION OF THE WAVEFUNCTION
The components of a complex anti-symmetric tensor is given by
i = Fnij + F,ij )
= _ph L ()
Where R denotes real part and 7 the imaginary part, To give the |
wavefunction field description of this tensor we define \
Ep="F no",
E,=Fp0
R, )
Hip = iy Fy
H, = €y F,”‘

Then the wave function ¢, which transforms as a complex anti-
symmetric tensor, is the six components column vector given by .

_| %
(2]

where Y and ¢; are three components column vectots given by

be (1) = Bopln,0)— iHp(zt)

> N > @
Yot = Ey(et)— iH, @G0 r=1123

In terms of infinitesimal generators of proper, orthochronous, inhomo
genous Lorentz group the wave function ¢ transforms as (Rajput 1969)

¢'(x)=exp[i2;a’l’,']¢(1)
¥ (x) = exp [55. f] ¢ (2) } ..(5)
V@ =ep[iB219@
where Py="r=—iy;I(j=1,2,3)
_ __a s
P=—P=H==illiz(-1y “

K, =M —i(zx V)],
z, =N,~+i(z,-a%+tv,- )I
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For tensor field we have

000 00i )
My={00-), mM=[000) m=(io00)
040 ~i00 000

000 001 0-10
Ny ={00-1) Ny={ 000) N,=(-1 00).
010 =100 0 00

Thus M; are Hermitian matrices while N, are not so. The mass-
less representation of the infinitesimal generators of the inhomogeneous
Lorentz group is given in terms of the representution of the infinitesimal
generators of the two dimensional Euclidean group. For this we consider
the three operators Ty, T, J which satisfy the commutation rules for
the infiinitesimal generators of the two dimensional Euclidean group
given by

[ Tln T! ] = 0‘
[Ty, J ]="'T!'
[Ty J1=1T,
The matrices or kernels : T; (A | X), Ty (2| A") and J (A | #') defined
as ¢

TE@ =Y TGN @)
&

TFW =Y T (A X)F ()
Y

JI() = 2 JQA| ) F Q)
.

Constitute a representation of the infinitesimal ~generator of two
dimensional Buclidean group. F(4) here is the function of the real
varisble A which can be continuous, discrete or finite dimensional and
represents the eigen values of the matrix J. The operators Ty, Ty and
J are given in terms of M; and N, as follows

Ty=— M, — B,
T,= M, —el, l +(6)
= M, |

Then the realization of the infinitesimal generators of inhomogeneous
Lorentz group given by Lomont & Moses (1967) can be taken as
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B ) =11 (G) = epfip)
i@ =pf@®

R fG) = b
of (@) I:L +P+l’]f(m

£oe 2 pg J ‘
Ky f (p) —[L + +p]f(p)~ i

Rf Gy= L+ 711 (p)
Lr@=elipd 4 po _#__Lip
0p; P+Pa Ye+tr) b

by P2
/’”P‘f‘!’)ﬂ]ﬂp)

% b At
. A 7
+[p'(p+ﬁa) zz]T'}f(”)

z,f(p)—s{ a*+ L ip T4 e Ty ] }fG») 0

2xf(;)=€[p—2—— bh_jy b

Where Ly, L, and L; are the components of orbital angular momen-
tum given by

L) =- »'Z P f(p) 8
and e= 41, -

Here 2°, K, and 2 are the infinitesimal generators of the unitary
ray reprerentation of Lorentz group. They satisfy the same comunation
rules as those of the generators P°, Kand Z. Hence the required reduct

tion requires the expressl n of the wavefunction ¢(z) in terms of f (P)
REDUCTION OF THE WAVEFUNCTION

In equations (6) the matrix M, is Hermitian and hence diagonalised
by a untary matrix U :

UM U=d
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where d is diagonal matrix. Then A, the eigenvalues of M, are
given by :

| My =] =0
which gives
A=1,0, -1
H a=[00 0
ence, =
00-1 ..(10)

By equations (9) and (10) we get

. [—.gg-t',z O
=| —1 = —1 =
5 3" 0) ] w(11)

Let us define the column vector (¢, p,A) as
>
rlgpd)=[exp(lo.M)exp(ivN,)U),, (12)

> Y
where p is in one to one correspondence with w and scalar »
through the expressions

p =e'’,

n= —p(-———s“a’, “’)w.

. (13)
e o(22).

w

pp=cosw, w=0 w= |;]

Using the values of exp (l'c::. M) and exp (¢v Ny) from our pre-
vious paper (Rajput 1969) the vector x ( ¢, p, A ) is written as follows

[P | P
1(ep0)= P;lp] forA=0 . (14)
Los | P

1(ep2)=[2p"NQ")e(p )

= [~ | (2] TP (putidm,) 1—

p(ptps) fori=+1
P2 (mtirAm) —ix
p(p+ps)
ntidp ~(13)
— 14 —

Now we consider the function f(£) as the representation of the vector
¢in the basis which is characterised by the space of wavefunctions in
Hilbert space upon which the generators of Lorentz group operate, §
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collectively denotes all the variables upon which the function in the given
representation depends. Then as the result of Lomont & Moses (1967)
we have

ap
= ‘I#S ——— 2 A)
=3 L] sirpyectimenn>rimann) .0
In our case =0, A=0or4+1 and hence equation (16)
reduces to :

d )
1o=2 2 S{x<él0.e,p./\>f(r.zi,h) .0

with the assumption that all the generators of the inhumogeneoux

Lorentz group are Hermitian. The value of the transformation function'
< §|0,¢p,4) for the present case is given by '
<E|0,pi>=<uztr|en >
N
={exp[i w. K )] exp. [ivZs] Utf (z,t,75¢ )

= {exp [i w. M), exp [i v Ny] U} exp [w. (#xV 1]

Xexp[[iv(z,,£+t—a—is)l:|f(z,t,r;e,)«) ..(18)

The function f (¢ r;¢e A) satisfies the following equation
Pif(zt,r;e,d2)=Pf(2,tr;62)=0
Pif(z,t,r;60) =f(2,4r;¢2) ..(19)
Pf(atr;ed)=Hf(z tried)=cf(xtr;¢A)
Using equations (5) in (19) we get

] . = ] . -
-asz(“’:l:'y‘-/\) —’az;f(“’y’:":f,l)

%f(z,t.r;e.l)ﬂf(x.t.r;s,i)

Lty = —ief (o)

the general solution of which is given by
flmt,rie4) =exp[i(z—d)]0(gA) . (20)

where C (¢, A) isthe constant of integration. Using equation (20),
(5) and (12) in equation (18) we get
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<, tried>=Exp[i(ey—e)]z(r|ep )

TN [C(e,A)S';l’x(e,p,w(e,p,n
xplilha— o))
e (on %{t’x'(e.p.z) Sl e lithi—a) |
= gc (60 )S f’f Hep0) f (p0) exp (a5 —p)}
+o'(e.0)S%Ez'(s,p,on'(e.m) exp (i (5.7 — t)]

+3 Tz_)hﬁ{n (6 1) S ”7,2 7 o(p ) () exp {i(p. 7 — fﬂ)}

=t
10 () S L yrosd () (epom 1§ (o=t (2D

where unprimed functions represent ¢z and primed functions repesent
or. No. let,

b (e, v)‘) = €Xp (- Zlh¢)f‘(—€y-p))‘)
where, tang = py | 1
O = C(+1,0), DQ) = C(~1, )

FOON) =F(+1,pN.
then

d-’ > > >
)= S; {BONC0)  (50) exp b (5" 2—p0)
—DO)( 10) exp {—i( . 3—po)
+| % YOO (1) exp 17,71

— DO (4,0) exp {— (5. i—pi)}]

+3 im0 | L oii (70 ex 5501

A=1l

—D(A)S B portpait s em | i -y
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+o0 S%'ﬂ' P/ () exp (P, 22}

) S";”p*o*'@)ﬂ*’@?ﬂ) exp | —Gh. Z—pm]
-(22)

Gauce Cuance
If 4 is any of the infinitesimal generators P¥, H, J;then 4 ¢ () hag

A A
the same expansion (22) on replacing f (¢, p.: A)byAf (e p': 1), where A\
is the corresponding finite spin generator given by equation (7). If A‘

A A > !
stands for any of Z;, then 4 is not Hermitian operator and Af (¢, p, A)
consists of two parts, one of which corresponds to a true physical change *
of wavefunction and other gives unphysical change (change of gauge)

A hd > A >
Zif) =0 ®+2'f (» .(23)
>
where 2; is finits spin operator for which T; =0, and g; (p) is the
nonessential change in the wavefunction or the gauge change given by

w61 [ Gy - 5 1m |

p]_? > _ >
+WTI:I/(P) =eBf(p)

=e| Db
nip) [ﬂp+m)‘

Y S T] »Y =B f(p
+{P'(P+Pa) p} o [/(p)=eByf (D),

qs(;)=e[1~"—’f‘—;””—7”]f(5)=c3d(;ﬂ ()
Hence,

292 = 33000 (2 2 (hA)As )
€«

mp{e(;.;_em}]

+33[o @ [ v an by aan
€

Xe:m{i(i.;—ept)}]+rz‘.-(z) )
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where @ (z) is the gauge change and should be added to ¢ when the frame
of reference is changed by an infinitesimal space time transformation.
Hence,

a,.=§;;[0(em5"75 x(apA) g () exp{-'<;3=—sp:)}]
+ 22[0 (ed) S”’—; ZleBA) 0 )
X exp{i(;.;—ept)}]_
S33[o (| ctin asain e

{i (Z.I—ept)}]

' d’ . > " P >
+ 2);[0 ("“ST? 7 (pA) B (M)

X exp {i(;)-;— em}]

S EIRINE S AT

X exp {i(;.;— ept) }]
+ 230t Sﬂ I (eah)f (sBA)
IR p

x exp{i(}}—ept)}] -(26)

where the column vector I ( s,ﬂh ) is given by

T(r|epp) = { exp (iw.M ) exp (ivly) Bi U}q )
If we define a matrix 4, as

t=ep [0 e liM1 B (28)
then as discussed by Moses (1967) we have

ARed — z { B A } _"IT -{29)
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Using equations (29) and (6) and commutation rules for ¥; and N; we get
exp (N ) T exp ( — ivNy ) = pT;
" exp (N3 ) Ti = p Tyexp (0vly) -(30)
Using equations (24) in (30) we have
exp (iwNy ) B; = pB; exp (ivNy -
Similarly,

exp[i;.M]B.~= -%—r[—(;XM),- _ e(%.-) (;N) \

+ spN,-:I X exp [ iL.M]
Hence equations (28) reduces to

o[- o) () () eon]

> >
X exp (iw.M )exp (ivN.,) (31)
If we define a column vactor ¢, (¥) as

wi= 2 0t e s Cehns (s

i)

40 () SF"” # (M) (ehd)

exp {i ( ;; —ept ) }1 .(32)

aﬂ
aE ¢ (2) = — ¢y ().

such that,

Then putting V; = /0%, and using the equations (27), (26), (32) and (31)
we get

G, (a:)=i[—i(j‘lx Y‘?),.*'”BBFN’]'*‘ ®

+14 (5,5 ) Vi —:T e . (3)
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If the unit vector in the direction of the i** space axis is given by
a=1(1,0,0).
> > > . a > >
G (@) =~V ¢y (x) +e[Vi(@) ]~ I [e x ¢, (z) ]

N > s
= [VXd@] .04
where ¢, denotes the component of the vector.
Reaury ConpriTiON
If  transforms as a real antisymmetric tensor then we have
CO=CHN=DMN=0
and hence the equation (22) reduces to :

plo) = S 2 (h0) IO OF(F0) exp (2 — ) = DIOM(pO
e | —i (pa—p)|]
5, 2 s [ WL e G G) e ittt

B i) 1 (o — 35
7 Pro*(pA) B* (pA) exp (i(p.z — pt) . (3%)
which is simlar to the equation as derived by Moses (1968). If y(z)
given by equation (35) is real then,
'3 () = y* () -.(36)
COf(50) = =D (0)h(50).
and

L OB =5 DY) B (BN

then,
V@) =4 Sip”- L (30)1(30) exp 1§ (b — )}

+2’;

a1 (2)'7

where 4 and B () are constants.

B Si} o (3) exp 1§ (5.5 — 1)} --BT)

MaxweLL's EQUATION
Using equations (2), (3) and (4) Maxwell’s equations in vacuum for
E and I; become
Vog=0 .(38)
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——i 0
VXgp=—1 a,-l'

From the equations (14), (15) we can prove that

> . > > .
V.2 (p0) exp {i (px)} =ip l
V.o (@A) exp|i($2)} =0
Using equations (22) and (40) in (38) we get
COfP0) + O Of (B0) =0
D (Oh(p0) + D' O) ¥ (5,0) =0
The constants C (0), €' (0), D (0) and D' (0) are arbitrary, so
1(30) =1 (30) =h(p0) =¥ (p0) =0
Similarly,
vV oxz (P-:O) exp (ip.2) = 0

and. > > > >
V X o (p,A) exp (ip.z) = pho (p,A)

—~— ——

Using equations (22) and (42) in (39) we get
2 Ap—-1) [C('\)f(l’:\) +C (A)f‘(P.:)‘)] =0

A=l

and,

A=t1
first of equations (43) results into the following equations
O+ B+ D) +0(+ 1) @ +1)=0"
which gives
fo+0)=1@+1)=0
while second of equations (43) gives

b= 1) =h(p—1) =0

|

Y AL~ N DR GN+ D Nk (A1 =0 J

(39

-(40)

~41)

)

.43

-(44)

- (#5)

Thus in the expansion (22) only the wavefunction f (;, —1)andh (1.;, -1)
need not be identically zero for ¢ to satisfy Maxwell’s equation (38) and
(39). Hence the wavefunction which transforms as a complex antisymme-

tric tensor and satisfies Maxwell’s equation, is given by
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$6) = e LD S0, + )1 B, + 1)
exp{—"(;-';—pt)}
+ D (+ 1) [dpe¥ (g, + DI (5, + 1)
exp{—i(p. 2~ )
+0(=1)[dpo'(p, — ) (o, — D exp (i(p. %= p))
+0 (= 1) [dp's,— 1 f' (3, — 1) exp 13 (3. = — pi)}]
= Cfdpo(p, — 1)1 @) exp (i (. 3 — g}
+0 §ape (o, - DF () exp (i 7 —pi)}
+DJdpo (5, + 1) () exp {—i (. 2 —p))

+ D' dpa¥ (p, + V)W () exp {— i (5. % — p)} .. 46)
where,

0=.ﬁLK-.O(—1),O’=_(;T}n o(=1)

D= e DU+ 1, D = i D)

and

I =1 ~1), £(2)=F@, 1),

- - -
Mp) = h(p,+1), ¥(p) =¥ (p,+1).
CANONICAL FORMALISM

We choose the values of the constants Os and Ds so that the
usual canonical formalism in terms of Hamiltonian density agrees with
the particle interpretation. Hamiltonian density of the field in the present
case given by

Hle) = (8 %, ..(47)
and the energy of the field is given by

E~{ Bl .48)
Now we consider following four modes
0 fp) =ho) =k(p) =0,/(p) #0

then, g = Cfdpo(p, — 1)1 () exp {$(p.5—ph)} - 49)
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The expectation energy for this mode is given by
-
> >
SO REINPIE 150)
Comparing equation (5) with (48) for ¢ given by (49) we have
c=_71_
,,,.(z)m .

@) 1) =h(p) = K(p) =0, f'()#0.

, (1; id ., L
then, ¢y =C ;u(p,— 1)f (1) exp {ilp. s—pt)}.
and the expectation energy is
B, =I:_ | f(p) | .(31)
which leads to
) S
()"

(iii) f' (—1:) =f(1-;) = h,(;) = 0, h(;) #0,

then,  ¥(z) = hDSd-?;" (;: —1) b* (;) exp {—1 (;); — pt)}
and the expectation energy is

By=§_ 3 1M |* 5)
which leads to, = — 1/=(2)**
W S5 =) =K =0,hp) #0
Then, Y@ =D [do(p, — ) (D) exp {— ilpa—pt)]
and, B= I, dpne ) .53)
which leadsto D' = —,,_é)‘nT

The expectation value of the total energy when the state is the superposi-
tion of all the modes is given by
E=E;+E/'+E,+E ..(54)
SECOND QUANTIZATIONS
To second quantize the theory, we consider f( 1’1 W ; ) M ; ) and
K ( ;) as creation operators and f* G:), f* (;;) s h*(;) and h’*(;) as
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destruction operators. They satisfy the well known Boson-commutation
rules. The operator y(z) is then defined by replacing the amplitudes in

the expansion (46) by these operators. Then for any operator 4, we
define a second quantized operator [4] by

[4] = S‘%’—'f ads1 oy
+ S%’/" ()AL (pA) +Sdf"* PArEn

d; - > A .
+ ;h (,4) 4 ' (p,) . (55)
The operators [4] are the infinitesimal generators for the second quantized
- -
theory. Under the translation T'(a®), rotation R(f) and pure Lorentz

transformation L(E) the set of operators (z) transformsto ¢'(z) by

¥(a) = e+e) = exp {(~iZe"[Pu]} ¥ (&) exp | iZa [P])

¥(@) = exp {—~ib[K)) ¥{z) exp (1K) .. (56)
W(x) = exp {~if. (2]} ¥(x) exp | 5. [2]).
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