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( Received 23 December, 1968 )

The reduction of the function which transf. as a antisy !
tensor to the irreducible rep ion of proper orthoch inhomog Lorentz
group, has been discussed by giving the proof of essential thcorem which is used for
the reduction. The effects of reality dition and wave jon are also di d

where the former reduces the expression to that of real wave function which transforms
as o real antisymmetric tensor while the latter restricts the number of independent
irreducible rep i By ing the total energy to be positive, the constants
of the expansion of wavefunction which satisfies wave ion, have been calculated
to give the cnergies for our cases corresponding to positive and negative values of
Haumiltonian density.

LisT oF syMBOLS

-
¥ (x, t) for wavefunction
¢ for imaginary quantity (-1)!®
i, j, k, «, B, v for integers (1, 2, 3)

>
B for pure Lorentz transformation.
>

6 for rotation.

o for translation.

F¥i for components of complex tensor.

0 for null matrix.

€qpy fot antisymmetric three index symbol.

V for Laplace operator.

7 for index denoting real and complex parts of wavefunction.
p for eigen values of mass operator.

¢ for eigerr values of operator H (1)

A for integer which lies between 1 and 2

% for spin corresponding to S

[ 135 ]



1% B. 8 Rajput

§; for spin matrix

7 for nit matrix

¢ for collective tepresen’ba

in given representation

wlup) for (p*42° )"
Z for summation
M(p, €) for measure function
0, D for constants

tion of the vatiables upon which the function
depends,

8, for Kronecker symbol.
d(u-m) for Dirac Delta function.

1, INTRODUCTION

All the relativistic particles were classified corresponding to the
irreducible representations of the proper, orthochronous inhomogeneous
Lorentz group by Wigner (1939) who showed how the wavefunctions for
these particles in the momentum representation transform under *the
transformation of the group. Moses (1966) showed how electromag
netic vector potential can be reduced to photon wave function in a linear
momentum basis. Here photon is defined as corresponding to a massless
particle of spin 1 in Wigner's classification. Using the result of Moses
(1965, 1967 a) reduction in linear momentum basis can be transformed
to that in angular momentum basis, Moses (1966) showed how the wave-
function of photon is contained m the vector potential while in other
paper by Moses (1959) the way that Maxwell’s equations contain the
photon wave-function is given. As discussed by Moses (1967b) the recipe
of Lomont and Moses (1967) enables one to reduce any unitary ray represen-
tation of the proper, orthochronous, inhomogeneous Lorentz group. The
methods of reduction have been discussed for both non-zeroand zero-mass
systems where for the former one obtains the Foldy (1956)—Shirokov
(1958, 1959) relations and for the latter one is led to the Lomont-Moses
(1964) realization. T}iese methods are applied by Moses (1967b) to reduce
the wavefunctions ¥ (z, 1) which transform by means of unitary transformas
tions to another function ¥(z, ) when the space time coordinates undergo
any transformation of the proper orthocronous homogeneous Loretz group,
to the irreducible representation of the group with the restriction to the
cases where only nonzero-mass irreducible representation appear. Itis
shown in those discussions that to reduce the wavefunctions only ﬂ’f

transformation properties are necessary while the requirement that ()
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satisfies the wave equation, restricts the number of independent irreducible
representations which appear. The reduction of the wavefunction which
transforms as a real antisymmetric tensor has been discussed by Moses
(1967b).  We reduce here the wavefunction which transforms as a complex
antisymmetric tensor by giving the proof of the essential theorem which
is used in this case. The effects of reality condition and wave equation
are also discussed.

2. TRANSRORMATIONS OF WAVEFUNCTIONS
We consider a complex antisymmetric tensor ;
Fii = Pt 4 F 7 w(2.1).
Where Fii and F¥ are real and imaginary parts of the tensor FY
with F = — P (antisymmetric) which transform as a tensor under the
transformation of proper homogeneous Lorentz group. It is proper to
introduce the wavefunction field discription of this tensor. For this we
define :

By = e ) 1 = et
HI%Z = Fp® Hy = FRal ’ ) “.(2'2)
By = Fpt® Hy=F»

HI.I = Ftﬂl , H.” = F’lﬂ ,
>
We then construct the two 3-components column vectors ¥x(z) and
>, : s
¥ (z) from Fg' and F," respectively as :

Wylz, b 1) = Bonlo, 0)—i H,p (3,0 23,

Y021, 1) = B, (7, t)—i H, .(3, ) } r=1,2,3.

The wavefunction here is the six components column vector formed
by placing the three components column vectors ¥ and ¥,

¥
we [ W,] o (24).
R Fpo! Fpit
rento-[ 2] 2

N F;Ul Fls:
= = [ 3 S 3 .
“'"“"(’"’)‘[ i ] L

where
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Generally we consider the set of the functions ¥(z,t, 1) given by
WG, 1, =Y (5 ) (5, 1,) e (2.6)

where the variable 7 runs through the set of*discrete or continuous values.
It is also useful sometimes to regard ¥(z,t) as being a column vector
with components ¥ (;, t, r) where every value of r has two signs one for
real components and the other for imaginary components.

> s > >

R
Here = denotes the space vector : o=,

Let 2*(1==0,1,,3) denotes the components of the spacetime four
component vector with &%= - x'=t, ?=%;, a?=%, and 2°=x, with the
units % ==¢~=1 then

Pa)="(, 1

Any transformation of the proper, orthochronous, inhomogeneous
Lorentz group can he rcg:udcd as the ptoduct of three particular trans-
formations, €. e translation ‘T((l«"), rot.mon R (9) and pure Lorentz trans-
formation L(ﬁ), where the direction of B is in the opposxte direction of
moving frame of refcrence and the magnitude f= Iﬁ | is given by
cosh f—(1-—v*!'¢, Under these transformations the components of = in
the new frames are given (Moses 1967) by

> 3> o+ >
o' =T(a)r=r--1,

z' =R (3) T =7 cos 0-I—1 (‘osg (0 :t) {smﬁ 0 x x) =exp (|0 M’)

@n
- e > S
F=L®)r=5+fr )( °°°‘I;ﬁ 1)+ﬁ (““;1 ﬂ)—exp(.p N
Where ' and N' are introduced by Moses (1966) and they satisfy the
‘commutation rules of the mfinitesimal generators of the proper orthochron-
ous, homogencous Lorentz group :

[ M ) =iZe gy M,
Y

[M, N'p|=iZ eugy N, w(28)
Y

C NN )= ey M.
Y



Reduction of wave function eic. 139~

The matrices M’ appear in reduced form and can be written as,

, 8,0
n; =[ o g, ] (29)

—
where, S=0 and matrices &', constitute the irreducible representations
of the generators of rotation group corresponding to the vector rota-

tions (Moses 1967b). Under these transformations the wavefunction '!‘(;)
transforms as follows,

. >
()= ¥ + o)
- > >
W(z) = exp (0.4 ) ¥ [R(~0) ] (2.10)
> > >
¥'(w) = exp (if.N) Y[L(-f)z]

Here the matrices M'; and N'; satisfy the commutation rules for the
nfinitesimal generators of the Lorentz group and can be used to generate
a ray representation of homogeneous Lorentz group. For this case these
matrices are given by M, =8; and N; = — 8" where &',, which are used
here in equation (2.9), are given by :

- -
(8 8P = 6(6 &)
then,

e . sin > o fcost—1\ A
exp (40.8") =1+ (6. S')( 0 )»1»(9.‘5' )-x( i —>= R
" >
where, 1 is unit matrix. Hence matrix elements of R (0) are given by,

0 in 0

[R(6)1up = 8ug cos 0 + 0"35 (cos 6-1)+Z eaiyfy |mey 2.12)
g " 9

Similarly. if :
-> >
L(B)=exp(ifN)

=1+ i(AN) (s—i";p ) + 8y (’170'11&)
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->
where (8.N)* = ~p* (B.N).
P
Then the matrix elements of L ( 8 ) are given by,

[LANes =B cosh = P oD%y SERE iy
3. REDUCTION OF WAVEFUNCTIONS

The ten infinitesimal generators of the proper, orthochronous, inhomo-
geneous Lorentz groups are the energy H, components of momentum P;
(i=1,2,3), the three components of angular momentum K; and the
three generators corresponding to space-time relations Z;, As operators
they are defined as,

P=P,i=1,1,3,
P”=-—P.,=H.=—W‘37 1.
X ]
P=— =—f o~ 1,
=tV l=—ige 1 (31)
K,=M,—ilzx V] 1. .
.9
Z,=N,+o[a:J-a-t——|-tV,] 1.
These generators satisfy the following commutation relations :
[P*, P ﬂ]=0_)
[£., Kﬂ]='f€aﬂv K,,
[K., Pa]=‘ffnarp 2 w(32)
[Zﬂ Zﬁ]_ ="2‘“57KV:

[Z., P°]=iP,,
[Z. Pg]=id, 4P,

Hence equations (2.10) can now be written as :

W’(—::)’)=exp [iZe’ ,]‘I’(:), ] . .

V) =exp [ }¥ (), (%)
-> -> ->

'(a')=exp [iB.2]¥(x). J

We introduce a complex function f(u,e,p,%), where, the vector ;
has components p; (i =1,2,3) each of which takes on every value
from - « to «. The variable 4 takes on all the eigenvalues of the mass
operator M, where, <

Mn[H'_.PzL with P==21P|’,
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The variable « takes on the values which occur in the spectrum of the opera-

tor H, 4 may have any value from 1 to 2s41 where ¢ is the spin correspon-
ding to matrices S,

If 2, ﬁ,-, 2, are the infinitesimal generators of the unitaty tay
represntation of Lorentz group then the function f(u,¢,p,) transforms
under these operators as,

P flue,p ) =21, p N =iy ) | (e,p ).

3 I A #op

Efleep)={ =i eyt B3, +5. f(€.0.A). (34)
z-f(l»‘yfnl';'\) =‘['; "‘(I‘l’) ala;, +w(;’p)+]X€ukP,8k]f(fl,5,p,t\).

k

where, o (pp) = [Wtpr ], -(35)

These generators satisfy the commutation rules as those of the genera-
tors P*, K, Z given b-y equations (32). Hence the required reduction of
the wavefunction ¥ (, ) is done if we express it in terms of f (4, €, 9, 4).
This can be done by using following theorem.

. .\ hd

“The expansion of the function ¥(x) which transforms as complex ten-
sor, m terms of irreducible unitary ray representation of the proper,
orthochronous inhomogeneous Lorentz group is given by,

¥ (x)::ﬂz'? dM (g ‘)jf—.zm exp [il;l. -;:—e o (1, P) ]

>
. >
xlo (4,81 (o D=2 LD i g G oml) 00
where, 7 has two values, one for ¥ wavefunction and the other for ¥,
wavefunction, @M ( p, € ) is the measure function of masses and ener-
gies which appear. Itis an arbitrary measure in Stieltzes sense.”
Proof : As discussed by Lomont & Moses (1967) we have,

f(;)=v1(;3=§ fd,;{ j ig; o X <1 wpa>f (e @0

where, f (£) is the representation of vector ¥ in the basis, being charac-
terised by the space of wavefunctions in Hilbert space upon which the
generators operate., ¢, collectively denotes all the variables upon which the
functions in the given representation depend. The transformation function
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<¢ | p€,p,i> may be considered to be the inner product of the bra
<¢ | and the ket | p,e,p,A > and it is given by,
<&l peph> =exp[-B.2] 9 (§pel), -(3.8)
where g ( &p,€,2 ) is the solution of the equations :
Py (épei) =0
Hy (§,m60) — ewy (&pel) . w(39)
This may also be written as :
g (E,peed) = <8 | pe,0,2 >
with,
Pel pepi> =P | mepiz, 10
| peph>=eo (p,p) | pepi>.
Using equations (3.1) we can write (3.8) as,
> >y >
§lment > = expL-iB.N +(Bw g+ ﬁ.vm:lg (Emed) (310

where,

;:»ey;{isin}lﬁ, ‘
w(np) = ncoshf, w(312)
p=|p| =nsinhp. ]

If we define a column vector £ (#ep,2) with componts x (714,6,0,4)
given by :

w(rimept) =exp( — :'E.N 1. ..(3.13)

then using the equations (39), (3'10), (3°11) and (3'1) and introducing an
arbitrarily chosen measure function M' (u,e) equation 43'7) can be
written as :

> - d , d
#(e) =222 [l (ne)[ o ey (mep ) o)

>
X exp [i{p.x—ew (4,p)t}]. . (314)

Using equations (2'13), (3'11) into (3'12) and then putting the values of
components of vector x(me,p,i) after labeling over 4 calculated in
this way, in equation (313) gives the required result (on absorbing

1, . .
; into the measure function ). Four irreducible representations of the
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inhomogeneous Lorentz group appear in the expansion (3'6) because
index y can take two values with two signs for both the values of r
separately. In equation (3.6) ¢ has two values, 4, ¢, 4 land — 1.

If we construct the vectors :

S Cmp)) =" (+1p)
Bo(mp) = (pn—1p)
M (p) =M (p+1)
No(p) =M (p-1)

where,* denotes the complex conjugate, then equation (3.6) is written as :

> d > >
‘””=?f'“"’(">ftrﬂ,",;,expunr.x—w(m)m
x Lo (mp)f (np) ~ELELLEL i 57 (1901

+,2de'(")[7(?'};; expl—i{p. 2 —a(pmp)t]]

> *.]L" ,
X L (s p) 1" (1, 2) B2 (2 )}

—i{p X (gp)}] ~(3.14)

Hence if we denote the arbitrary measures and functions by dashes as
superfix for imaginary wavefunction, then,

v =f am () ol (b 5o b 9 Ixalnn)

RIF IO I AT
Flr) o(mp)te itpx 1k )]

-I-fdM’(n)‘fﬁ”;)exp[i{;.;—w(u.p)tl]X[w(u,p)f‘(n,p)

PIS ()] o2o
R =i xS we))l

+ de(u)‘fﬁﬂ exp[-i{;-;—w(n.p)t}]

X 0 (up) I (up) — PABALBP)} _ifpxi® (1p))}]

a8 () 2P exp (7.5 (1, 9) 11X 0 (4] W (19

BB ()} 2 e , (15
w(u,p)+FL_’“’xh' () B
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4, REALITY CONDITION

1f the wavefunction contains only the real part then the measure func-
tion M need not be labeld by the index ,

)= (0 ) 2 oxp i il A1 o) S 2D

=itpx Ml ffave | (;(“,’f;,) exp [-i{p.2-+olp 2] X [olin p)W*(u)

>

B AR )
Moreover, y*=¢, so
> R -»—»h
Al DY)~ g5 T = )~ 22
)
and AHGaf0, PI=IN1pXDis, T, (43

Putting these values in (4.1) we get the expansion for real wavefunc-
tion ¥ which transforms as a real antisymmetric tensor given by Moses
(1967b).

5. WAVE EQUATION

Let us assume that the wavefunction which transforms asa complex

tensor satisfy the wave equation,

( - 2+m=) ¥ (7)=0 w(5.1)

where, m is the mass of the complex tensor particle. In terms of the
infinitesimal generator equation (5.1) can be written as,

[H-P ¥ (2) = m* ¥ (z) w(5.2)
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For any infinitesimal generator M, M¥(z) is obtained from equation
(3.15) by replacing f (#, p) and & (¢, ) by M f (4, ) and Mk (g, p), where
M’s are used in equations (3.4). Then equation (3.15) can be written as,

fao f ot 2) 1 )~ E0L B (ot (4,2

x explipa-w(e ) 0] + [ 8H) [—L— (umalu, 2) F' (1, 7)
oy, 9)

_ g{z»(!’(n_m —ifpxf (b, PN X exp[ipa-alu, 9)0)]
o (e, p+p

)i, Pk, p)—?—j,’g%gfggl—f {PX 1 (s, 2]

+ faw [ 2t

X exp g ol ) )+ JaN (3 f 2 =l ) ()

_1’_{;2'(%()1_’:-:—)}— ii {;. ™ (1,2))] X exp [{:; —w (up) ).
=0 (5.3)

Hence for f (1, #) and % (, p) not to be identically zero, M (4) and N (n)
ate constants for all the values of p # m. For p =m, they have a jump,

AN' = Dis(p-m) dp, dM' = C'8 (u-m) dp. w(5.4)
Where ¢ and D' are real positive constants. Then equation (3.15)

can be written as :

¥(2)=0 [ 22 exp il z)—w(p)tu[w(p)ﬂp)—”“{” S0 igpxito]

+0f e i3 ol Mo )22 By o)

+D j 9P exp[-4(11 z-u(p)i] [w(p)h'(p)—”“; )( Pl _itpxit(a]

3 30 explifp aofp] Lofp)i¥(8) P“” e xie)]
w(p) (55)
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where f (p) = f (m, p), h () = b (m, p), @ (p) = w (m, p). Equation (5.5)
gives general solution of the equation (5.2).
6. CALCULATION OF THE CONSTANTS
If H(x) is the Hamiltonian density of the field which leads to the wave-
function (5.2) then II'(x) = - H(z) is also the Hamiltonian density which
leads to the same wavefunction, and then the energy ¥ of the field is given
by = | H (z) dv. 'We choose the constants of the equation (5.5) in such
a manner that Z is always positive. We choose Hamiltonian density H(z)
for the cases,
M fE=h@=KE=0
@ fm=h@=r{m=0
B e =k@E=¥E=0
@ f@=Fr@=KE=0
H () is defined as usual, ‘
H@)=PP+7PYY+md¥ ¥ wrveens(5.6).
Then for the requirement that  is always positive we have,
C=D =) [2n]Ye
Then energies for all the four cases above are given respectively as
follows,
(1) Bf={*(0)f (p)dp
(@) By=( (p) I (p) dp
®) B ={* ()] (o) dp
(# By=[{n* (p)h(p) dp
When the state is the superposition of all the four modes then the
total energy % of the field is given by : :

BE=E, +B,+ B +E .. e (58
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