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On Initial development of aXisymmetric waves due to sources 

By L. DEBNATIi· 

Department of MathemalicB.ImperiaICoIl.ge.Uni~.r.itll of London. 

Received 3, Oclober. 1969, 

An inidal value Investigation into the linearised problem of axisymmetric wave motions 
in a fluid of finite Bnd infinite depth generated by Q harmonicllUy oscillating three dimen­
sional source is made in this paper. An asymptotic analvsis of the problem is carried 
OUt in Bome derail for a clear understanding of the 5teady state and transient BolutJODII. 
The limiting behllviour of the asymptotic solution as time tends to infinity is given due 
attention. 

1. INTRODUCTION 

In recent years, an initial value investigation into the IineaIised wave 
probletns dealing with the generation of surface waves m a fluid with n 
free surface by harmonically oscillating pressure distributions on the free 
surface and sourCes beneath the free surface of the fluid, has received 
considerable attention by Stokes (1957), Miles (1962), Debnarh (1967,1969) 
and others. Debnath has explained the difficulties of the several methods 
developed independently by Lamb (1905, 1923, 1932), Lighthill (1960, 1964) 
and Thorne (1953) in connection with the sready state wave problems. 
He suggested various reasons in favour of the initial value approach With a 
special etnphasis that the most rigorous way of deriving the unique 
solution of wave probletns, without the need for any of the essentially 
physical assumptions of this methods stated above. 

The primary aim of this paper is to investigate an initial value approach 
to the Iinearised problem of axisymmetric wave motions in a fluid of 
limited and unlimited depth produced by a harmonically oscillating point 
source situated at a finite depth below the undisturbed free surface of the 
fluid. An asymptotic an.lysis of the problem is carried out in some detail 
for a clear understanding of the steady state and transient solutions. 
The limiting behaviour of the asymptotic solution as time t"..nds to infinity 
has also been examined. 

Thorne has considered the corresponding steady state problem and 
obtained a solution of physical interest by imposing the radiation condition 
at infinity. This solution is obtained as a limiting case of the initial value 
problem conidered here. 

Z. MATHEMATICAL FORMULATION or THE PROBLEM 

We consider Iinearised problem of axisymmetric wave propagation 
in inviscid, incompressible and homogeneous fluid with a free surfa~ 
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(initially at rest) due to a harmonically oscillating point source of fixed 
frequency w. 

We fix the origin of co-ordinates at the source at a depth I), below 
the undisturbed free surface of the fluid and take X - Z plane to be 
horizontal passing through the origin and Y-axis vertical positive upward. 
We choose the cylindrical polar co-ordinates (B, 6, Y) and assume the 
cylindrical symmetry about the Y·axis such that B is equal to V Xi + Y". 

As the motion is irrotational, there exists a wave potential ~(B, Y, T) 
which satisfies the Laplace equation 

o:r;; R < 0::, D-h ~ Y :r;; D 

everywhere within the fluid of depth h except at the source at (0, 0). 

At B = 0, Y = 0, ~ has the form 

= m M(B,) .ioT } 
T-;:' O. 

= m M(B,Y) .roT 

" (2.1) 

_ (2.2) 

where m denotes the strength of the source with the frequency wand 

R,'=B'+f2. 

The boundary conditions are given by 

tPr + gE = 0 

tPr = Er 

(Z.3)} Y = if 
(2.4) T> 0 

where, E=E(B, T) represents the free surface elevation at a distance B 
and at time T, and g the gtavitational acceleration. 

The condition at the bottom boundary is given by 

~r = 0 at y = - (h - D) 

The initia I conditiolls are given bv 

R(B, T) = 0, everywhere at T = 0 

~ = o. everywhere except at (0, O)} 
attime T=O 

!fJ = m M (B,) SloT at (0, 0), T -;:. 0 

which afe equivalent to 

~=mM(B,)8(B)eltor, T,O 

... (2.5) 

... (2.6) 

.. (2.7) 

... (2.7) 
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We complete the formulation of the initial value problem with a three 
dimensional source together with the further assumption that the functions 
(/I and E possess the Hankel transform with respect to R. 

Rema,k.. The formulation of the correpondlng axisymmetric wave 
problem as a steady state considered by Thorne can be obtained from that 
of the initial value problem stated above, just by omitting the initial condi­
tions (2.6) - (1.7). Thome investigated the steady state problem and 
obtained a solution of physical interest by imposing the radiation condition 
at infinity 

3. FORMAL SOLUnoN OP THB PROBLI!M 

For simplicity, we introduce non-dimensional variables', y, .t; t, '" ~ 

Bnd t/> defined by the relations 

(', y; if, ,,) = ~ (R, Y, 15, R, ) 
9 

9 'E 
I = OJT, t/> ~ -. <fI, ~ = t" mILl mw 

and we introduce a non-dimensional parameter D by the relation. 

D = OJ'h. 
9 

These relations enable us to rewrite the fundamental equations (2.1)-(2.7) 
into the form 

- 1- -
t/>" + ;"" +."" = 0 ... (3.1) 

0';;;, < cx:, (iI - LJ) .:;; " .:;; ii 

everywhere within the Iluid except at (0, 0), At , =0 0, 1/ = 0, ." has the 

form 

The boundary conditions reduce to 

(3.3) } 

(M) 

The condition at the bottom is then 

~. a 0 at 11 = l - D 

The initial conditions are given by 

~('. I) .. 0, everywhere at j - 0 

... (3,Z) 

I> 0 

... (3J} 

... (3.6) 
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~ = 0 everywhere except at (0, 0) } 
- attime 1 .. 0 
'" = 8" M('I) at (0, 0), I ~ 0 

which are equivalent to 

-'" = M('1)8(r)ell at I ~ 0 

Now we introduce a bounded expression 

'" = '" - eIIM(,,) 
for all r, 11 and t. 

••. (3.7) 

... (3.8) 

... (39) 

Making reference to this relation (3.9), equations (3.1) - (3.7) can 
fu rther be put into the form 

.p" +1.+,+ +" = 0 , ... (3.10) 

(3.11) II = ii 

'1 a M( 1 ..... "', - TI, = - e' ay '1) (3. 2) I ? 0 

+, = - ell!.. M(,,) at y = Ci - D) 
iJU 

'1 = 0 

+ = - e"MC',) 

everywhere at t = 0 

everywhere except } 
at (0, 0) at I = 0 
at (0, 0) I ~ 0 

... (3.13) 

... (3.14) 

... (3.15) 

We introduce the Laplace thansforms~, ~ of +, ~, resrectively, with 
t~spect to t by the integral like 

~ = ;PCr,'!/ ; .) = ~8-"~ C', II ; I) dt 

o 
We next Introduce the Hankel transforms ;, ~ of functions~, ~,respec­
tivel V. with respect to r by the Integral like 

~ = ~ Ck, II ; .) = [ , J. (1;1') ~ Cr, II ; .) dr 

The joint Laplace and Hankel transforms enable us to transform equations 
(3.10)-(3.15) Into their equ\wlent forms 8S 

~n = .. ~; 0 ~ Ii < ex, (il - D) ~ II ~ a ... {3.16) 
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= = B 
8 ~ + 7) +--. 1M, = 0 . -. 
= = M 
~y-8 '1+-'-. =0 .-, 

.. (3.17) 

.. (3.18) 

where M" M. are given by the integrals 

M, = M, (k,iI) = r r J o (kr) M (r,il) dr 
o 

M, = M. (k,'d) = 1 
o 

r J o (kr) ~ (r,iI) dr 
ay 

at y = (d - I) 

~ = 0 everywhere at 8 = 0 

= M 
~ = - "----'.- el<cept at k = 0, y = 0, 8 = 0 } 

(8 -.) 

+ = 0 at (0, 0) 8 ); 0 

8> 0 

.. (3.19) 

( 3.20) 

.. (3.21) 

" (,,22) 

The solution of equation (3.16) with the boundary conditions (3.17), (3.1S) 
and (3.20) can be obtained in the form 

:L(k Y . 8) _:If,(k, D - ill ,'t1-Y-Dl 
'I' ,. , k(8 _ .,) 

+[ M,(k, D - d)e-on ( I-f) - {M'(k, ill + .·M,(k, ill } ] 

+ cosh k(y - d-+ D) 
(0 - ;)(8' + a') cosh kll 

And the expression for ~(k, 8) is given by 

... {l.23) 

= { M.(k, tI) - a'M,(k, ill - ( l+f)M'(k, D - 'd)e- IV] 

n(k, 8) =--_. (s ':"'-i) (8 + a') 

... (3.24) 

Q' = 0.'(10) = k tanh kD ... (3.95) 

Using the inversion theorem for the Laplace and Hankel transforms 
combined with the convolution theorem for the Laplace transform, we 
obtain the wave potential ~(r, y ; t) in the form 
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",(f, y ; t)' = i [ M,(k, D - dj,l(d-'-DI+iI 

, . 
+_cO~~k=-_;u.!D{(k + a') ,-I"M,(k D _ dj 

(a' - 1) cosh kD k' 

+ a'M,(k,d) - M,(k, d)}k.;, 

- cosh ~~shkt + /)l{ '~k~ M,(k. /) + ill + MI(k, dJ} k."' 

+ cOShk(y-(r+D){(.!..+~)'-IDM(k D-ilj 
(a' - I) cosh kD a k ' , 

+ a 1I,(k, ill - !11~' ti)} (i sin at + acos at] J,(kr)dk 

This is a general expression for the wave potential "'fT, y ; t). 

.. (3.26) 

Similarly. we can derive the expression for the surface elevation .,(t, t) as 

'1(', r) = ~ [{M,(k, a) - a'M,(k, d) 
o 

-((11 ~ ) ,-lnM,(k, D -ii)} i."' 

+{M'(k, d) - a'M,(k,d).(1 ttl) ,'·"'M,(!!, 11 -til} 
(a sin at - j cos at) ] kIa' - It'J,(kr)dk .•. (3.27) 

This is a general integral representation for the surface elevation 'I(r, t). 

We next derive the integral fotm of the wave potential ",(f, y ; t) as 
well as the surface elevation ~(r, I) in case of a fluid of infinite depth 
(/.p. when D -> 00) as 

~ 

.p(r, y ; t) = \ k(k - 1>-",,,-il J,(h) 

• 
(H, - M,)." + (M, - k II,) (cos Vlct +:j~ sin v kl.) 

... (3.28) 

~(r. t) = ~ ~M. - kM,)(i.I, - i cas vk. t + vI< sin Vk. t) 

X k(k - l)-lJ,(kr)d,\: .. (3.29) 



686 1. Debnath 

Remarks: The integral representation of the solution for the wave 
potential ;(', Y ; I) and the surface elevation ~(', I) in a fluid of finite and 
infinite depth cannot, in general, be worked out exactly except for simple 
cases of interest. Hence one needs asymptotic methods (Copson 1965) to 
evaluate them for a clear understanding of the wave motions. We propose 
to do it in the next section. 

4. ASYMPTOTIC TREATMENT OF THE PROBLEM FOR SOURCES 

OF PHYSICAL INTEREST. 

An important three dimensional source of independent mterest 
related to a particular fOlm M (r,) as 

1 1 M(r) = M(r y) = - = ~ 
, , " v'r'+y' 

would be considered. 
Then 

_ r'-~.(krl'!: _ e- kJ 

.41, - ] I r' + d' = T' 

~ 

M, = - ~ .Jo(k,) --~-- dr = _ ell 
o (r' + d·)·I' 

where d > O. 

These lead us to obtaln the wave potential .p(r, y : I) in the form 

'" 
;(r, y; t)= ~ .'"II,/-,D-" 

• 
+~?sh key -d + D) {rid _ .-IIID-11 } I It + 1 )"i' 

cosh kD la' - 1 

+ k cosh key - ii +_0{e-1 I'D-1) _ .-li } (.1 +_a_) 
(a' - 1) cosh kV a k 

x k (i sin al + a cos at)] J.(kr)dk 

Similarly, we find 

~(r, t) = r { e-tl'D-I) - .-k7} 

• 

... (4.1) 

X l' e" + (a sin at -; cos atlj(a' + k)(aZ - It'J,,(krldk ... (4.Z) 

Making D ...... oc:. the corresponding result for ;(r, y ; t) and ~(r, I) 
In the case of infinite depth can be obtained as 
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~(r, y; t) = \-.11,-.71 
• 

[(1 + k)," - 2(1; cos vkt + i Vk sin v'kt) ] 

x (I; - 1 )-' J,(k,)dk 

~(,. t) = 2 ~~-k7(i'" -icos v'1;1 + vk .in y'kl) 

Remark.: We thus obtam 
X (1 -- k)-IJ ,(kr)dk 

(I(r, y : t) = M(r.)e ll + ~(', y : t) 

... (4.3) 

•.. (4.4) 

. (4.5) 

where ~(r, y : t) is given by the integral (4.1) or (4.3) according as the 
depth of the ftuid is finite or infinite. 

This integral expression for .Jo(r,!I; t) contains a transient rerm Itl 
addition to • steady state term which is the solution of the corresponding 
stationary problem considered by Thorne. In order to compare Thome's 
steady state solution, one has to treat the integral for "'(',!I; ') as the 
Cauchy prinCipal value, which is petmissible. 

It may be noticed that the integral for ",(r, y ; t) has no singularities 
In (0, a:». Hence the path of integration can be deformed into a path M 
(say) in the 8 = k + i~ plane, which coincides with the range (0, a:» 
except that it is diverted round the zero of the denominator. We then 
break up the integral into a sum of components where the integntls do 
become singular at the zero of the denominator. 

Then it is possible to work out each component asymptotically by 
asymptotic methods combined with calculus of residues. Unfortunately, 
Thorne did not evaluate the steady state wave integral obtained as a 
solution. We propose to evaluate the solution fat ~(r, t) asymptotically 
in • considerable detail. 

o~ __ ~~X-JL-----~----------~ 
1= ko 

Figure I. Tbo •• ~ + I pllno. 
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An argument similar to the wave potential ~(" y ; t) enables us to 
obtain ~(:t. t) in the form 

~(r.!) = I, + I, 
where " and I, are given by the integrals 

I, =;e;' H--'IID-7) _ .-'7}(::~ ;)Jo(ar)d8 

M 

T. = Hc-,tW-di - _-,r}(a sin .. t - i cos at} 

M 

(a' + ') x a' _ 1 J ,("las. 

With a = ,,(s) = V, tanh .D •• = k. is the only real root of the 
equation 

.'(s) = 1 

in (0,0:» and _ < argo ~.". 

To evaluate the steady state integral I" we replace Ju(sr) by a p>tlr of 
Hankel functions (Whittaker & Watson 1920), Hotl)(.r) and II.t')(ar). As a 
consequence. we 0 brain 

I, = fe"(l,' + I,') 

where I,' and I,' are given by 

({-.(2V-tiJ -od-}(a' +") (2) 
I,' = J • -e ""=-1 Ho (sr)dB 

M 

We take contours r, and r, for the integrals I,' and I,', respectively. 
They are bounded by the path M, ,,-axis and the circular arcs a" G.lying 
in the first and the fourth quadrants, respectively. We then make reference 
to Cauchy's theorem of residues, and it follows from partial integration 

Ihat the integrals along the p. axis are o(}) 
For evaluating the integrals along the arcs C" C" we replace the Hankel 

functions by their asymptotic value for large 8r and it can be shown easily 
that the value of the integrals tend to zero as the radii of the arcs tend to 
infinity. 
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Thus, it turns out that 

I (1:. + II' ( •• )1 {-koI2D-dj -kod 1 ( 2" )f 
I - W'(k.)' - e ,1: • 

• (.-rk. + 1!) (1) xe +0 -, .. (4.6) 

where the function W(_) i. given by 

w (.) := fl' (s) - 1. . .(4.7) 

In order to perform evaluation of the integral I I, we first replace the 
Bessel function J, ( ... ) by its integral formula (Whittaker & Watson. 1920). 

," 
J. (sr) =; \ cos (.r cos 8) d9. 

Then it follows, by a simple rearrangement of the integrlllld, that 

I. = 2~-") (l ... p;,-+ L,+];,) d8, .··{4.8) 

where J'b L" L, and L. are given by the mtegrals 

L, = t { e -'I .D-ll - • -.1 1 ( .:' ~.i ) -i(lll_ nUl '1 
• d, 

L, = H ,4 __ • -.I.D-11} ( :':t ) /1" t"'·'l d. 

,-e ___ • d. -,r -,I.o-li} ( II' + 8) ,(0/ + """1 
a-I 

• - •. • d. 
-,,,u-/, -.i} ( II' +. ) -"./ + ,,,. '1 

",+1 

It may be observed that these transient integrals are very much similar 
to those already encountered before in Debnath (1967) and Debnath & 
Rosenblat (1969). Hence a similar asymptotic technigue can be applied 
to evaluate them. Having done this, we work out the 6- integral involved 
in the integral I, by the method of stationary phase (CoplOn 1965) for 
large values of I. 

Finally, we obtain the .followlng asymptotic representation of the 
,urrace elevation"" (r, I) 
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• (r, I) ~ (~)t {"·(k.L±-~ { -ke(UJ --d) -k;;i} 
, .k. W'(k,) e - t 

r ;C'-'ko+~) I 

x I' ,k,>k. I 
i(l - ,k, + i) 1 { } '(la(k,.) - "'. + i } 

• - I 1 + oo(k,) • ,k, < k. 
L .J 

,,,,'(k,) + k,l' - • {
-k'd - k,(ZD - if)} 

+ ---{'4;-r::Tj T-k,'I'J_"·("k, .... }"I }rrl---'-

-I,k, -Ia(k,)} .{,k, -Ia(k,)) 

• • x oo(k,) -I - ~-I- ... (4.9) 

In the case of a fluid of unlimited depth (i. e. when D .... oc), the 
asymptotic representation of the surface elevation is given by 

[ 
2" i(I-'+i) ] 

~ (r, I) _ - 2.- • , t ~ 2, 

o , t <: 2. 

dl' 

V;:-(~-I) [;, .. (~) -; ~ (~)] (41. 

Remllrk8: It may be remarked that the solutions (4.9) and (4.10) become 
invalid at k, = k. and 1=2r, respectively. We are particularly interested in 
the asymptotic solution for large values of k, > k. and t » 2 •. So It appears 
to us that the computation of the solution for 'I ( r, t ) valid at I., ~ k. and 
I = 2. Is not so important in the present analysis. However, it can be 
done by a method similar to Wurtele (1955). 

5. DISCUSSION OF "niB WAllE MOnONS 

The above asymptotic analysis reveals an interesting conclu!ion that 
the transient term involved in the asymptotic solution for the surface 
elevation 'I ( r, I ) does tend to zero as I tends to infinity for fixed values of 

r and d (* 0). As a consequence, an ultimate steady state ie set up. In 
fact, the asymptotic value of 'I ( r, I ) assumes the form 

• (I-rtf)-"oi 
'I ( r, j ) - - 2 V ~~ • 
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This corresponds to progcessive circular waves advancing with the phase 

velocity ~ and the gcoup velocity {(II , and the amplitude of the wives 

" -I 
decays like' . 

On the other band, when the so~rce is on the free surface of the 
fluid (i. e. when a .... 0), the asymptotic solution for ~ (r, I) has the form 

[ '-2~~"('-'+T) J 
~(r,t)_ r , t > 2r 

o ,t <: 2, 

{;; sin(~)-icos ($)J 
vrr'(; -I) 

This solution suggests that the transient term is now free from the expon­

ential factor 8 -ll'/4r' and hence it does not tend to zero in the limit H- ee 
for fixed r. In other words, the solution does not tend to the steady state 
in the limit when the source is situated on the undisturbed free surface of 
the fluid. 

Furthermore, it may be observed that the nature of this asymptotic 
solution has a similarity with that obtained in Debnath (1967 a) and Debnath 
(1967b) due to a harmonically oscillating pressure distribution with the 
forcing frequency .. in the form 

P(B,T)= P ~(B) e'·TB(T) 
B 

acting on the undisturbed free surface of the ftuid. To explain the strange 
character of the solution, physical and mathematical arguments similar to 
those suggested by Debnath (1968, 1967) in detail can also be advanced here. 
To avoid duplication of similar discussion, reference may be made to the 
above works of the author. 

Next, proceeding to the limit r .... ee, for fixed I, the solution for 
~(r,l) given in (4.10) behaves as 

-I 

~("t),.., = _ tie;' 14r;[~ sin (M - • cos (~: )] 
11 2,1 (.;1-1 

Finally, if the source is situated at an inlinite depth (i.e. whrn d. --- eel 
In an infinitely deep fluid, the solution for the surf~ce elevation ~(r,l) 
becomes exponentially sm~ll ~s r~ally expected, 
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