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An Initial value investigation into the li ised problem of axisy ric wave motions
in a fluid of finite and infinite depth d by a har ically oscillating three dimen-
sional source {8 made in this paper. An asymptoti lysis of the problem is carried
out in some detail for a clear understanding of the steady state and transient solutions.
The limiting behavi of the asymptoti lution as time tends to infinity is given due

attention.
. INTrRODUCTION

In recent years, an initial value investigation into the linearised wave
problems dealing with the generation of surface waves in a fluid witha
free surface by harmonically oscillating pressure distributions on the free
surface and sources beneath the free surface of the fluid, has received
considerable attention by Stokes (1957), Miles (1962), Debnath (1967, 1969)
and others. Debnath has explained the difficulties of the several methods
developed independently by Lamb (1905, 1923, 1932), Lighthill (1960, 1964)
and Thorne (1953) in connection with the steady state wave problems.
He suggested various reasons in favour of the initial value approach with a
special emphasis that the most rigorous way of deriving the unique
solution of wave problems, without the need for any of the essentially
physical assumptions of this methods stated above.

The primary aim of this paper is to investigate an initial value approach
to the linearised problem of axisymmetric wave motions in a fluid of
limited and unlimited depth produced by a harmonically oscillating point
source situated at a finite depth below the undisturbed free surface of the
fluid. An asymptotic analysis of the problem is carried out in some detail
for a clear understanding of the steady state and transient solutions.
The limiting behaviour of the asymptotic solution as time tends to infinity
has also been examined.

Thorne has considered the corresponding steady state problem and
obtained a solution of physical interest by imposing the radiation condition
at infinity. This solution is obtained as a limiting case of the initial value
problem conidered here.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

We consider linearised problem of axisymmetric wave propagation

in inviscid, incompressible and homogeneous fluid with a free surface
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(initially at rest) duetoa harmonically oscillating point source of fixed
frequency w.

We fix the origin of co-ordinates at the source at a depth D, below
the undisturbed free surface of the fluid and take X — Z plane to be
horizontal passing through the origin and Y-axis vertical positive upward,
We choose the cylindrical polar co-ordinates (R, 6, ¥) and assume the
cylindrical symmetry about the Y-axis such that R is equal to /X7 + Y%,

As the motion is irrotational, there exists a wave potential ®(R, ¥, T)
which satisfies the Laplace equation

Opn + Tt‘wl +®,=0 VAV

0K R<ox,DhgYLKD
everywhere within the fluid of depth & except at the source at (0, 0).
At R=0, Y=0, ¥ hastheform
= m M(R) ei*T
720, . (2.2)
=m M(R,Y) T
where m denotes the strength of the source with the frequency o and
RP=R+ Y2
The boundary conditions are given by
o+ 9E=0 (2.3)] Y=D
oy =By 24) T>0

where, E=E(R, T) represents the free surface elevation at a distance B
and at time 7', and g the gravitational acceleration.

The cendition at the bottom boundary is given by

¢ =0 at Y=—(k~D) «(2.5)
The initial conditions are given by
E(R,T) =0, everywhere at T =10 +(2.6)
®=0, everywhere except at (0, 0)
attime T =0 ] %))
O=mM(R)eT a (0,0,T 20

which are equivalent to

® = m M(R,) S(B)e™T, T30 . @
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We complete the formulation of the initial value problem with a three
dimensional source together with the further assumption that the functions
@ and E possess the Hankel transform with respect to R.

Remarks. The formulation of the correponding axisymmetric wave
problem as a steady state considered by Thorne can be obtained from that
of the initial value problem stated above, just by omitting the initial condi-
tions (2.6) — (2.7). Thorne investigated the steady state problem and
obtained a solution of physical interest by imposing the radiation condition
at infinity

3. FormAL SoLUTION OF THE PROBLEM
For simplicity, we introduce non-dimensional variables r, y, d, ¢, ry, 7
and # defined by the relations
(uidn) = < (8,7, 5, k)

*E
t =oT, ¢=m—:’lw, r)=:;“
and we introduce a non-dimensional parameter D by the relation.

D=yt
.

These relations enable us to rewrite the fundamental equations (2.1)—(2.7)
into the form

$tle 44, =0 1)
0<r<w, (I-D)<y<d

everywhere within the fluid except at (0,0), At r=0,y = 0,; has the
form
= HMr) 30 - .0
The boundary conditions reduce to
$+n=0 (3.3)

¢y =m (34)
The condition at the bottom is then

] y=2, >0

% =0 at y=d—D .03
The initial conditions are given by
n(r,t) = 0, everywhereat ¢ =0 . (3.6)
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=0 everywhere except at (0, 0) ]
attime ¢ =0

b= H(r)) at (0, 0),t 20 (3.7
which are equivalent to
¢ = M(r)8(re" at t 20 ..(38)
Now we introduce a bounded expression
$=¢— ") .39

forall 7,y and ¢

Making reference to this relation (3.9), equations (3.1) — (3.7) can
further be put into the form

bt L4820

..(3.10)
0sr<oc,d-DKy<d
$+n=—iMr)  (I)y=42
brom==t 2 M) 130
by = — ci‘% M(r) aty=(3—D) (3.13)
=0 everywhere at ¢ = 0 ..(3.19)
= — e"MY(r) everywhere except
at (0, 0) att =0 .(3.15)
$=0 at (0,00 t20

We introduce the Laplace thansforms ¢, 7 of 8, 7, respectively, with
tespect to ¢ by the integral like
w
F=dry;0) = Sr% (ryiHdt
o == - -
We next introduce the Hankel transforms ¢, # of functions §, 7, respec-
tively, with respect ta r by the integral like

;=;(k.yw)=sﬂ £y (kr) §(r, y;8) dr

The joint Laplace and Hankel transforms enable us to transform equations
(3.10)—(3.15) into their equivalent forms as

$ry=B4; 0Sk<a, @-D)<y< (3.16)
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a—1

sdFn+—— M, =0 ~310) | y=1

-+ M'¢=° ~(318) | #>0

8 —

where M, M, are given by the integrals

oo

My =M, (kd) = S rJy (kr) M (r,d) dr

0

. (3.19)

My =M, (kd) = T r Jy (kr) a;ﬂ_(r'fi) dr
0 oy

§ = - i(',,(k:%ﬂ aty =@~ D) ( 3.0
:) = 0 everywhere at § = 0 .. (3.21)
- M
:&= —(;_—‘i)cxceptat E=0y=008=0 ] Com
$=0 at(0,0) s3>0

The solution of equation (3.16) with the boundary conditions (3.17), (3.18}
and (3.20) can be obtained in the form

;(k, y;8) _:Ma(ku D— '—j) ekl d-2-D)

k(s — 1)
+[Mg(k, D — d)e*p (1 —%’) B {‘"ﬂ(". d) + My(k, @) } ]
+ cosh k(y — d + D) .{3.13)

(8 — i)(s% + ) cosh kD

And the expression for ;(k, 8) is given by
2 -
a[M,(k, d) — o2M,(k, 3) — ( 1+7':-)M,(lc, D- d)e'“’]

’7(’6, 8 = B=i@E+a) -

L0.4)
a? = o®(k) = k tanh kD L (3.95)

Using the inversion theorem for the Laplace and Hankel transforms
combined with the convolution theotem for the Laplace transform, we
obtain the wave potential ¢(r, ¥ ; ¢) in the form
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#950= {[ 2,0, = G-
: 0

coshk(y — d + D) enkd
v e (R MOL R

+ oM ,(k,d) — My(k, fi)}ka"'

—d =k D - — 5
- %ﬂ{ T Mtk D 4 @) + MG d)} et

cosh kly —d + D) 1, a\
t “(a® =1) cosh kD { ( ot Tc) e tOMy(k, D — d)

a
+ aMyk, d) — y.%'_"l } (¢sinat + acos at] Jy(kr)dk ..(3.26)

This is a general expression for the wave potential (r, y ; #).

Similarly, we can derive the expression for the surface clevation #(r, ) as

”0,1) = S [{M.(k. &)~ M, )

u2
_((1 - ) e~ kOM,(k, D —3)} ie¥
- u* -
Hnged - e (14 ) oo, v i)

(a sin af — i cos at)] k(a® — 1)"Wy(kr)dk ...(3.27)

This is a general integral representation for the surface elevation (r, f).

We next derive the integral form of the wave potential ¢(r, ¥ ;t) as
well as the surface elevation 7(r,t) in case of a fluid of infinite depth
(. when D - ) uas

gy i) = S Kk — 1)40=0 J, hr)
o

(U, — Mo+ (Hy = 1) cos B + 7 sin v FO)
(3.28)
nr, ) = § (Mg — kM,)(ie" — i cos /K.t + v/ sin v/k. 1)
’ X b — 1)1 (kr)dk . 6.19)
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Remarks : The integral representation of the solution for the wave
potential é(r,y ;¢) and the surface elevation 7(r, ¢) in a fluid of finite and
infinite depth cannot, in general, be worked out exactly except for simple
cases of interest. Hence one needs asymptotic methods (Copson 1965) to
evaluate them for a clear understanding of the wave motions, We propose
to do it in the next section,

4. AsymproTiC TREATMENT OF THE PROBLEM FOR SOURCES
OF PHysicAL INTEREST,

An important three dimensional source of independent 1nterest
related to a particular form M(r;) as

_ _1__1
M) = M(r,9) = W o VEL
would be considered.
Then
( duleryir et
M'=S Ve d T
1 d
R e .
A
whered > 0.
These lead us to obtain the wave potential ¢(r, ¥ : f) in the form

#r, y; )= Se“e"‘”'”’"’
0

cosh by —d+ D) [, 47 __ -bisp-1 | { £+ 11,4
+= cosh kD {e ¢ }(a'—l)el

k cosh k(y —d + D){e-mo-?) — ki }(L+1)

t @ —T)cosh kD a Tk

xk (i sinat + a cos ut)] Jo(kr)dk (41)
Similarly, we find

[
y(r,f) = § { e-h(2D-F) __ e"‘7}
°

X {ie" + (asin ot — cos at)}(a® + K)(a® — 1)"Wolkr)dk  ...(4.2)

Making D — o, the corresponding result for (v, % ;¢) and (7, ?)
in the case of infinite depth can be obtained as
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3

¢,y 0) = \"*""7’

o
E(\ + ke — 2(k cos 4/kt + § 4/ sin /kt) ]
. x (k—1)"1Jy(kr)dk ...(4.3)
nr. ) =2 Skt""?(l'c“ —icos vkt + 4/k sin y'kt)

X (L -~ by No(kr)de  ...(4.4)
Remarks :  We thus obtain
$(r, ¥ 50 = Mlr)e* + ¢(r, ¥ ;1) . (4.5)
where ¢(r, ¥ ;1) is given by the integral (4.1) or (4.3) according as the
depth of the fluid is finite or infinite.

This integral expression for ¢(r, ¥ ;t) contains a transient term in
addition to a steady state term which is the solution of the corresponding
stationary problem considered by Thorne. In order to compare Thorne's
steady state solution, one has to treat the integral for ¢(r,¥;¢) as the
Cauchy principal value, which is permissible.

It may be noticed that the integral for ¢(r,¥ ;) has no singularities
in (0,m). Hence the path of integration can be deformed into a path M
(say) in the & =k + ip plane, which coincides with the range (0,)
except that it is diverted round the zero of the denominator. We then
break up the integral into a sum of components where the integrals do
become singular at the zero of the denominator.

Then it is possible to work out each component asymptotically by
asymptotic methods combined with calculus of residues. Unfortunately,
Thorne did not evaluate the steady state wave integral obtained as a

solution. We propose to evaluate the solution for 1(r, f) asymptotically
in a considerable detail.

w1

Mo
0 4 *

- s:ko

L4
\L
x

Pigure 1. The ss=k+{ plane.
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An argument similar to the wave potential ¢(r, y ;) enables us to
obtain 7(z, t) in the form :

ant)=hL+ I,

where I, and I are given by the integrals
2
I =ie® S{r'l'DJ’ —e }(H)Jn(ar)da
M

I, = S{c"'"”"’ — e"‘r}(a sin ¢ — i cos af)

* 4
x (z.—-_;’) Jo(ar)ds.,

With e =a(s) = (/stanhsD , # =k, is the only real root of the
equation
a?(s) =1
in (0,) and -7 < args < =,
To evaluate the steady state integral I,, we replace J,(sr) by a pair of

Hankel functions (Whittaker & Watson 1920), Ho'¥)(sr) and Hy!?'(sr). Asa
consequence, we obtain

L = (I + 1)

where I’ and I," are given by
~8(2D~d) —ad) [a® + & ()
I’ =S{e —e }(‘;*" )Ho (sr)ds
o —1
M
—a(2D—d) —ed) [a® 4 &\ (@)
I’ _—_S{e —e }( . )H., (sr)ds
o — 1
M
We take contours Iy and T’y for the integrals I’ and I,", respectively-
They are bounded by the path M, p-axis and the circular arcs (), Cy lying

in the first and the fourth quadrants, respectively. We then make reference
to Cauchy’s theorem of residues, and it follows from partial integration

that the integrals along the p axis are 0(%)

For evaluating the integrals along the arcs Cy, Cy, we replace the Hanke!
functions by their asymptotic value for large sr and it can be shown easily
that the value of the integrals tend to zero as the radii of the arcs tend to
infinity.
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Thus, it turns out that

ot (kg)}l —ky(10-D) _k;u} ( 2 )i
Y TTWE) ) -

(s —rky T
o TR D +°(‘}' ) - 46)

where the function W(s) is given by

W) =a?(s) 1, ..(4.7)

In order to perform evaluation of the integral Iy, we first replace the
Bessel function J (ar) by its integral formula (Whittaker & Watson, 1920).

2 e
Jo (o7) = - g cos (v cos 0) do,

Then it follows, by a simple rearrangement of the integrand, that

. L
T
L= s g (Lt Tat Ly+ Ly) df, --(4.8)

5

where Ly, Ly, Ly and Z, are given by the integrals

=i 2D~d) - ~i(at - s cos
Ll"i[g 2 —e ](7‘:2_1,'{)6(l N”dl

—d —s(vD-1) ie reo
Lg=§i{g‘,,_e‘z }(.‘;l_jl,_)e('”‘ ')da

La - S e.:l"— e—v(aD-nﬁ } ( of 48 ) g‘(‘“ $rcos g) is
] o—]

L‘ - S 1 e-ml)—i)- e—ll'} (“at+, ) a~l(¢l+um [} ds
M a+1

It may be observed that these transient integrals are very much similar
to those already encountered before in Debnath (1967) and Debnath &
Rosenblat (1969). Hence a similar asymptotic technigue can be applied
to evaluate them. Having done this, we work out the 6- integral involved

in the integral I; by the method of stationary phase {Copson 1965) for
large values of 1.

Finally, we obtain the following asymptotic representation of the
surface elevation 7 (1, £)
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N8 ~ (2_,)» {a®(k,) + ko) {‘—k,( w -‘d)_ e-k;d}

tky, | T WK,
r ot - rky+7)
¢ v >k, k
X 4
(4~ vk + T) i{ ta(ke) ~ vk + T
P -;—[1+u(k..)le' VTt <k,
L J
—kd - k2D —ad)
la®(ky) + b} {¢ —¢
* AR T
~{rky — ta(ky)} s{rky — ta(ky)}
e e .
X Tl —1 T ek +1 (49)

In the case of 2 fluid of unlimited depth (i. e. when D — =), the
asymptotic representation of the surface elevation is given by

r —r+D)
,,(r,:)~[—2—,"—= ‘,v>1r] .

0 , L L
an
-
e t ¢ R 1®
e L) (9] e

Remarks : It may be remarked that the solutions (4.9) and (4.10) become
invalid at &, = kg and #=2r, respectively. We are particularly interested in
the asymptotic solution for large values of ¥, > k; and ¢ 3 2r. So it appears
to us that the computation of the solution for 7 ( r,¢ ) valid at &, = k; and
t = 2risnot so important in the present analysis. However, it can be
done by a method similar to Wurtele (1955). '
5. DiscussioNn or THE WAve MoTmions

The above asymptotic analysis reveals an interesting conclusion that
the transient term involved in the asymptotic solution for the surface
elevation 7 ( r, ¢ ) does tend to zero as? tends to infinity for fixed values of

rand d (# 0). Asa consequence, an ultimate steady state is set up. I
fact, the asymptotic value of 4 ( 7, ¢ ) assumes the form

,,(,-,1)-—-_.2\/__?’5 : (l——r+—‘-) -d
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This corresponds to progressive circular waves advancing with the phase
velocity —::— and the group velocity —z% , and the amplitude of the waves

decays like r_' .

On the other hand, when the source is on the free surface of the
fluid (i, . when @ ~» 0), the asymptotic solution for 7 (r, #) has the form

=LA e
1’("').{' \)re'“ MRNETNE P
0 , t€ 2

L]
)

This solution suggests that the transient term is now free from the expon-

ential factor ¢~ Wl and hence it does not tend to zero in the limit {— cc
for fixed r. In other words, the solution does not tend to the steady state
in the limit when the source is situated on the undisturbed free surface of
the fluid.

Furthermore, it may be observed that the nature of this asymptotic
solution has a similarity with that obteined in Debnath (1967a) and Debnath
(1967b) due to a harmonically oscillating pressure distribution with the
forcing frequency w in the form

P(RT)= p%") ¢oTH(T)

acting on the undisturbed free surface of the fluid. To explain the strange
character of the solution, physical and mathematical arguments similat to
those suggested by Debnath (1968, 1967) in detail can also be advanced here.
To avoid duplication of similar discussion, reference may be made to the
above works of the author,

Next, proceeding to the limit r — o, for fixed ¢, the solution for
7(1#) given in (4.10) behaves as

el = ——"ﬁ‘—’i'): 35 o [gr) = ¥ o8 )]

Finally, if the source is situated at an infinite depth (e, when d = o)
in an infinitely deep fluid, the solution for the sutface elevation 7(r,i)
becomes exponentially small as really expected,
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